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Abstract - The process of image denoising in magnetic 
resonance imaging (MRI) is more and more common and 
important in the medical area. However, it is usual that state-of-
the-art deep learning methods require pair images (clean and 
noisy ones) to train the models which poses limitations in 
practice. In this sense, this work applied two recent techniques 
that do not need a clean image to train the models and reached 
good results for denoising tasks. We applied the NOISE2NOISE 
(N2N) and the NOISE2VOID (N2V) learning approaches and 
compared the results for denoising tasks using a fetal MRI 
dataset. The results showed that the N2N method outperformed 
the N2V one, considering the Peak Signal-to-Noise Ratio 
(PSNR), Root Mean Squared Error (RMSE) evaluation metrics, 
and visual analysis.  

Keywords—image denoising, medical area, NOISE2NOISE, 
NOISE2VOID, fetal MRI 

I. INTRODUCTION  
In the modern world, it is more and more usual to infer 

information from images. The Artificial Intelligence (AI) area 
has been a revolutionary way for classification, regression, 
anomaly detection, and other tasks in image databases. In this 
context, image denoising plays a vital space in the image 
processing field, with important goals especially in the 
medical areas [1], [2].  

Image denoising is a well-known and important inverse 
problem in image processing and computer vision [3] and it 
has remained an essential problem in the field of medical 
image processing [4]. Indeed, medical image analysis involves 
accurate interpretation of image data for the proper diagnosis 
to decide further course of treatment [5].Consequently, 
improving the quality of a medical image could mean higher 
odds of early disease detection by visual analysis.  

However, state-of-the-art methods require, in general, pair 
images (clean and noisy ones) to train the models which 
represents another problem because it is very difficult, in many 
cases, to obtain a pair of clean and noisy images. This is 
particularly true for fetal MRI since it is not possible to ensure 
that the fetus will not move during the image acquisition 
process. Moreover, acquiring noise and clean data consumes 
financial and hardware resources being uncomfortable for the 
patient that should follow the acquisition protocol in two 
distinct times. 

To handle this drawback, it is possible to apply methods 
that do not need a respective clean image, only the noisy one, 
or self-supervised techniques such as NOISE2NOISE (N2N) 
[6] and NOISE2VOID (N2V) [7] approaches. The N2N 
method was proposed by Lehtinen et al. [6] in 2018 and 
instead of training a Convolutional Neural network (CNN) to 
map noisy inputs to clean ground truth images its training tries 
to learn a mapping between pairs of independently degraded 
versions of the same training image, i.e., (𝑠! + 𝑛! , 𝑠! + 𝑛"!), 
that incorporate the same signal 𝑠!, but independently drawn 
zero-mean noise 𝑛! and 𝑛"!. As proved by Lehtinen et al. [6], 
a specific deep network trained to predict one noisy signal 
from an independent noisy measurement of the same signal 
will learn to predict the clean data. Thus, in cases where there 
are no pairs of images (clean and noisy ones), N2N can still 
qualify the training of denoising networks. Regardless of that 
advantage, in general, there are at least two shortcomings to 
this approach: (i) N2N training requires that two images 
capturing the same content (𝑠!)  with independent noises 
(𝑛! , 𝑛"!) are available, and (ii) the acquisition of such pairs 
with (quasi) constant 𝑠!  is only possible for (quasi) static 
scenes.  

In this sense, there is the NOISE2VOID (N2V), a method 
designed to handle the N2N drawbacks. As N2N, also N2V 
supports the observation that high-quality denoising models 
can be trained without the availability of clean ground truth 
data. Nevertheless, unlike N2N or traditional training, N2V 
can also be applied to data for which neither noisy image pairs 
nor clean target images are available, i.e. N2V is a self-
supervised training method. N2V makes two statistical 
assumptions: (i) the signal 𝑠 is not pixel-wise independent, (ii) 
the noise 𝑛 is conditionally pixel-wise independent given the 
signal 𝑠!.  

The objective of this work is to apply specific image-
denoising methods that do not require ground truth images. 
These methods are the N2N and the N2V and they will be 
applied to a fetal magnetic resonance imaging (MRI) dataset. 
Also, we will compare N2N and N2V results through visual 
analysis and by computing the peak signal-to-noise ratio 
(PSNR) and root mean squared error (RMSE). Taking this into 
consideration, the main contributions of this research are the 
following: 

• This work reviews recent papers that applied both 
N2N and N2V methods for different tasks and in 
different fields. 

• We show that it is possible to train a self-
supervised methods (N2N and N2V) and to reach 
reasonable results considering the original 
models and a fetal MRI dataset without data 
augmentation.  

The rest of this work is organized as follows. Section II 
brings the recent related works that apply both N2N and N2V. 
Section III addresses the two applied methods, N2N and N2V. 
Section IV presents the used MRI fetal image dataset. Section 
V details and compares the results obtained by applying N2N 
and N2V self-supervised methods. Finally, Section VI 
concludes the work with the main found results. 
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II. RELATED WORKS 
Many studies have been carried out for image denoising to 

reach better quality images. In this context, self-supervised 
methods have also gained attention in this field. To analyze 
articles that applied N2N and N2V, we performed a search in 
the SCOPUS database and considered only recent papers to 
show that it is a modern subject. 

 Zharov et al [8] recently proposed the application of a 
N2N based method in radiographic and tomographic 
multichannel imaging, demonstrating applicability in this kind 
of image. Houhou et al. [9], in the context of biophonic 
multimodel imaging, compared the potential of N2N with 
other deep models in improving image quality.  Jung et al. [10] 
also applied a smooth alteration in the N2N model and applied 
their method in 3D magnetic resonance images, with 
qualitative and quantitative evaluations. Besides, Jurek at al. 
[11] applied a N2N based model in diffusion magnetic 
resonance images (dMRI) also aiming to improve the 
denoising task in this type of neuroimaging. Batson and Royer 
[12] also proposed a N2N based denoiser that requires no prior 
on the signal, no estimate of the noise and no cleaning training 
data, where the optimal model for a given dataset is obtained 
by minimizing a self-supervised loss over a class of invariant 
functions. On the other hand, Ashwini and Ramashri [13] 
applied both N2N and N2V to chest X-ray images to identify 
COVID-19, once these two methods can give better quality 
images, facilitating the diagnosis. Lesage et al. [14] integrated 
N2V with another deep model aiming to analyze 3D images 
of ovaries. Besides, Yun et al. [15] proposed enhanced N2V 
that uses the total variation term to further denoise the images 
while preserving the essential details of computed tomography 
(CT) imagery. Also, kojima et al. [16] applied N2V in MRI, 
however, they tried to remove the noise of kiwi fruit, which is 
a fruit appropriate for evaluating spatial resolution and image 
contrast because of its fine structure and many components.  

In this sense, the main difference between our work and 
counterpart ones is that we do not perform modifications in the 
original N2N and N2V models, we do not apply data 
augmentation, and our work has a specific application in a 
fetal MRI dataset. 

III. DATASET 
In this work, we used an MRI dataset, generated from 38 

different patients (pregnant). MRI datasets has been widely 
used in the medical area, once, in general, it is composed of 
high-resolution images[17]. The dataset used in this work is 
not available to the public. A 1.5 − 𝑇 scanner (Magnetom 
Aera, Siemens, Erlangen, Germany) performed the MRI 
examination, with the surface coil positioned on the 
abdomen. It was applied a 3D T2-weighted true fast imaging 
sequence with steady-state precession (truefisp) in sagittal 
plane (𝑇𝑅 𝑇𝐸⁄ = 3.02 1.43𝑚𝑠⁄ ); besides, following 
isotropic voxel (1.0 × 1.0	 × 1.0𝑚𝑚#);  matrix: 256 ×
256𝑚𝑚$, 136 slices, with a total acquisition time of 26𝑠. 
Also, maternal sedation was not used in the patients. 
     To acquire the MRI dataset, the pregnant was positioned 
in dorsal or left lateral decubitus, with the feet entering the 
magnet first. Then, the images were acquired using a 
controlled setup with image acquisition during maternal 
breath-hold to produce high-quality images with low levels 
of artifacts/noise. During the capture of fetal MRI, it is not 
possible to prevent the movement of the fetus. So, it is not 
guaranteed that images obtained in a controlled environment 

will be free of artifacts due to fetal movements.  
      For this study, synthetic images were created to compose 
the pairs of images (clean and noisy ones). In this sense, the 
additive Gaussian noise [18] was applied to the clean images. 
Thus, it was possible to compute some image quality metrics 
(PSNR and RMSE). The additive Gaussian noise is widely 
used in many contexts to create noisy images and to train 
different models for different fields and tasks. Fig. 1 shows a 
pair of clean and noisy fetal image. The clean one is from our 
dataset described above, and the noisy one was generated by 
additive Gaussian noise with standard deviation 𝜎 = 20 . 
Also, we did not use data augmentation in this work because 
it was not in our initial scope, however, we intend to perform 
tests using augmented data in further research.  

 

Fig. 1. Representation of clean (ground truth – left side) and a noisy image 
(right side). This noisy image was generated by using additive Gaussian 
noise.  

IV. NOISE2NOISE AND NOISE2VOID NETWORKS 
The N2N is an unsupervised deep learning model, which 

does not require clean images to train the network method. 
However, it requires the noisy measurements 𝑠! + 𝑛!  and 
𝑠! + 𝑛"!  based on the true value 𝑠! , with 𝑛!  and 𝑛"!  being 
zero-mean additive noises.  The following expression 
represents the N2N method: 

𝑎𝑟𝑔𝑚𝑖𝑛(𝜃) = ∑ 𝐿 B𝑓% D(𝑠! , 𝑛!)E , (𝑠! , 𝑛"!)F ,!                  (1) 

where 𝑓% is a parametric family of mappings under the loss 
function 𝐿. The key idea is that, with expression (1), N2N can 
learn to remove noise from a signal rather than learn from 
noise 𝑠! + 𝑛! 	to noise 𝑠! + 𝑛"! . This is the principle of the 
N2N unsupervised method. Also, the key to this occurrence 
lies in the fact that the expected value of the noisy input is 
equal to the clean signal [6]. 

The architecture of N2N is a U-Net developed by 
Ronneberger et al. [19]. Also, it can be seen in the Appendix 
Section of  Lehtinen et al. [6]. For all basic noise, the number 
of input and output channels was equal to 3. 

The N2V method [7] relies on the fact, as the authors 
explain, that in a blind-spot network, the receptive field of 
each pixel excludes the pixel itself, preventing it from 
learning its identity. The authors show that this kind of 
network can learn to remove pixel-wise independent noise 
when they are trained on the same noisy images as input and 
target. 

To understand the main difference between N2N and N2V 
first, it is important to see the pairs of noisy images used to 
train N2N as 

𝑥! = (𝑠! , 𝑛!) and 𝑥"! = (𝑠! , 𝑛"!),                                          (2) 
that is the two training images are identical up to their noise 
components 𝑛! and 𝑛"!. In the N2V case, these noises are in 
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the image generation by all input pixels in a square 
neighborhood except for the input pixel 𝑥& at its very location. 
Authors call this type of network a blind-spot network. Also, 
a blind-spot network can be trained using a clean target or a 
noisy target, depending on the desired goal. 

According to Krull et al. [7], the main advantage of a 
blind-spot network is its inability to learn the identity. In other 
words, since they assume the noise to be pixel-wise 
independent given the signal, the neighboring pixels carry no 
information about the value of 𝑛&  (noise). Thus, it is 
impossible for the network to produce an estimate that is 
better than a priori expected value. However, the signal is 
assumed to contain statistical dependencies. As a result, the 
network can still estimate the signal 𝑠& of a pixel by looking 
at its surroundings. Hence, the N2V allows the extraction of 
the input patch and target value from the same noisy training 
image. Also, as in N2N (Eq. 1), the objective is to minimize 
the loss function or empirical risk. The N2V also applies a U-
Net [19] but with addition of batch normalization [20] before 
each activation function. 

V. COMPARISON AND DISCUSSION 
The dataset (described in Section III) contains 2590 

images, where 80% were used for training, 10% as validation 
set, and other 10% were used to test.  

 To apply the N2N and N2V methods, we add Gaussian 
noisy	in the original images. Specifically, for N2N model, the 
training and validation sets is composed by pairs (𝑠! +
𝑛! , 𝑠! + 𝑛"!) where 𝑠!  is the original image, and 𝑛!  and 𝑛"! 
are generated by a Gaussian distribution with	𝜎 = 20  and 
zero-mean. The test set is formed by triplets (𝑠! , 𝑠! + 𝑛! , 𝑠! +
𝑛"!) and the inference 𝐼! is given by:  

𝐼! = "#"$%!&'!(&"#"$%!&'"!(
#

.                                   (3)                                     

For N2V, the training and validation sets are composed 
single noisy images (𝑠! + 𝑛!) where 𝑠! and 𝑛!are analogous 
to N2N. The test is composed by pairs (𝑠! , 𝑠! + 𝑛!) and the 
inference 𝐼! is given by N2V(𝑠! + 𝑛!). 

We ran the codes in Python, using PyTorch [21] for N2N 
and TensorFlow [22] and Keras [23] for N2V. The codes for 
N2N and N2V can be found in [6] and [7], respectively. Also, 
we did not use transfer learning in our training process, indeed, 
the N2V models do not allow us to save checkpoints during 
training.  

In this sense, the networks weights were initialized 
following He et al. [24], they proposed a robust initialization 
method that removes an obstacle of training very deep 
networks. Besides, we also used the same hyperparameter 
values used in [6] to train the N2N model, and the same 
hyperparameter values applied in [7] to train the N2V 
network. Thus, to train the N2N no batch normalization, 
dropout, or other regularization techniques were used. Also, 
the training process applied the learning rate optimization 
ADAM [25] with parameters 𝛽' = 0.9  and 𝛽$ = 0.9  and 
𝜖 = 10(). Also, a learning rate of 0.0001 was used and kept 
at a constant value during the training process. The two models 
were trained using 150 epochs. 

On the other hand, to train N2V we randomly extract 
patches of size  64	𝑥	64. Within each patch 𝑁  pixels were 
randomly selected, using stratified sampling to avoid 
clustering. Besides, the U-Net kernel size was 3 and the mean 

square error (MSE) was the train loss function applied. For 
more information, see supplementary material made available 
by [7]. Results from the tests are shown in Figs 2 and 3. 
Besides, Table I presents evaluation metric results for both 
approaches. Also, the code was run in a GPU Tesla T4 with 
16GB of GDDR6 memory and 2560 CUDA cores. 

In this context, we used PSNR, and RMSE to evaluate the 
results of both methods. The formulas to compute these image 
quality metrics are given below.  

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔(𝑀𝐴𝑋*) − 10𝑙𝑜𝑔(𝑀𝑆𝐸).                   (4) 

In the above formula, 𝑀𝐴𝑋* is the maximum pixel value 
of image 𝐼 and 𝑀𝑆𝐸 (Eq. 5) is the mean squared error that 
considers the “true” numeric values for comparison between 
actual and degraded image [26]. 

𝑀𝑆𝐸 = '
+×-

∑ ∑ [𝑔(𝑖, 𝑗) − 𝑓(𝑖, 𝑗)]$-
!.'

+
&.' ,               (5) 

where 𝑀 and 𝑁 are the pixel amounts in the 𝑥 direction and 𝑦 
direction, respectively, of the thin section images, and 𝑔(𝑖, 𝑗) 
and 𝑓(𝑖, 𝑗)  are the grey values of the original thin section 
image and the cleaned thin section image, respectively, at 
point (𝑖, 𝑗). 

The RMSE, another quality measure used in this paper, is 
defined as: 

𝑅𝑀𝑆𝐸(𝑔, 𝑓) = √𝑀𝑆𝐸,                                  (6) 
where 𝑀𝑆𝐸was defined in Eq. (5), 𝑔 is the original signal, 
and 𝑓 is the denoised signal. 

In Fig. 2 and Fig. 3 it is presented the results for images 1 
and 2, considering N2N and N2V methods. In both cases, the 
figures present clean, noisy (generated by additive Gaussian 
noise), and denoised images (generated by N2V and N2N). 
Also, in the two situations, it is possible to affirm that the 
denoising models were able to perform a noise reduction 
considering the noisy images. Besides, by visual analysis, it is 
also possible to affirm that N2N was better than N2V in terms 
of similarity between the clean image and the ground truth. 
However, there is a place to have better results considering the 
clean image. In other words, it is possible to improve the 
denoising performances for both tested images. 

Besides Table I summarizes the quantitative results of both 
methods. This table presents the image quality metrics, in 
terms of the mean, for both methods (PSNR and RMSE). The 
quantitative results are important to make accurate 
conclusions about the results. In this case, Table I confirms the 
visual perception that N2N outperforms N2V in this test. 
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Fig. 2. Representation of one clean image (image 1) the respective noisy 
image (𝜎 = 20), and the denoised images obtained by N2V and by N2N 
methods. 

TABLE I.  RESULTS FOR N2N AND N2V METHODS CONSIDERING THE 
TEST SET, PSNR, AND RMSE METRICS (𝜎 = 20) 

Methods 
PSNR RMSE 

N2N 31.1867 0.0261 

N2V 24.4983 0.0596 

 

 
Fig. 3. Representation of one clean image (image 2) the respective noisy 
image (𝜎 = 20), and the denoised images obtained by N2V and by N2N 
methods. 

For comparison purposes, we also tested the methods with 
noisy images generated by Gaussian noise using 𝜎 = 5, with 
the hyperparameters of the networks and training/test setup 
remaining unchanged. The quantitative results for both 
methods are summarized in Table II and Fig. 4 shows a 

graphic representation. For this situation, the results 
corroborated with the previous conclusions. In other words, 
the N2N was better than N2V also for this case. However, 
using 𝜎 = 5 to generate the noisy images, the metrics were 
improved for both methods, this is expected once the level of 
noise is reduced. In this sense, the noise that corrupts the 
original images is much less in this situation, as we can see in 
Fig. 4. Indeed, by visual analysis, it is more complicated to 
recognize the noise presented in the noisy image of Fig. 4 
compared to the noisy images presented in both Figs 2 and 3. 
On the other hand, this noise may be more representative of 
real fetal MR images. 

TABLE II.  RESULTS FOR N2N AND N2V METHODS CONSIDERING THE 
TEST SET, PSNR, AND RMSE METRICS (𝜎 = 5) 

Methods 
PSNR RMSE 

N2N 40.3567 0.0001 

N2V 29.3456 0.0342 

 

 

Fig. 4. Representation of one clean image (image 1) the respective noisy 
image (𝜎 = 5), and the denoised images obtained by N2V and by N2N 
methods. 

VI. CONCLUSIONS 
This work aimed to apply two image denoising methods 

that do not require the ground truth images to train (N2N and 
N2V). For the tests we used a fetal MRI dataset corrupted by 
Gaussian noise and compared the results using visual analysis 
and two image quality metrics evaluation, PSNR and RMSE.   

Even though the N2V was derived from N2N and had 
arisen as a better model than N2N, in situations without 
ground truth images, in this work the N2V was worse than 
N2N in two different tests, when noisy images were generated 
using 𝜎 = 5 and 𝜎 = 20 and mean equal to zero. On the other 
hand, both methods presented very small error ratios (RMSE) 
for both tests, which indicates that they are promising 
alternatives for image denoising tasks in the medical area. 
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Also, we could conclude that even with a considered small 
dataset to train deep models we reached good results with the 
applied unsupervised methods using images with two levels of 
noise. But we recognize that there is a place to improve the 
results in further works. 

For future works, we intend to test more methods that do 
not require of ground truth images, such as deep image prior 
[27] and NOISE2SELF (N2S) [12] which is also derived from 
N2N. Besides, we want to test other types of medical images, 
such as ultrasonography imagery and to perform data 
augmentation to provide more information to the tested 
models and to try improve the results. Besides, we intend to 
test N2N and N2V for noisy images generated by different 
noise levels to compare the results and to perform such tests 
using k-fold cross-validation.  
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