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Abstract—Detecting anomalies in industrial processes is a field
in constant advancement. However, automating this task presents
significant challenges due to the complexity of the problem. In
this paper, Deep Learning techniques were employed to detect
anomalies in video footage during digital channel testing of
televisions on a production line. A 3D Convolutional Neural
Network was trained on a dataset containing two classes of
videos: those with simulated defects and those without defects.
The resulting model achieved an accuracy of 98,45% with a
processing speed of 648 FPS.

Index Terms—Anomaly detection, Deep Learning, 3D Convo-
lutional Neural Networks.

I. INTRODUÇÃO

A indústria de manufatura tem passado por transformações
significativas com a introdução da Indústria 4.0, marcada pela
integração de sistemas ciber-fı́sicos, automação e Inteligência
Artificial (IA), que visam criar fábricas inteligentes e altamente
eficientes [1]. Essa nova era industrial está redefinindo a
maneira como os processos de manufatura são conduzidos,
buscando não apenas aumentar a eficiência, mas também
garantir altos padrões de qualidade.

Um dos maiores desafios que o setor enfrenta é realizar
inspeções industriais rápidas e precisas para garantir os mais
altos padrões de qualidade a preços competitivos [2]. Nesse
contexto, a evolução dos sistemas tradicionais de manufatura
para sistemas inteligentes e automatizados é fundamental, visto
que desenvolvê-los com o uso de IA pode garantir a excelência
dos processos industriais, sendo uma solução relevante [3].
Em problemas que envolvem a identificação e classificação
de defeitos, a inspeção visual da qualidade é um importante
tópico de pesquisa, e as imagens estão entre os tipos mais
comuns de dados tratados.

Vários estudos propuseram soluções apoiadas pelo reco-
nhecimento automatizado de imagens usando aprendizado de
máquina para a detecção de defeitos, como a identificação
de defeitos de materiais na fusão seletiva a laser de pós
metálicos [4] e a classificação de defeitos na fabricação de
semicondutores usando imagens de microscópio eletrônico
[5]. Embora os diferentes aspectos abordados nos trabalhos
que investigam a identificação de defeitos a partir de ima-
gens possam ser extremamente úteis ao lidar com vı́deo, a

investigação desse tipo de problema usando dados de vı́deo
apresenta desafios únicos, especialmente ao considerar os
padrões espaço-temporais das sequências de dados de entrada.

Anomalias identificadas durante o processo de manufatura
são irregularidades na qualidade dos equipamentos produzidos
[6]. Neste artigo, é descrito um detector de anomalias em
vı́deos durante testes de canal digital em televisores. Essa
solução é baseada em Redes Neurais Convolucionais 3D para o
processamento de vı́deos, inspecionando as sequências de ima-
gem reproduzidas pelas televisões e identificando fenômenos
defeituosos.

A fim de melhorar o desempenho do sistema e aumentar
a taxa de frames por segundo (FPS), propõe-se realizar testes
nos parâmetros de uma CNN 3D customizada [3], que incluem
ajustes finos na arquitetura da rede e na configuração de
hiperparâmetros, visando otimizar o processamento dos vı́deos
sem comprometer a acurácia na detecção de anomalias. Testes
com diferentes configurações permitem processar vı́deos com
uma taxa significativamente maior de FPS, mantendo altas
taxas de acerto e proporcionando melhorias significativas na
velocidade de processamento.

Entre as contribuições deste artigo destacam-se a aplicação
prática de técnicas avançadas de aprendizado de máquina no
contexto industrial e a otimização do desempenho do sistema
de detecção de anomalias, que atua na melhoria da qualidade
e confiabilidade dos produtos e automação dos processos de
inspeção. Esse avanço alinha as práticas de manufatura com
as expectativas de rapidez e precisão da Indústria 4.0, ao
mesmo tempo que abre novos caminhos para pesquisas e
desenvolvimentos futuros no campo da IA aplicada.

O artigo está estruturado da seguinte forma: na Seção
II, são apresentados os trabalhos relacionados ao contexto
da pesquisa. Na Seção III, apresenta-se o sistema proposto.
Na seção IV estão os procedimentos experimentais, métricas
utilizadas e os resultados obtidos. Por fim, na Seção V, as
conclusões do trabalho.

II. TRABALHOS RELACIONADOS

Nos ambientes de produção modernos, são necessárias
estratégias avançadas e inteligentes de monitoramento de pro-



cessos para permitir um diagnóstico da situação do processo
e, portanto, da qualidade do componente final. A detecção
de anomalias em vı́deos é uma área de pesquisa necessária,
marcada pela escassez de dados rotulados e pela necessidade
de técnicas avançadas para uma análise eficaz.

Diversas abordagens significativas na literatura empregam
técnicas do estado-da-arte para aprimorar a detecção de ano-
malias em diferentes contextos. O uso de Redes Neurais Con-
volucionais 3D foi explorado para enfrentar a complexidade
dos dados de vı́deo e a ambiguidade das anomalias. Nayak
et al. [7] investiga arquiteturas de aprendizagem profunda de
conjunto com base em redes neurais convolucionais (CNN)
e unidades recorrentes controladas (GRU) combinadas com
algoritmos de classificação de alto desempenho, como KNN
e SVM. Além disso, a análise comparativa dos métodos mais
avançados em termos de conjuntos de dados é discutida para
descrever os desafios e as direções promissoras para pesquisas
no campo de processamento de vı́deo.

Por meio da estrutura de classificação profunda de várias
instâncias, Sultani et al. [8] propõe um modelo que facilita a
detecção sem a necessidade de rótulos detalhados. Em vez de
rótulos de treinamento no nı́vel de clipe, os rótulos (anômalos
ou normais) são aplicados no nı́vel do vı́deo. Essa aborda-
gem considera os vı́deos normais e anômalos como pacotes
e os segmentos de vı́deo como instâncias no aprendizado
de várias instâncias (MIL) e aprende automaticamente um
modelo de classificação profunda de anomalias que prevê altas
pontuações de problemas para segmentos de vı́deo defeituosos.

O aprendizado profundo tem promovido soluções promis-
soras, explorando a capacidade de modelos complexos em
identificar padrões irregulares em grandes conjuntos de dados.
Ren et al. [9] oferece uma visão compreensiva dos desafios e
oportunidades na detecção de anomalias em vı́deo, apresen-
tando várias possı́veis direções de pesquisa futura do sistema
inteligente de detecção de anomalias em vı́deo em vários
domı́nios de aplicação. A pesquisa de Zhao et al. [10] propôs
um novo modelo chamado Spatio-Temporal AutoEncoder (ST
AutoEncoder ou STAE), que utiliza redes neurais profundas
para aprender a representação de vı́deo automaticamente e
extrai recursos de dimensões espaciais e temporais por meio
de convoluções tridimensionais.

Adicionalmente, Yang et al. [11] introduz uma abordagem
inovadora baseada em keyframes para restaurar eventos em
vı́deos de anomalias. Ao propor a restauração de múltiplos
frames ausentes a partir de keyframes de vı́deo, essa técnica
incentiva redes profundas a explorar e aprender relações
contextuais temporais abrangentes e caracterı́sticas visuais de
alto nı́vel. A arquitetura proposta oferece uma nova forma
de restaurar vı́deos utilizando atenção cruzada e conexões
residuais de upsampling. Este avanço destaca a eficácia de
restaurações baseadas em eventos no contexto da detecção de
anomalias.

No contexto de classificação ou detecção de irregularidades,
Luo et al. [12] avança com uma rede de predição de quadros
futuros que ajusta rapidamente seu modelo a novas cenas, e
Chang et al. [13] explora uma arquitetura de autoencoder que

separa as representações espaço-temporais para uma detecção
mais eficaz de eventos anormais.

Essas contribuições destacam a importância e o impacto do
aprendizado profundo na detecção de anomalias em vı́deos,
indicando avanços significativos na forma como os sistemas
inteligentes podem automatizar e aprimorar as inspeções de
qualidade em contextos industriais.

III. METODOLOGIA

A abordagem proposta consiste em um sistema de detecção
de anomalias em vı́deos utilizado para avaliar canais digi-
tais em televisores fabricados industrialmente. A metodologia
emprega Redes Neurais Convolucionais 3D (CNN-3D) para
analisar os vı́deos exibidos nos aparelhos, visando detectar
irregularidades visuais.

A. Base de dados

Para treinar e validar o sistema, foi compilado um conjunto
de dados que inclui vı́deos de dois tipos: um representando
condições defeituosas simuladas e outro sem defeitos, ambos
capturados das telas dos televisores durante os testes.

Na linha de produção de televisores, durante o teste do
canal digital, quatro tipos principais de anomalias podem
ocorrer: mosaico, congelamento, perda de frames e tela preta.
O vı́deo utilizado no teste é composto por 4 cenas de peixes
em seu habitat natural, conforme o exemplo na Figura 1. A
anomalia de mosaico causa distorções na imagem com formas
geométricas, enquanto o congelamento resulta na repetição de
frames, a perda de frames adianta alguns frames do vı́deo, e
a tela preta faz com que alguns frames fiquem completamente
escuros, como pode ser visto na mesma sequência do vı́deo,
desta vez afetada pelas anomalias, nas Figuras 2 e 3.

Figura 1. Sequência de frames sem defeito

Figura 2. Sequência de frames anômala com defeitos de congelamento, tela
preta e mosaico simulados.

A base de dados utilizada para o treinamento da rede foi
criada especificamente para o teste de detecção de anomalias
em canais digitais de televisores. Para aumentar o conjunto de



Figura 3. Sequência de frames anômala com defeitos de mosaico e perda de
frames simulados.

dados reais com defeitos, foram simulados os defeitos através
de métodos de processamento de imagem, inseridos em vı́deos
que foram gravados diretamente de televisores. Como o dataset
é sintético, foi fundamental garantir que cada classe tivesse
quantidades iguais de amostras, assegurando um equilı́brio
entre vı́deos defeituosos e sem defeitos para evitar viés na
classificação. A coleta foi realizada com gravações feitas a
partir de 20 posições de câmera diferentes (10 para cada
dispositivo). Para uma representação variada e abrangente dos
possı́veis defeitos, foram capturados 78 segmentos de vı́deo
para cada posição de câmera, resultando em um total de 3120
amostras. Essas amostras foram divididas equitativamente en-
tre vı́deos com defeitos simulados e vı́deos sem defeitos.

B. Sistema Proposto

O sistema de detecção de anomalias foi implementado na
linha de produção de uma fábrica de televisores para auto-
matizar a identificação de defeitos no teste do canal digital.
O processo começa com a captura dos vı́deos da tela da
televisão durante o teste de canais digitais, cujas sequências de
imagens serão analisadas pelo sistema proposto, que identifica
automaticamente qualquer ocorrência de anomalias. Para isso,
uma câmera de alta resolução grava a tela da TV enquanto
esta reproduz um vı́deo padrão de teste transmitido via antena.
Tem-se, na Figura 4, uma visão geral do sistema proposto.

C. Arquitetura da Rede

Para a detecção de anomalias, utilizamos uma rede neural
convolucional 3D (CNN-3D) [3] como base. A partir dessa
arquitetura inicial, realizamos ajustes para adaptá-la ao nosso
contexto especı́fico. As entradas foram configuradas com ta-
manho 128×128×3, o que representa uma redução em relação
às dimensões originais dos vı́deos (224× 224× 3). A escolha
da configuração de 55 frames de vı́deo com 128× 128 pixels
em cada frame e 3 canais de cor foi motivada pelo objetivo
de aumentar o FPS sem comprometer a acurácia do modelo.
A arquitetura resultante é representada na Figura 5.

O processo começa com a aplicação de convoluções 3D
em várias camadas sucessivas, onde cada camada utiliza
filtros tridimensionais que capturam caracterı́sticas espaciais
e temporais dos vı́deos. À medida que o vı́deo passa pelas
camadas, o número de filtros aumenta, permitindo que a rede
extraia padrões cada vez mais complexos. Em cada etapa, os
dados são normalizados para acelerar o treinamento e uma

função de ativação ReLU [14] é aplicada, introduzindo não-
linearidade e permitindo que a rede aprenda representações
mais ricas, sendo a operação de convolução representada na
Equação 1.

Xi+1 = f

(
K∑

k=1

W
(i)
k ∗Xi + b(i)

)
(1)

Sendo Xi a entrada para a i-ésima camada, W(i)
k seus filtros

tridimensionais, K o número de filtros na camada e f(·) a
função de ativação ReLU, a operação de convolução extrai
caracterı́sticas espaciais e temporais. A saı́da Xi+1 é então
passada para a próxima camada da rede, onde o processo
se repete com um número crescente de filtros, permitindo a
extração de padrões cada vez mais complexos.

Após a extração de caracterı́sticas pelas camadas convoluci-
onais, uma camada de Global Max Pooling 3D [15] condensa
todas as informações extraı́das em um único valor por canal.
Isso resulta em uma representação compacta e informativa
dos dados, para reduzir a dimensionalidade e evitar que
o modelo fique excessivamente especializado nos dados de
treino (overfitting). Além disso, o Dropout espacial é utilizado
para desligar aleatoriamente mapas de caracterı́sticas inteiros
durante o treinamento, o que ajuda a rede a generalizar melhor.
Esta representação final é então processada por uma camada
totalmente conectada (densa), que combina as caracterı́sticas
e prepara os dados para a classificação final.

A etapa final é realizada por uma camada de saı́da com 2
neurônios, que usa a função softmax para prever a classe do
vı́deo, indicando se ele é normal ou apresenta anomalias. Na
Equação 2, pc representa a probabilidade prevista para a classe
c após a aplicação da função softmax na camada de saı́da da
rede neural.

pc =
exp(zc)∑C
j=1 exp(zj)

(2)

Este valor zc corresponde à ativação do neurônio c na camada
de saı́da, que reflete a força da evidência de que a entrada
pertence à classe c.

D. Treinamento

Para treinar o modelo proposto, o dataset simulado foi
particionado na proporção 4:3:3 para treino, validação e teste,
respectivamente. O treinamento foi conduzido por 100 épocas,
utilizando o otimizador Adam com uma taxa de aprendizagem
inicial de 0,001 e aplicou dropout entre 30% e 50% para evitar
overfitting. Além disso, foram realizadas mais de 30 execuções
de treinamento, ajustando hiperparâmetros para otimizar a
performance do modelo.

Três callbacks foram empregados para garantir a eficiência
do treinamento. O ModelCheckpoint monitorava a acurácia de
validação e salvava os pesos do modelo sempre que havia
melhoria, assegurando que a melhor versão do modelo fosse
preservada. O ReduceLRonPlateau utilizou um parâmetro de
patience de 10 épocas, significando que a taxa de aprendiza-
gem era reduzida se não houvesse melhoria na acurácia de



Figura 4. Fluxograma do sistema proposto.

Figura 5. Arquitetura dos modelos treinados construı́da.

validação durante 10 épocas consecutivas, permitindo refina-
mentos progressivos. O EarlyStopping interrompia o treina-
mento ao detectar a estagnação da acurácia de validação, pre-
venindo overfitting e economizando recursos computacionais,
após 15 épocas consecutivas (patience de 15 épocas).

Para aumentar a confiabilidade dos resultados, foi utilizada
validação cruzada (k-fold), variando os dados de teste a
cada iteração. As principais métricas de avaliação incluı́ram
acurácia, erro (loss) e eficiência em termos de frames por
segundo (FPS) durante o processamento.

IV. EXPERIMENTOS

Para treinar e validar o sistema, foi utilizado o conjunto de
dados capturados das telas dos televisores. A configuração de
128 × 128 × 3 foi escolhida após diversos testes, nos quais
constatou-se que, além de manter uma acurácia superior a
98%, essa configuração permite processar vı́deos a uma taxa
de 648 FPS, significativamente superior a outras arquiteturas
testadas. Essa otimização foi possı́vel através de ajustes nos
parâmetros da rede, como o número de filtros, a taxa de
dropout e o uso de pooling global, garantindo um modelo ro-
busto e eficiente para a detecção de anomalias em tempo real.
Seis modelos foram testados exaustivamente para determinar
qual arquitetura oferecia o melhor equilı́brio entre precisão na
detecção de anomalias e eficiência de processamento (FPS).
Dentre eles estão a CNN-3D customizada, C3D [16], MoViNet
[17], 3D ResNet [18], Auto Enconder 3D [10] e a 3D-GAN
[19].

Após a fase de construção, treinamento, validação e teste
das arquiteturas modeladas, uma variedade de métricas foi
aplicada para avaliar e comparar o desempenho de cada uma.
As métricas escolhidas foram: Acurácia (ACC), F1 Score,
Área sob a curva ROC (AUC) e FPS. Os resultados dessa
avaliação de ACC e F1 Score estão apresentados na Tabela I,
e os resultados de AUC e FPS na Tabela II.

Dentre os modelos avaliados, a arquitetura que emprega
CNN 3D Customizadas mostrou-se superior, evidenciando

Tabela I
RESULTADOS DE ACC E F1 SCORE

Arquitetura ACC (%) F1 Score (%)
C3D 95,79 95,72

MoViNet 85,83 83,33
3D ResNet 98,26 98,23

AutoEncoder3D 68,97 60,46
3D-GAN 94,50 94,37

Cust. 3D-CNN 98,43 98,43

Tabela II
RESULTADOS DE AUC E FPS

Arquitetura AUC (%) FPS
C3D 95,78 181

MoViNet 85,70 198
3D ResNet 98,25 217

AutoEncoder3D 68,92 122
3D-GAN 95,30 237

Cust. 3D-CNN 98,45 648

uma acurácia excepcional de 98,43%. Este resultado mostra
a precisão do modelo e destaca sua capacidade de processa-
mento rápido. Com frames de 128×128 pixels, essa arquitetura
consegue processar 648 frames por segundo. Este desempenho
é maior do que o alcançado pelas arquiteturas testadas, uma
diferença significativa que demonstra a eficiência do modelo
proposto em termos de velocidade de processamento.

A Tabela III apresenta ainda uma comparação de desem-
penho entre diferentes arquiteturas de redes neurais convo-
lucionais 3D utilizando dois tamanhos de entrada distintos:
224 × 224 e 128 × 128 pixels. O objetivo desta comparação
foi mostrar que os testes na configuração oferecem o melhor
equilı́brio entre acurácia e eficiência computacional, mesmo



que testados na mesma rede. Os resultados indicam que a 3D-
CNN com entrada de 128 × 128 apresentou um desempenho
superior, alcançando uma acurácia de 98,30% e um FPS de
692, enquanto a configuração de 224×224 atingiu 95,79% de
acurácia com um FPS de 181.

Tabela III
COMPARAÇÃO DE DESEMPENHO ENTRE DIFERENTES TAMANHOS DE

ENTRADA.

Arquitetura Tamanho do Input Acurácia (%) FPS
3D-CNN 224 × 224 95,79 181
3D-CNN 128 × 128 98,30 692

As curvas, observados nas Figuras 6 e 7, também mos-
tram uma diminuição consistente da perda e um aumento na
acurácia ao longo das épocas para o modelo com entrada de
224 × 224 pixels. No entanto, é perceptı́vel que, embora a
acurácia final do modelo com 224×224 seja alta, o processo de
treinamento é menos eficiente, com maior oscilação na perda
e na acurácia durante as primeiras épocas.

Figura 6. Curva de acurácia do modelo de CNN 3D 224× 224

Figura 7. Curva de perda do modelo de CNN 3D 224× 224

A Figura 8 apresenta as curvas de perda e a Figura 9
apresenta as curvas de acurácia ao longo das épocas durante o

treinamento do modelo de CNN 3D com entrada de 128×128
pixels. A Figura 8 ilustra a evolução da perda tanto no conjunto
de treino quanto no de validação. Observa-se uma diminuição
significativa da perda nas primeiras épocas, indicando que o
modelo está aprendendo de forma eficaz. A perda se estabiliza
em valores baixos, com as curvas de treino e validação
mantendo proximidade, o que sugere que o modelo não está
sofrendo de overfitting. Na Figura 9 são apresentadas as curvas
de acurácia para os conjuntos de treino e validação.

Figura 8. Curva de acurácia do modelo de CNN 3D 128× 128

Figura 9. Curva de perda do modelo de CNN 3D 128× 128

A acurácia aumenta rapidamente nas primeiras épocas e
continua a melhorar em ambos os conjuntos. A semelhança
entre as curvas de treino e validação reforça que o modelo
está generalizando bem, aprende a partir dos dados de treino
e performa adequadamente em dados novos que não foram
vistos durante o treinamento.

A Tabela IV mostra os resultados do algoritmo de detecção
de anomalias em vı́deos, variando o número de frames perdi-
dos para simular defeitos. O objetivo foi avaliar a capacidade
do modelo em lidar com diferentes quantidades de frames
ausentes. Os resultados indicam que, com poucos frames
perdidos (1 ou 3), o modelo tem alto ı́ndice de falsos negativos
(FN), No entanto, a partir de 5 frames perdidos, há uma



melhora significativa, com mais de 90% das ocorrências de
defeito sendo identificadas quando 7 ou mais frames são
perdidos. Para 11 frames ou mais, a acurácia atinge valores
altos em alguns casos, embora a taxa de falsos positivos
(FP) ainda seja elevada em certas situações, podendo acurácia
diminuir, devido à maior variabilidade nas anomalias e à
confusão do modelo com padrões menos regulares.

Tabela IV
RESULTADOS OBTIDOS EM FUNÇÃO DO NÚMERO DE frames PERDIDOS POR

VÍDEO.

Nº de Frames VP FP FN
1 8,33% 4,17% 87,50%
3 57,69% 7,69% 34,62%
5 73,91% 0,00% 26,09%
7 91,30% 0,00% 8,70%
9 88,46% 11,54% 0,00%
11 100,00% 0,00% 0,00%
13 95,65% 4,35% 0,00%
15 91,30% 4,35% 4,35%
17 86,96% 4,35% 8,70%
19 95,65% 4,35% 0,00%
21 87,50% 8,33% 4,17%
23 86,96% 4,35% 8,70%
25 90,91% 0,00% 9,09%

V. CONCLUSÃO

A exploração de novas técnicas de treinamento e a ex-
pansão dos datasets utilizados para treinamento e validação
são aspectos que impulsionam o desempenho de sistemas de
detecção de anomalias. A arquitetura CNN-3D Customizada
proposta demonstrou uma notável eficácia na detecção de
anomalias em vı́deos, alcançando uma acurácia de 98,43%.
Este resultado destaca a precisão do modelo, sua eficiência
operacional e a superioridade das métricas em comparação
com outras arquiteturas examinadas.

Além disso, o estudo atual reforça a aplicabilidade das
CNNs 3D Customizadas no contexto de grandes bases de
dados de vı́deos, onde a capacidade de processar e analisar
eficientemente grandes volumes de informação é essencial. O
desempenho superior do modelo desenvolvido valida a abor-
dagem escolhida e abre caminho para futuras investigações
e desenvolvimentos na área. Projetos futuros poderiam focar
em ajustes e refinamentos adicionais do modelo, visando a
redução de falsos negativos e o aumento ainda maior da taxa
de acerto.

Assim, este trabalho sugere que tais tecnologias são par-
ticularmente adequadas para ambientes industriais onde a
precisão e a confiabilidade são essenciais. A solução pro-
posta para a detecção de anomalias em vı́deos avança de
maneira significativa na abordagem dos desafios industriais,
especialmente ao automatizar a inspeção de qualidade em
tempo real. A experiência adquirida no desenvolvimento deste
sistema mostra que ajustes na arquitetura e a customização do

modelo aumentam a eficiência de processamento sem perda de
precisão, abrindo espaço para futuras pesquisas que expandam
as técnicas para outras indústrias de inspeção automatizada.
Dessa forma, a solução contribui para o avanço tecnológico
na detecção e estabelece um ponto de partida para explorar
o potencial das redes neurais convolucionais em aplicações
práticas.
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[1] L. H. S. Passos, “A indústria 4.0: fundamentos e principais impactos na
economia brasileira,” Revista de Administração e Negócios da Amazônia,
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