
Applying Analogy to Schema

Generation

Antonio L. Furtado, Karin K. Breitman, Marco A. Casanova, Simone D.J. Barbosa

Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro

Rua Marquês de S. Vicente, 225
Rio de Janeiro - RJ – BRASIL– CEP 22451-900

{furtado, karin, casanova, simone }@inf.puc-rio.br

Abstract

To support the generation of database schemas

of information systems, a five-step design process is

proposed that explores the notions of generic and

blended spaces and favours the reuse of predefined

schemas. The use o f generic and blended spaces is

essential to achieve the passage from the source space

into the target space in such a way that differences

and conflicts can be detected and, whenever possible,

conciliated. The convenience of working with multiple

source schemas to cover distinct aspects of a target

schema, as well the possibility of creating schemas at

the generic and blended spaces, are also considered.

Keywords: Schema Generation, Analogy, Blending,

Lattices, Entity-Relationship Model, Logic Programming

1. INTRODUCTION
Designers of information systems soon learn that

reusing their previous experience, and also that of

other designers, is a rewarding strategy.

Motivated by this remark, we have been working

[2,3] on methods and tools to, starting from some

predefined database schema regarded as a source

schema, abstract a pattern that captures its structure,

which is then repeatedly used to generate one or more

target schemas. What makes this strategy viable is the

intuitive perception of an analogy between source and

target, expressed by saying that the latter is like the

former.

Additionally, the source schema should be a

typical example among those that are analogously

structured, and the terminology of its underlying

domain should be familiar even to the less experienced

designers. If these requirements are satisfied, it will be

possible to instantiate the positions occupied by

variables in the pattern, by prompting the designer to

indicate which names in the target schema being

generated correspond to each name in the example

source schema.

In the present paper, we expand our earlier method

and introduce a five-step process that takes four spaces

into consideration – the source, target, generic and

blended spaces, as proposed in [9] for widely different

areas. We adopt the familiar Entity-Relat ionship (ER)

model [5] and use the weak entity concept to illustrate

the process.

The diagram in figure 1 represents the four spaces

and shows how they are articulated in view of the

process, whereby, starting from the source, the target

is gradually constructed.

Informally, the generic space originates from the

source by import ing, in a generalized format, the

elements for which corresponding elements in the

target will eventually be characterized. In practice,

both the source and the target will contain other non-

corresponding elements, since analogy is rarely

bijective. Viewing the diagram as a lattice [17], the

generic constitutes the meet of the source and the

source target

generic

blend

Figure 1: The four-space approach

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 2

target spaces and denotes the elements that correspond

to each other in these two spaces. By contrast, the

blended space reflects the join of source and target and

inherits all their elements, corresponding or not. Again

informally, the blend is the space wherein one can

detect whatever is incomparable or conflict ing when

putting together source and target, often calling fo r

some creative form of adaptation to be remedied or

conciliated [9,21]. Goguen [10] fo rmalized b lending in

category theory.

The text is organized as follows. Section 2 details

the five-step process we propose and is the thrust of

the paper. Sections 3 and 4 briefly discuss,

respectively, the advantages of bringing in a

multip licity of source schemas for designing distinct

aspects of a target schema, and the possibility of also

creating schemas directly from elements at the generic

or blended spaces. Section 5 contains the conclusions.

2. THE FIVE-STEP SCHEMA GENERATION

PROCESS

2.1. EXAMPLE

We adopt a simple example to illustrate the

proposed schema generation process. We start with a

schema fragment, specifying employees and their

dependents, which is probably the most frequently

mentioned illustration of the weak entity concept in

ER modelling. As a fragment, it only needs the

elements relevant to characterize weak entities.

We express schemas with the help of clauses such

as those below that introduce two entity classes,

employee and dependent:

Schema: Emp_Dep

Clauses --

 entity(employee, empno)

 attribute(employee, empno)

 entity(dependent,

 [empno/depno-isdepof-empno,depno])

 attribute(dependent, depno)

 relationship(isdepof,

 dependent/0/n, employee/1/1)

 attribute(isdepof, family_tie)

The identifying attribute of employee is empno,

whereas dependent, being a weak entity, relies on

the identifying relat ionship isdepof, combined with

the discriminating attribute depno. The identifying

relationship is 1 to n, being total with respect to

dependent and partial with respect to employee;

these properties are indicated by associating pairs of

minimum and maximum values for the participation of

instances of each entity in relationship instances: at

least 0 and at most n dependents can be related with

exactly one employee. The relationship isdepof has

attribute family_tie, with values such as spouse or

child. Note that the fragment does not include, as

unessential to the characterization of weak entities,

certain basic properties of employee, such as those

referring to the employment aspect itself.

This schema will be used as the source schema,

wherefrom target schemas based on the weak entity

concept can be derived, through five consecutive

steps, to be described in the sequel.

As will be noticed, the process takes into due

consideration some domain-independent consistency

rules inherent in the ER model, such as the following,

among others:

1. all entity classes must have identifying

properties;

2. relationships can only be defined between

defined entity classes;

3. the deletion of an entity instance implies the

deletion of all its properties;

4. if a relationship R is total with respect to one

of its participating entity classes E, an

instance of R cannot be deleted if it is the

only one involving a given existing instance

of E.

2.2. STEP 1 - GENERATING THE PATTERN

From the source schema Emp_Dep, the Weak

Entity pattern is obtained (Figure 2) by consistently

substituting variables for the names of entities,

relationships and attributes.

Besides clauses built from those of the source

schema, the pattern contains mappings, associating the

variables introduced with the corresponding source

schema names. Consistent substitution implies that, to

give one example, variab le A refers to entity

employee wherever it occurs in the clauses of the

pattern.

Pattern: Weak Entity

Example schema: Emp_Dep

Clauses --

 entity(A, B)

 attribute(A, B)

 entity(C, [B/D-E-B, D])

 attribute(C, D)

source target

generic

blend

Figure 2: Generating the pattern

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 3

 relationship(E, C/0/n, A/1/1)

 attribute(E, F)

Mappings --

 A:employee

 B:empno

 C:dependent

 D:depno

 E:isdepof

 F:family_tie

2.3. STEP 2 - GENERATING THE TARGET SCHEMA

Suppose the designer wants to specify a Bk_Ed

schema, about book editions, and realizes that this too

involves the weak entity concept: the editions of a

book are comparab le to the dependents of an

employee, in that to identify an instance of edition,

the indication of the book in question is needed,

besides the edition number – edno – as discriminating

attribute. The generation (Figure 3) is basically done

by specializing the clauses of the pattern (belonging to

the generic space), but the diagram also refers to the

originating source space, to stress that the names in the

pattern mappings were ext racted from it.

Specializing the clauses of the pattern is done by

replacing each pattern variable by an appropriate name

belonging to the underlying domain of Bk_Ed.

Relying on the assumption of a widespread intuitive

understanding of the analogy between the two

domains, the designer is prompted to supply the target

schema names through queries of the form:

- What corresponds to

<name in the source schema>?

In our example, this would instantiate the pattern

mappings as follows:

employee → book

empno → isbn

dependent → edition

depno → edno

isdepof → isedof

We note that the designer may, with limitations,

deny one or more correspondences by replying nil.

So it may happen, at this stage, that nothing

corresponding to the attribute family_tie comes to

mind:

family_tie → nil

This is indeed the only element in this case that

can be absent. Having informed book as

corresponding to entity employee, the designer

should be aware that the indication of what

corresponds to empno is mandatory , since no entity can

lack an identifier (cf. rule 1, stated for the ER model at

the end of section 2.1). Likewise, if nothing

corresponds to dependent, the indication of isedof

as corresponding to isdepof would be an error,

because a binary relationship requires the presence of

two participating entities (cf. rule 2). The absence of

isedof, on the other hand, would defeat the purpose

of the entire process – the weak entity concept makes

no sense without an identifying relationship.

After inspecting the resulting target schema, the

designer's knowledge of the target domain must be

used to check its clauses, with a special attention to:

a. additions to the target schema, that have no

correspondence in the source schema;

b. modifications to be done in the generated

clauses in the target schema.

Suppose that the designer judged that the addition

and the modification below are necessary:

addition: attribute(book,subject)

modification: isedof – min-1:1

The modification enforces the requirement that a

published book must have at least one edition. Then,

the Bk_Ed target schema becomes:

Schema: Bk_Ed

Clauses --

 entity(book, isbn)

 attribute(book, isbn)

 attribute(book, subject)

 entity(edition,

 [isbn/edno-isedof-isbn, edno])

 attribute(edition, edno)

 relationship(isedof,

 edition/1/n, book/1/1)

2.4. STEP 3 - BLENDING THE SOURCE AND TARGET

SCHEMAS

The blended space is pictured as a confluence of

the source and the target spaces, taking into

consideration the correspondences registered in the

source target

generic

blend

Figure 3: Generating the target schema

source target

generic

blend

Figure 4: Blending the source and target schemas

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 4

generic space (Figure 4).

In the database schema-generation process,

elements are obtained by joining each entity and

relationship of the source schema with its counterpart

in the target schema. To begin with, all information

about each entity and relationship, contained in the

various clauses of the two schemas, is collected in

separate frames, structured as lists of property:value

pairs.

Each property of an entity E is represented either

by an attribute name, or by a binary relationship name

tagged with 1 or 2 to indicate, respectively, whether E

is the first or the second participant in the relationship.

Since in the present example no restrictions are being

imposed on the values, all value positions are filled

with an underscore, a usual convention for an

anonymous variable.

The properties of a relationship R are similarly

represented. They include the identify ing attributes of

the two participating entities, the min imum and

maximum occurrences for the first and for the second

participant, and other relationship attributes if any.

The frames extracted from Emp_Dep are:

 frame of employee =

 [empno:_, isdepof/2:_]

 frame of dependent =

 [depno:_, isdepof/1:_]

 frame of isdepof =

 [depno:_, empno:_,

 min-1:0, max-1:n, min-2:1, max-2:1,

 family_tie:_]

and those taken from the Bk_Ed schema are:

 frame of book =

 [isbn:_, subject:_, isedof/2:_]

 frame of edition =

 [edno:_, isedof/1:_]

 frame of isedof =

 [edno:_, isbn:_,
 min-1:1, max-1:n, min-2:1, max-2:1]

We shall introduce here a join operation on frames,

specifying that, when applied to entity or relationship

frames F1 and F2, a frame J results, whose property-

value pairs comprise:

a. pairs p1:v1 from F1, for each property p1 not

corresponding to any property in F2;

b. pairs p2:v2 from F2, for each property p2 not

corresponding to any property in F1;

c. pairs p1-p2:v1-2, for each two corresponding

properties p1 and p2 in F1 and F2, respectively.

Value v1-2 in item c is obtained by, in turn, joining

the two values v1 and v2, according to the following

criterion: if the values are identical constants, or at

least one of them is a variable, v1-2 is the result of their

unification [13]; otherwise the result is a term formed

by the two values prefixed by an asterisk to indicate

that they are in conflict.

The frames characterizing the blended space,

obtained by joining the frames taken from the source

and the target schemas, are shown below. Non-

corresponding properties and conflicting values are

stressed (in italic, boldface; the symbol “” denotes

the join of two frames):

Femployee  Fbook =
[empno-isbn:_,

 isdepof/2-isedof/2:_,

 subject:_]

Fdependent  Fedition =

 [depno-edno:_,

 isdepof/1-isedof/1:_]

Fisdepof  Fisedof =

[depno-edno:_,

 empno-isbn:_,

 min-1:*(0,1),

 max-1:n,

 min-2:1,

 max-2:1,

 family_tie:_]

A disclaimer is in order here. We have considered

only one simple type of conflict. If the designer is

allowed to perform arbit rary modifications to the

target schema initially obtained by instantiating the

pattern variables (cf. step 2), other types of conflict

may occur, calling for the specification of appropriate

criteria to handle them. As noted in [9], blending is, in

general, a particularly complex task, requiring a great

deal of creat ivity from the part of the designer, who

may have to devise ad hoc ways to achieve

consistency. Moreover, conflicts detected through

blending may affect the design of application-oriented

operations on the generated schemas (a topic briefly

addressed in section 2.7).

2.5. STEP 4 - REVISING THE TARGET (AND SOURCE)

SCHEMAS

The resulting blended space can be reinjected into

the derived target space, and even into the originating

source space, if the designer admits the possibility of

source target

generic

blend

Figure 5: Revising the target (and source) schemas

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 5

also reconsidering it (Figure 5).

In our example, a convenient way to call the

designer's attention to what was not used from the

source schema is to display together, in frame format,

the entire list of current properties of each entity and

relationship in the target schema, expanded as the

result of blending. Such frames are direct ly obtained

from the blend frames by reducing the paired names

assigned to corresponding properties to their original

names in the target space, while, naturally, keep ing the

names of the source space properties until now

disregarded:

frame of bookemployee =

[isbn:_, isedof/2:_, subject:_]

frame of editiondependent =

[edno:_, isedof/1:_]

frame of isedofisdepof =
[edno:_, isbn:_, min-1:1, max-1:n,

min-2:1, max-2:1, family_tie:_]

Surely, the designer may or may not judge

appropriate to reconsider what was initially left out, in

this case the relationship attribute family_tie.

Would there be different "ties" between edition and

book? Ironically, the remark that "so-and-so is a

revised edition of his father" is not uncommon, a

playful but expressive metaphoric connection between

the domain of human beings, underlying employee,

and the domain of books, which would bring to mind

that an edition may be classified as revised,

corrected, expanded, abridged, and also simply

as regular, which are some of the possible values for

a new ed_type attribute for the isedof relationship.

The reconsideration of a source schema, such as

Emp_Dep, for expansion is more rarely desirable,

especially if one wishes to keep it as a fragment

containing only the features necessary to characterize

weak entit ies. But in the event that the designer wants

to examine the possibility, the blend frames can be

alternatively renamed as fo llows:

frame of employeebook =

[empno:_, isdepof/2, subject:_]

frame of dependentedition =

[depno:_, isdepof/1:_]

frame of isdepofisedof =

[depno:_, empno:_, min-1:0, max-1:n,

min-2:1,max-2:1, family_tie:_]

What can be the "subject" of an employee? The

subject of a book can be some fict ional genre, but

it can also be a professional field, such as

engineering, or accounting, which may suggest a

new attribute profession for the employee entity,

with possible values including engineer and

accountant, among others.

A further reduction of Emp_Dep to suppress the

family_tie attribute is more likely to happen. This

would become advisable if the attribute is

systematically disregarded, even at this revision step,

in a long series of target schemas generations.

Reconsidering a source schema, and consequently the

pattern abstracted from it (as covered in step 5) is a

case of double-loop learning [1]: the continuing use of

a model providing clues for its correction and

refinement.

2.6. STEP 5 - REVISING THE PATTERN

Since the generic space is often intended as a help

to generate a plurality of target spaces, conflicts

located at the blended space, as well as changes made

at the source space from suggestions motivated by

observing the blend, may entail the reconsideration of

the generic space (Figure 6).

In our example, the blend mirrors the fact that an

identifying relationship must be total with respect to

the weak entity, but no such requirement is imposed

with respect to the entity on which it relies for

identification. So the conflict registered in the

property:value pair min-1:*(0,1) of the frame

resulting from the jo in of Fisdepof with Fisedof

should motivate the insertion of a hotspot [19] in the

Weak Entity pattern, i.e ., a place where the

specification becomes flexible.

The adopted notation, using a question mark as

prefix, will signal that the designer should be queried

about the min-1 property of the relationship denoted

by variable E, and that the value supplied must be

chosen as 0 or 1.

Moreover, if at step 4 a new attribute such as

profession is added to the source target, or if the

family_tie relationship attribute is removed from it,

the pattern must be modified accordingly, so that it

will continue to reflect the Emp_Dep schema.

If all these modifications occur, after deleting the

lines

attribute(E, F)

F:family_tie

source target

generic

blend

Figure 6: Revising the generic space

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 6

and adding or modifying three lines (in boldface), the

pattern would become:

 Pattern: Weak Entity
 Example schema: Emp_Dep

 Clauses --

 entity(A, B)

 attribute(A, B)

 attribute(A, G)

 entity(C, [B/D-E-B, D])

 attribute(C, D)
 relationship(E, C/?(0,1)/n, A/1/1)

 Mappings --

 A:employee

 B:empno

 G:profession

 C:dependent

 D:depno

 E:isdepof

2.7. TOWARDS THE DESIGN OF OPERATIONS

In [6] we added, both to schemas and patterns,

clauses defining operations in terms of their pre- and

post-conditions [8].

Without going into details, we now give one

example of the repercussion of conflicts detected at

the blending stage on the design of operations.

Suppose that an operation named end_coverage has

been defined over the source schema, allowing to

remove a child C of an employee E from the list of

dependents of E, if the birth_year of C (an

additional attribute of dependent) precedes a

currently determined limit. Note that indicating the

deletion of the literal dependent([E,C]) should

cause the deletion of all properties of the entity

instance C, in view of ER rule 3. On the other hand,

note that the repeated execution of end_coverage is

allowed, leg itimately, to leave an employee with no

dependents.

end_coverage(C,E)

 pre-cond: dependent([E,C]),

 family_tie([E,C],child),

 birth_year([E,C],Y),

 Y < b_ylimit.

 post-cond: ¬dependent([E,C]).

Also suppose that, during step 2 of the interactive

process, the designer reacted favourably when

prompted to introduce an operation corresponding to

end_coverage, with the purpose to analogously

discard editions whose year of publication,

ed_year (again a new attribute, corresponding to

birth_year), came before a currently designated

year. In the context o f library management, this is a

well documented practice, known as weeding library

collections [20].

A conservative librarian would very likely demand

that systematic d iscarding be restricted to regular

editions, a requirement that can be easily expressed if

attribute ed_type has been supplied as a counterpart

to family_tie, as considered earlier.

However, straightforward renaming and the

replacement of child by regular is not sufficient

here to avoid a conflict of the generated weed

operation with specific characteristics of the target

schema registered when blending, namely, the totality

property of isedof with respect to book, combined

here with ER ru le 4. One solution to the conflict is

illustrated in the version of weed shown below, which

can be repeatedly applied to discard any number of

non-special editions, provided that the book itself

remains – by keeping its newest edition – to adopt a

usual criterion.

weed(E,B)

 pre-cond: edition([B,E]),

 ed_type([B,E],regular),

 ed_year([B,E],Y),

 edition([B,En]),

 ed_year([B,En],Yn),

 Yn > Y,

 Y < ed_ylimit.

 post-cond: ¬edition([B,E]).

Further refined versions may specify different values of

ed_ylimit for different subjects, in view of constantly

updated studies to determine the period of obsolescence for

publications belonging to each so-called Dewey class [14].

3. COVERING DIFFERENT ASPECTS

THROUGH M ULTIPLE SOURCE SCHEMAS
Patterns to model the same concept can be

obtained from different source schemas. We chose the

Emp_Dep example to construct the Weak Entity

pattern, but other examples could be selected, from

which a family of versions of the pattern would be

obtained and made available to designers. Originating

from source schemas featuring different sets of names,

the mapping section of each version would differ from

that of the others.

More importantly, not all clauses might be

identical, which reflects permissible structural

variations, according to which the versions could be

classified. A designer would then have a chance to

choose the version appearing more congenial to the

case on hand. For instance, a schema Prod_Comp,

treating the components o f products as another

example of Weak Entity, would come equipped with

operations such as repair and replace as

alternative ways to handle a component found to be

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 7

defective. Thanks to the availability of such

operations, Prod_Comp would seem a better source

than Emp_Dep for generating a schema Bk_Vol

dealing with volumes of books, inevitably

susceptible to damage in the everyday functioning of a

lib rary environment.

Repeating the pattern generation process with a

second version is another advantage of keeping

several examples around, since this provides a means

to check the result. Assume, for instance, that a

version of Weak Entity is available wherein the

identifying relationship is total with respect to both

participating entities. If the designer of Bk_Ed had not

noted at step 2 (see section 2.3) the need to correct the

specification of isedof, b lending it with the schema

generated from this second version of the pattern

would reveal the conflict.

But the application of more than one source must

also be considered along a separate line of reasoning.

Early studies on analogy and metaphor [15] already

argued in favour of the use of multip le sources to

provide a fuller characterizat ion of a target possessing

many properties, which might however be grouped

into a manageable number of meaningful clusters.

Morgan [18] used a set of eight metaphors to exp lore

the concept of organization from the viewpoints of

different competing theories.

We worked with Emp_Dep as source schema to

characterize a structural feature of the Bk_Ed schema,

namely the reliance on an identifying relationship to

designate instances of weak entities. Many other

sources can be brought in to suggest other types of

properties and operations; integrity constraints,

expressed e.g. in first-order logic notation, could also

be added. Here we previously treated books as library

items, but clearly they can also be seen as products,

merchandises, objects of intellectual p roperty, etc.

On the other hand, the name of the source schema

used to derive a certain set of properties of a concept

serves to designate a distinct aspect of the concept.

Following the orientation prescribed in [11], when

performing a problem-solving algorithm of

exponential or high polynomial complexity, one can

establish that only the properties of the involved

entities that have been derived from the one (or the

few) designated source(s) will be considered, thereby

reducing the computational effort.

4. CATEGORIZATIONS FROM THE GENERIC

AND THE BLENDED SPACES
Whereas the patterns at the generic space are

preserved to help in the future creation of any number

of target schemas, the frames composed at the blended

space are only used in connection with a specific

source-target pair, and can in principle be discarded

after the generation process terminates.

Yet both the generic and the blended spaces,

whose role is no more than auxiliary in the derivation

of targets from sources, can give rise to new full-

fledged conceptual spaces, through a process

sometimes called categorization [9]. Th is is more

easily accomplished when generic and blend represent

the confluence of spaces associated with the same

underlying domain.

Entit ies employee and student provide an

example of this situation, since both have human

beings as underlying domain. As a convenience, their

corresponding properties can be identically named, so

that they can more appropriately be called common

properties, to be factored out to characterize a person

entity – in a sense, a materialization of the generic

space. Both the common and the exclusive properties

of employee and student are, in turn, inherited by

the trainee entity, which materializes the blended

space. In [3] we represented these four entity classes

as nodes of the lattice induced by is-a links, and

showed that, their properties being so specified, the

meet and the join of the frames of employee and

student yield, respectively, the frames of person

and trainee.

When different underlying domains are involved,

categorization can still be envisaged. The resulting

blend is then populated with hybrid entities, which

may either appear realistic or fantastic, depending on

the context. Conflat ing persons, objects or events is a

powerful literary practice, and, surprisingly, offers

sometimes intuitive clues to solve problems, as in the

Buddhist monk riddle expounded in [11]. A blend

conflating persons and books, for instance, might

make sense in a cartoon universe, as a Digital

Storytelling application aiming to teach children how

to use the facilities of a library. Apart from

Information Systems, on which the present paper

concentrates, and Digital Storytelling, other Computer

Science areas such as Software Engineering have

drawn significantly from the notions of analogy [4]

and blending [12].

5. CONCLUDING REMARKS
We were able to run experiments employing the

current version of the five-step process, with the help

of an interactive logic programming tool. Also,

although simple, the weak entity example helped us

Furtado, Breitman, Casanova, Barbosa Applying Analogy to Schema Generation

 8

gain a better understanding of design by analogy and

blending.

Much work remains to be done, especially to

extend the process as described in section 2, in order

to cope with an ampler variety of conflicts, and to

develop semi-automatic algorithms or heuristics to

recommend adequate strategies for handling the

different situations that may arise in practice.

The topics broadly sketched in sections 3 and 4

should also be included as objectives for future

research, aiming at their integration in a more

comprehensive treatment of the schema generation

problem.

ACKNOWLEDGMENTS
This work is partially supported by CNPq under

grants 550250/2005-0 and 311794/2006-8.

REFERENCES
[1] Argyris, C., & Schön, D. A. (1995).

Organizational Learning II: Theory, Method, and

Practice. New Jersey, NJ: FT Press.

[2] Breitman, K. K., Barbosa, S. D. J., Casanova, M.

A., & Furtado, A. L. (2007). Conceptual modeling

by analogy and metaphor. Proceedings of CIKM

2007.

[3] Barbosa, S. D. J., Breitman, K. K., Furtado, A.

L.,& Casanova, M. A. (2007). Similarity and

analogy over application domains. Proceedings of

SBBD 2007.

[4] Barbosa, S. D. J., & de Souza, C. S. (2001).

Extending software through metaphors and

metonymies. Knowledge-Based Systems, 14, 15-

27.

[5] Batin i, C., Ceri, S. and Navathe, S. Conceptual

Design – an Entity-Relat ionship Approach.

Benjamin Cummings, 1992.

[6] Furtado, A.L., Casanova, M.A., Barbosa, S.D.J.,

& Breitman, K.K. (2007). Plot mining as an aid to

characterizat ion and planning. Technical Report

MCC 07/07, PUC-Rio.

[7] Furtado, A. L., Ciarlini, A. E. M. "Constructing

Libraries of Typical Plans". In Proc. CaiSE’01,

The Thirteenth International Conference on

Computer Advanced Informat ion System

Engineering, 2001.

[8] Fikes, R. E. and Nilsson, N. J. "STRIPS: A new

approach to the application of theorem proving to

problem solving". Artificial Intelligence , 2(3-4),

1971.

[9] Fauconnier, G., & Turner, M. (1994). Conceptual

projection and middle spaces. Technical Report

9401, University of Californ ia, San Diego.

[10] Goguen, J. (1999). An Introduction to Algebraic

Semiot ics, with Application to User Interface

Design. In C. Nehaniv (Ed.) Computation and

Metaphor, Analogy and Agents. Springer-Verlag.

[11] Holyoak, K., & Thagard, P. (1996). Mental Leaps.

Cambridge, MA: The MIT Press.

[12] Imaz, M., & Benyon, D. (2007). Designing with

Blends. Cambridge, MA: The MIT Press.

[13] Knight, K. (1989). Unificat ion: "A

Multidisciplinary Survey". ACM Computing

Surveys, Vol. 21, No. 1, March.

[14] Kramer, P. K. (2002). Weeding as Part of

Collection Development. ISLMA Report. DuPage

Library System.

[15] Lakoff, G., & Johnson, M. (1980). Metaphors We

Live By. University of Chicago Press.

[16] Lakoff, G. and Johnson, M. Metaphors We Live

By. University of Chicago Press, 1980.

[17] MacLane, S., & Birkhoff, G. (1967) Algebra.

MacMillan.

[18] Morgan, G. Images of organizat ion - Executive

edition. Sage Publications, 1998.

[19] Pree, W. Design Patterns for Object-Oriented

Software Development. Addison-Wesley, 1995.

[20] Slote, S. J. (1997). Weeding Library Collections:

Library Weeding Methods. Libraries Unlimited.

[21] Turner, M. The Literary Mind. Oxford University

Press, 1996.

