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Abstract—Detecting anomalies in industrial processes is a field
in constant advancement. However, automating this task presents
significant challenges due to the complexity of the problem. In
this paper, Deep Learning techniques were employed to detect
anomalies in video footage during digital channel testing of
televisions on a production line. A 3D Convolutional Neural
Network was trained on a dataset containing two classes of
videos: those with simulated defects and those without defects.
The resulting model achieved an accuracy of 98,45% with a
processing speed of 648 FPS.

Index Terms—Anomaly detection, Deep Learning, 3D Convo-
lutional Neural Networks.

I. INTRODUCAO

A industria de manufatura tem passado por transformacdes
significativas com a introducdo da Industria 4.0, marcada pela
integracdo de sistemas ciber-fisicos, automacdo e Inteligéncia
Artificial (IA), que visam criar fébricas inteligentes e altamente
eficientes [1]. Essa nova era industrial esta redefinindo a
maneira como os processos de manufatura sdo conduzidos,
buscando ndo apenas aumentar a eficiéncia, mas também
garantir altos padrdes de qualidade.

Um dos maiores desafios que o setor enfrenta ¢ realizar
inspecdes industriais rdpidas e precisas para garantir os mais
altos padrdes de qualidade a precos competitivos [2]. Nesse
contexto, a evolucdo dos sistemas tradicionais de manufatura
para sistemas inteligentes e automatizados é fundamental, visto
que desenvolvé-los com o uso de IA pode garantir a exceléncia
dos processos industriais, sendo uma solugdo relevante [3].
Em problemas que envolvem a identificagdo e classificacio
de defeitos, a inspe¢@o visual da qualidade é um importante
tépico de pesquisa, e as imagens estdo entre os tipos mais
comuns de dados tratados.

Virios estudos propuseram solugdes apoiadas pelo reco-
nhecimento automatizado de imagens usando aprendizado de
maquina para a deteccdo de defeitos, como a identificacdo
de defeitos de materiais na fusdo seletiva a laser de pds
metalicos [4] e a classificagdo de defeitos na fabrica¢do de
semicondutores usando imagens de microscopio eletrdnico
[5]. Embora os diferentes aspectos abordados nos trabalhos
que investigam a identificacdo de defeitos a partir de ima-
gens possam ser extremamente tuteis ao lidar com video, a

investigacdo desse tipo de problema usando dados de video
apresenta desafios unicos, especialmente ao considerar os
padroes espaco-temporais das sequéncias de dados de entrada.

Anomalias identificadas durante o processo de manufatura
sdo irregularidades na qualidade dos equipamentos produzidos
[6]. Neste artigo, € descrito um detector de anomalias em
videos durante testes de canal digital em televisores. Essa
solucdo é baseada em Redes Neurais Convolucionais 3D para o
processamento de videos, inspecionando as sequéncias de ima-
gem reproduzidas pelas televisdes e identificando fendmenos
defeituosos.

A fim de melhorar o desempenho do sistema e aumentar
a taxa de frames por segundo (FPS), propde-se realizar testes
nos parametros de uma CNN 3D customizada [3], que incluem
ajustes finos na arquitetura da rede e na configuragdo de
hiperparametros, visando otimizar o processamento dos videos
sem comprometer a acurdcia na detec¢do de anomalias. Testes
com diferentes configuragdes permitem processar videos com
uma taxa significativamente maior de FPS, mantendo altas
taxas de acerto e proporcionando melhorias significativas na
velocidade de processamento.

Entre as contribui¢des deste artigo destacam-se a aplicacao
pratica de técnicas avangadas de aprendizado de méquina no
contexto industrial e a otimizacdo do desempenho do sistema
de deteccao de anomalias, que atua na melhoria da qualidade
e confiabilidade dos produtos e automacio dos processos de
inspecdo. Esse avancgo alinha as praticas de manufatura com
as expectativas de rapidez e precisdo da Inddstria 4.0, ao
mesmo tempo que abre novos caminhos para pesquisas e
desenvolvimentos futuros no campo da IA aplicada.

O artigo estd estruturado da seguinte forma: na Secdo
II, sdo apresentados os trabalhos relacionados ao contexto
da pesquisa. Na Secao III, apresenta-se o sistema proposto.
Na secdo IV estdo os procedimentos experimentais, métricas
utilizadas e os resultados obtidos. Por fim, na Secdo V, as
conclusdes do trabalho.

II. TRABALHOS RELACIONADOS

Nos ambientes de producdo modernos, sdo necessdrias
estratégias avancadas e inteligentes de monitoramento de pro-



cessos para permitir um diagnéstico da situacido do processo
e, portanto, da qualidade do componente final. A deteccdo
de anomalias em videos é uma drea de pesquisa necessdria,
marcada pela escassez de dados rotulados e pela necessidade
de técnicas avancadas para uma andlise eficaz.

Diversas abordagens significativas na literatura empregam
técnicas do estado-da-arte para aprimorar a detec¢do de ano-
malias em diferentes contextos. O uso de Redes Neurais Con-
volucionais 3D foi explorado para enfrentar a complexidade
dos dados de video e a ambiguidade das anomalias. Nayak
et al. [7] investiga arquiteturas de aprendizagem profunda de
conjunto com base em redes neurais convolucionais (CNN)
e unidades recorrentes controladas (GRU) combinadas com
algoritmos de classificagdao de alto desempenho, como KNN
e SVM. Além disso, a andlise comparativa dos métodos mais
avancados em termos de conjuntos de dados ¢é discutida para
descrever os desafios e as direcdes promissoras para pesquisas
no campo de processamento de video.

Por meio da estrutura de classificacdo profunda de vérias
instancias, Sultani et al. [8] propde um modelo que facilita a
deteccdo sem a necessidade de rétulos detalhados. Em vez de
rétulos de treinamento no nivel de clipe, os rétulos (andmalos
ou normais) sdo aplicados no nivel do video. Essa aborda-
gem considera os videos normais e andmalos como pacotes
e os segmentos de video como instdncias no aprendizado
de viérias instdncias (MIL) e aprende automaticamente um
modelo de classificagdo profunda de anomalias que prevé altas
pontuacdes de problemas para segmentos de video defeituosos.

O aprendizado profundo tem promovido solugdes promis-
soras, explorando a capacidade de modelos complexos em
identificar padrdes irregulares em grandes conjuntos de dados.
Ren et al. [9] oferece uma visdo compreensiva dos desafios e
oportunidades na deteccdo de anomalias em video, apresen-
tando vdrias possiveis direcdes de pesquisa futura do sistema
inteligente de deteccdo de anomalias em video em vdrios
dominios de aplicacdo. A pesquisa de Zhao et al. [10] propds
um novo modelo chamado Spatio-Temporal AutoEncoder (ST
AutoEncoder ou STAE), que utiliza redes neurais profundas
para aprender a representacdo de video automaticamente e
extrai recursos de dimensdes espaciais e temporais por meio
de convolugdes tridimensionais.

Adicionalmente, Yang et al. [11] introduz uma abordagem
inovadora baseada em keyframes para restaurar eventos em
videos de anomalias. Ao propor a restauracdo de multiplos
frames ausentes a partir de keyframes de video, essa técnica
incentiva redes profundas a explorar e aprender relagdes
contextuais temporais abrangentes e caracteristicas visuais de
alto nivel. A arquitetura proposta oferece uma nova forma
de restaurar videos utilizando atencdo cruzada e conexdes
residuais de upsampling. Este avanco destaca a eficicia de
restauracdes baseadas em eventos no contexto da deteccdo de
anomalias.

No contexto de classificagdo ou deteccdo de irregularidades,
Luo et al. [12] avanca com uma rede de predicdo de quadros
futuros que ajusta rapidamente seu modelo a novas cenas, e
Chang et al. [13] explora uma arquitetura de autoencoder que

separa as representagdes espaco-temporais para uma deteccdo
mais eficaz de eventos anormais.

Essas contribui¢cdes destacam a importancia e o impacto do
aprendizado profundo na detec¢do de anomalias em videos,
indicando avangos significativos na forma como os sistemas
inteligentes podem automatizar e aprimorar as inspec¢des de
qualidade em contextos industriais.

III. METODOLOGIA

A abordagem proposta consiste em um sistema de deteccao
de anomalias em videos utilizado para avaliar canais digi-
tais em televisores fabricados industrialmente. A metodologia
emprega Redes Neurais Convolucionais 3D (CNN-3D) para
analisar os videos exibidos nos aparelhos, visando detectar
irregularidades visuais.

A. Base de dados

Para treinar e validar o sistema, foi compilado um conjunto
de dados que inclui videos de dois tipos: um representando
condi¢des defeituosas simuladas e outro sem defeitos, ambos
capturados das telas dos televisores durante os testes.

Na linha de produgdo de televisores, durante o teste do
canal digital, quatro tipos principais de anomalias podem
ocorrer: mosaico, congelamento, perda de frames e tela preta.
O video utilizado no teste é composto por 4 cenas de peixes
em seu habitat natural, conforme o exemplo na Figura 1. A
anomalia de mosaico causa distor¢des na imagem com formas
geométricas, enquanto o congelamento resulta na repeti¢ao de
frames, a perda de frames adianta alguns frames do video, e
a tela preta faz com que alguns frames fiquem completamente
escuros, como pode ser visto na mesma sequéncia do video,
desta vez afetada pelas anomalias, nas Figuras 2 e 3.

Figura 1. Sequéncia de frames sem defeito
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Figura 2. Sequéncia de frames andmala com defeitos de congelamento, tela
preta e mosaico simulados.

A base de dados utilizada para o treinamento da rede foi
criada especificamente para o teste de deteccdo de anomalias
em canais digitais de televisores. Para aumentar o conjunto de
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Figura 3. Sequéncia de frames andmala com defeitos de mosaico e perda de
frames simulados.

dados reais com defeitos, foram simulados os defeitos através
de métodos de processamento de imagem, inseridos em videos
que foram gravados diretamente de televisores. Como o dataset
é sintético, foi fundamental garantir que cada classe tivesse
quantidades iguais de amostras, assegurando um equilibrio
entre videos defeituosos e sem defeitos para evitar viés na
classificacdo. A coleta foi realizada com gravagdes feitas a
partir de 20 posicdes de camera diferentes (10 para cada
dispositivo). Para uma representacdo variada e abrangente dos
possiveis defeitos, foram capturados 78 segmentos de video
para cada posi¢do de cimera, resultando em um total de 3120
amostras. Essas amostras foram divididas equitativamente en-
tre videos com defeitos simulados e videos sem defeitos.

B. Sistema Proposto

O sistema de detec¢do de anomalias foi implementado na
linha de produgdo de uma fabrica de televisores para auto-
matizar a identificacdo de defeitos no teste do canal digital.
O processo comega com a captura dos videos da tela da
televisdo durante o teste de canais digitais, cujas sequéncias de
imagens serdo analisadas pelo sistema proposto, que identifica
automaticamente qualquer ocorréncia de anomalias. Para isso,
uma camera de alta resolucdo grava a tela da TV enquanto
esta reproduz um video padrdo de teste transmitido via antena.
Tem-se, na Figura 4, uma visdo geral do sistema proposto.

C. Arquitetura da Rede

Para a deteccdo de anomalias, utilizamos uma rede neural
convolucional 3D (CNN-3D) [3] como base. A partir dessa
arquitetura inicial, realizamos ajustes para adaptd-la ao nosso
contexto especifico. As entradas foram configuradas com ta-
manho 128 x 128 x 3, o que representa uma reducdo em relagdo
as dimensdes originais dos videos (224 x 224 x 3). A escolha
da configuragdo de 55 frames de video com 128 x 128 pixels
em cada frame e 3 canais de cor foi motivada pelo objetivo
de aumentar o FPS sem comprometer a acurdcia do modelo.
A arquitetura resultante é representada na Figura 5.

O processo comega com a aplicacdo de convolugdes 3D
em varias camadas sucessivas, onde cada camada utiliza
filtros tridimensionais que capturam caracteristicas espaciais
e temporais dos videos. A medida que o video passa pelas
camadas, o nimero de filtros aumenta, permitindo que a rede
extraia padroes cada vez mais complexos. Em cada etapa, os
dados sdo normalizados para acelerar o treinamento e uma

funcdo de ativacdo ReLU [14] ¢é aplicada, introduzindo ndo-
linearidade e permitindo que a rede aprenda representacdes
mais ricas, sendo a operacdo de convolug@o representada na
Equacgdo 1.

K .
Xit1=f ZWS) «X; + b (D
k=1
Sendo X; a entrada para a ¢-ésima camada, W,(:) seus filtros
tridimensionais, X o ndmero de filtros na camada e f(-) a
funcdo de ativagdo ReLU, a operacdo de convolugdo extrai
caracteristicas espaciais e temporais. A saida X;;; € entdo
passada para a proxima camada da rede, onde o processo
se repete com um ndimero crescente de filtros, permitindo a
extracdo de padrdes cada vez mais complexos.

Apbs a extracdo de caracteristicas pelas camadas convoluci-
onais, uma camada de Global Max Pooling 3D [15] condensa
todas as informacdes extraidas em um unico valor por canal.
Isso resulta em uma representacdo compacta e informativa
dos dados, para reduzir a dimensionalidade e evitar que
o modelo fique excessivamente especializado nos dados de
treino (overfitting). Além disso, o Dropout espacial € utilizado
para desligar aleatoriamente mapas de caracteristicas inteiros
durante o treinamento, o que ajuda a rede a generalizar melhor.
Esta representacdo final é entdo processada por uma camada
totalmente conectada (densa), que combina as caracteristicas
e prepara os dados para a classificacdo final.

A etapa final € realizada por uma camada de saida com 2
neurdnios, que usa a funcdo softmax para prever a classe do
video, indicando se ele € normal ou apresenta anomalias. Na
Equagdo 2, p. representa a probabilidade prevista para a classe
c ap6s a aplicacdo da fung@o softmax na camada de saida da
rede neural.

exp(2c)
Pe= — )
> =1 exp(z;)
Este valor z. corresponde a ativacdo do neurdnio ¢ na camada
de saida, que reflete a forca da evidéncia de que a entrada
pertence a classe c.

D. Treinamento

Para treinar o modelo proposto, o dataset simulado foi
particionado na propor¢ao 4:3:3 para treino, validacdo e teste,
respectivamente. O treinamento foi conduzido por 100 épocas,
utilizando o otimizador Adam com uma taxa de aprendizagem
inicial de 0,001 e aplicou dropout entre 30% e 50% para evitar
overfitting. Além disso, foram realizadas mais de 30 execugdes
de treinamento, ajustando hiperpardmetros para otimizar a
performance do modelo.

Trés callbacks foram empregados para garantir a eficiéncia
do treinamento. O ModelCheckpoint monitorava a acuricia de
validacdo e salvava os pesos do modelo sempre que havia
melhoria, assegurando que a melhor versdo do modelo fosse
preservada. O ReduceLRonPlateau utilizou um parametro de
patience de 10 épocas, significando que a taxa de aprendiza-
gem era reduzida se ndo houvesse melhoria na acurdcia de
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Figura 4. Fluxograma do sistema proposto.
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Figura 5. Arquitetura dos modelos treinados construida.

validagdo durante 10 épocas consecutivas, permitindo refina-
mentos progressivos. O EarlyStopping interrompia o treina-
mento ao detectar a estagnacdo da acuricia de validagao, pre-
venindo overfitting e economizando recursos computacionais,
apds 15 épocas consecutivas (patience de 15 épocas).

Para aumentar a confiabilidade dos resultados, foi utilizada
validagdo cruzada (k-fold), variando os dados de teste a
cada iteracdo. As principais métricas de avaliacdo incluiram
acurdcia, erro (loss) e eficiéncia em termos de frames por
segundo (FPS) durante o processamento.

IV. EXPERIMENTOS

Para treinar e validar o sistema, foi utilizado o conjunto de
dados capturados das telas dos televisores. A configuragio de
128 x 128 x 3 foi escolhida apds diversos testes, nos quais
constatou-se que, além de manter uma acurdcia superior a
98%, essa configuracdo permite processar videos a uma taxa
de 648 FPS, significativamente superior a outras arquiteturas
testadas. Essa otimizagdo foi possivel através de ajustes nos
pardmetros da rede, como o nimero de filtros, a taxa de
dropout e o uso de pooling global, garantindo um modelo ro-
busto e eficiente para a deteccdo de anomalias em tempo real.
Seis modelos foram testados exaustivamente para determinar
qual arquitetura oferecia o melhor equilibrio entre precisdao na
deteccdo de anomalias e eficiéncia de processamento (FPS).
Dentre eles estdo a CNN-3D customizada, C3D [16], MoViNet
[17], 3D ResNet [18], Auto Enconder 3D [10] e a 3D-GAN
[19].

Apés a fase de construcdo, treinamento, validagdo e teste
das arquiteturas modeladas, uma variedade de métricas foi
aplicada para avaliar e comparar o desempenho de cada uma.
As métricas escolhidas foram: Acuriacia (ACC), F1 Score,
Area sob a curva ROC (AUC) e FPS. Os resultados dessa
avaliacdo de ACC e F1 Score estdo apresentados na Tabela I,
e os resultados de AUC e FPS na Tabela II.

Dentre os modelos avaliados, a arquitetura que emprega
CNN 3D Customizadas mostrou-se superior, evidenciando

Tabela I
RESULTADOS DE ACC E F1 SCORE

Arquitetura ACC (%) F1 Score (%)
C3D 95,79 95,72
MoViNet 85,83 83,33
3D ResNet 98,26 98,23
AutoEncoder3D 68,97 60,46
3D-GAN 94,50 94,37
Cust. 3D-CNN 98,43 98,43
Tabela II
REsULTADOS DE AUC E FPS

Arquitetura AUC (%) FPS

C3D 95,78 181

MoViNet 85,70 198

3D ResNet 98,25 217

AutoEncoder3D 68,92 122

3D-GAN 95,30 237

Cust. 3D-CNN 98,45 648

uma acurécia excepcional de 98,43%. Este resultado mostra
a precisdo do modelo e destaca sua capacidade de processa-
mento rapido. Com frames de 128 x 128 pixels, essa arquitetura
consegue processar 648 frames por segundo. Este desempenho
¢ maior do que o alcancado pelas arquiteturas testadas, uma
diferenca significativa que demonstra a eficiéncia do modelo
proposto em termos de velocidade de processamento.

A Tabela III apresenta ainda uma comparacdo de desem-
penho entre diferentes arquiteturas de redes neurais convo-
lucionais 3D utilizando dois tamanhos de entrada distintos:
224 x 224 e 128 x 128 pixels. O objetivo desta comparagio
foi mostrar que os testes na configuracao oferecem o melhor
equilibrio entre acurdcia e eficiéncia computacional, mesmo



que testados na mesma rede. Os resultados indicam que a 3D-
CNN com entrada de 128 x 128 apresentou um desempenho
superior, alcancando uma acuricia de 98,30% e um FPS de
692, enquanto a configuragdo de 224 x 224 atingiu 95,79% de
acuracia com um FPS de 181.

Tabela III
COMPARACAO DE DESEMPENHO ENTRE DIFERENTES TAMANHOS DE
ENTRADA.
Arquitetura  Tamanho do Input  Acuracia (%) FPS
3D-CNN 224 x 224 95,79 181
3D-CNN 128 x 128 98,30 692

As curvas, observados nas Figuras 6 e 7, também mos-
tram uma diminui¢do consistente da perda e um aumento na
acurdcia ao longo das épocas para o modelo com entrada de
224 x 224 pixels. No entanto, é perceptivel que, embora a
acuracia final do modelo com 224 x 224 seja alta, o processo de
treinamento é menos eficiente, com maior oscilagdo na perda
e na acurdcia durante as primeiras épocas.

Acurécia

—— Training Accuracy
| Validation Accuracy

0 20 40 60 80

Epocas

Figura 6. Curva de acurdcia do modelo de CNN 3D 224 x 224

| —— Training Loss
10 Validation Loss

Perda

Epocas
Figura 7. Curva de perda do modelo de CNN 3D 224 x 224

A Figura 8 apresenta as curvas de perda e a Figura 9
apresenta as curvas de acurécia ao longo das épocas durante o

treinamento do modelo de CNN 3D com entrada de 128 x 128
pixels. A Figura 8 ilustra a evolucdo da perda tanto no conjunto
de treino quanto no de validag@o. Observa-se uma diminuicao
significativa da perda nas primeiras épocas, indicando que o
modelo esta aprendendo de forma eficaz. A perda se estabiliza
em valores baixos, com as curvas de treino e validacdo
mantendo proximidade, o que sugere que o modelo ndo estd
sofrendo de overfitting. Na Figura 9 sdo apresentadas as curvas
de acuricia para os conjuntos de treino e validagao.

Acuracia

—— Training Accuracy
Validation Accuracy
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Figura 8. Curva de acurdcia do modelo de CNN 3D 128 x 128
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Figura 9. Curva de perda do modelo de CNN 3D 128 x 128

A acuricia aumenta rapidamente nas primeiras épocas e
continua a melhorar em ambos os conjuntos. A semelhanca
entre as curvas de treino e validagdo reforca que o modelo
estd generalizando bem, aprende a partir dos dados de treino
e performa adequadamente em dados novos que nao foram
vistos durante o treinamento.

A Tabela IV mostra os resultados do algoritmo de deteccao
de anomalias em videos, variando o niimero de frames perdi-
dos para simular defeitos. O objetivo foi avaliar a capacidade
do modelo em lidar com diferentes quantidades de frames
ausentes. Os resultados indicam que, com poucos frames
perdidos (1 ou 3), o modelo tem alto indice de falsos negativos
(FN), No entanto, a partir de 5 frames perdidos, hd uma



melhora significativa, com mais de 90% das ocorréncias de
defeito sendo identificadas quando 7 ou mais frames sio
perdidos. Para 11 frames ou mais, a acuricia atinge valores
altos em alguns casos, embora a taxa de falsos positivos
(FP) ainda seja elevada em certas situa¢des, podendo acuricia
diminuir, devido a maior variabilidade nas anomalias e a
confusdo do modelo com padrdes menos regulares.

Tabela IV
RESULTADOS OBTIDOS EM FUN(;AO, DO NUMERO DEframes PERDIDOS POR
VIDEO.
N° de Frames VP FP FN
1 8,33% 4,17% 87,50%
3 57,69% 7,69% 34,62%
5 73,.91% 0,00% 26,09%
7 91,30% 0,00% 8,70%
9 88,46% 11,54% 0,00%
11 100,00% 0,00% 0,00%
13 95,65% 4,35% 0,00%
15 91,30% 4,35% 4,35%
17 86,96% 4,35% 8,70%
19 95,65% 4,35% 0,00%
21 87,50% 8,33% 4,17%
23 86,96% 4,35% 8,70%
25 90,91% 0,00% 9,09%

V. CONCLUSAO

A exploracdo de novas técnicas de treinamento e a ex-
pansdo dos datasets utilizados para treinamento e validacdo
sdo aspectos que impulsionam o desempenho de sistemas de
deteccdo de anomalias. A arquitetura CNN-3D Customizada
proposta demonstrou uma notavel eficicia na deteccdo de
anomalias em videos, alcancando uma acuricia de 98,43%.
Este resultado destaca a precisdo do modelo, sua eficiéncia
operacional e a superioridade das métricas em comparacao
com outras arquiteturas examinadas.

Além disso, o estudo atual reforca a aplicabilidade das
CNNs 3D Customizadas no contexto de grandes bases de
dados de videos, onde a capacidade de processar e analisar
eficientemente grandes volumes de informacdo € essencial. O
desempenho superior do modelo desenvolvido valida a abor-
dagem escolhida e abre caminho para futuras investigacdes
e desenvolvimentos na drea. Projetos futuros poderiam focar
em ajustes e refinamentos adicionais do modelo, visando a
reducdo de falsos negativos e o aumento ainda maior da taxa
de acerto.

Assim, este trabalho sugere que tais tecnologias sdo par-
ticularmente adequadas para ambientes industriais onde a
precisdao e a confiabilidade sdo essenciais. A solugdo pro-
posta para a detec¢do de anomalias em videos avanca de
maneira significativa na abordagem dos desafios industriais,
especialmente ao automatizar a inspe¢do de qualidade em
tempo real. A experiéncia adquirida no desenvolvimento deste
sistema mostra que ajustes na arquitetura e a customizagdo do

modelo aumentam a eficiéncia de processamento sem perda de
precisdo, abrindo espaco para futuras pesquisas que expandam
as técnicas para outras industrias de inspecdo automatizada.
Dessa forma, a solug¢do contribui para o avango tecnoldgico
na deteccdo e estabelece um ponto de partida para explorar
o potencial das redes neurais convolucionais em aplicacdes
préticas.
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