Deep Semantic Segmentation Applied to Honey Bee Comb Cells
DOI:
https://doi.org/10.22456/2175-2745.143318Keywords:
Semantic Segmentation, Honeycombs, Convolutional Neural Network, EncodersAbstract
Machine learning is increasingly prevalent in various fields, including beekeeping, where it has been applied to honeycomb analysis through Semantic Segmentation of images. This study evaluates different neural network architectures and encoders using the Intersection over Union (IoU) method to segment Apis mellifera honeycombs. A comparative analysis of semantic segmentation techniques was conducted, revealing advancements in the field with the SegNet architecture combined with the MobileNet encoder for feature extraction. We present a new dataset of 10 comb cell images, which we combine with the images from the DeepBee dataset in our experiments. Our results surpass the state-of-the-art results for comb cell segmentation in the DeepBee dataset.
Downloads
References
COUTO, R. H. N.; COUTO, L. A. Apicultura: manejo e produtos. [S.l.]: Funep Jaboticabal, 2006.
CHAVES, J. da S. et al. Produção de abelhas rainhas africanizadas Apis mellifera L. pelo método de puxada artificial. Brazilian Journal of Development, v. 6, n. 10, p. 80839–80847, 2020. Disponível em: ⟨https://doi.org/10.34117/bjdv6n10-489⟩.
BILIK, S. et al. Machine learning and computer vision techniques in continuous beehive monitoring applications: A survey. Computers and Electronics in Agriculture, Elsevier, v. 217, p. 108560, 2024. Disponível em: ⟨https://doi.org/10.1016/j.compag.2023.108560⟩.
ALVES, T. S. et al. Automatic detection and classification of honey bee comb cells using deep learning. Computers and Electronics in Agriculture, Elsevier, v. 170, p. 105244, 2020. Disponível em: ⟨https://doi.org/10.1016/j.compag.2020.105244⟩.
MINAEE, S. et al. Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1–1, 2021. Disponível em: ⟨https://doi.org/10.1109/TPAMI.2021.3059968⟩.
RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for biomedical image segmentation. In: SPRINGER. Medical Image Computing and Computer-Assisted Intervention. 2015. p. 234–241. Disponível em: ⟨https://doi.org/10.1007/978-3-319-24574-4_28⟩.
HE, K. et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: IEEE International Conference on Computer Vision. [s.n.], 2015. Disponível em: ⟨https://doi.org/10.1109/ICCV.2015.12⟩.
SANDLER, M. et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition. [s.n.], 2018. p. 4510–4520. Disponível em: ⟨https://doi.org/10.1109/CVPR.2018.00474⟩.
SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
HE, K. et al. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. [s.n.], 2016. p. 770–778. Disponível em: ⟨https://doi.org/10.1109/CVPR.2016.90⟩.
HOWARD, A. G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
CROSTA, A. P. Processamento digital de imagens de sensoriamento remoto. [S.l.]: UNICAMP/Instituto de Geociências, 1999.
LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2015. p. 3431–3440.
SIDDIQUE, N. et al. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access, v. 9, p. 82031–82057, 2021. Disponível em: ⟨https://doi.org/10.1109/ACCESS.2021.3086020⟩.
BADRINARAYANAN, V.; KENDALL, A.; CIPOLLA, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 39, n. 12, p. 2481–2495, 2017. Disponível em: ⟨https://doi.org/10.1109/TPAMI.2016.2644615⟩.
YU, F.; KOLTUN, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv, 2015. Disponível em: ⟨https://arxiv.org/abs/1511.07122⟩.
CHEN, L.-C. et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv, 2014. Disponível em: ⟨https://arxiv.org/abs/1412.7062⟩.
STEPHANIE. Jaccard index / similarity coefficient. 2020. Disponível em: ⟨https://www.statisticshowto.com/jaccard-index/⟩.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gustavo Vasconcelos, André Roberto Ortoncelli, Fabiana Martins Costa, Marlon Marcon

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autorizo aos editores a publicação de meu artigo, caso seja aceito, em meio eletrônico de acordo com as regras do Public Knowledge Project.