
9 

 

ClusterMiner: High Performance for Data, Text and Web 

Mining 

Marta Mattoso
1,*

, Nelson Ebecken
1,*

,  

Gerson Zaverucha
1
, Alexandre Gonçalves Evsukoff

1
,  

Fernanda Araujo Baião
2
, Myriam Aragão Costa

1
, Guilherme Saad Terra

1
 

1
COPPE/UFRJ 

P.O.Box 68511 – 21941-972 – Rio de Janeiro – RJ – Brazil 

2
Department of Applied Informatics – UNIRIO 

Av Pasteur 458 – 22290-240 – Rio de Janeiro – RJ – Brazil 

http://clusterminer.nacad.ufrj.br, clusterminer@yahoogroups.com 
*
Project Coordinators: marta@cos.ufrj.br, nelson@ntt.ufrj.br 

Abstract. Our work addresses a variety of inter-related issues with a focus on 

providing tools for efficiently processing data in mining tasks. We investigate 

mechanisms to efficiently access high volumes of data, as well as issues on 

parallel processing of data mining algorithms. We focus on the development of 

ClusterMiner, an environment with high performance tools for improving 

data, text and web mining using PC clusters. The goal is to improve 

performance metrics on data analysis, data sorting and summarization. 

ClusterMiner explores parallel data access by enhancing data distribution 

techniques and parallel execution of heavy-weight queries using database 

clusters. In addition, we investigate parallel techniques to improve typical 

rule-based algorithms under a variety of scenarios. In ClusterMiner, 

performance analysis plays an important role in evaluating design 

alternatives. Finally, we are working on making our research results available 

in form of useful tools for the community. 

1. Introduction 

The Information Age was marked by the strong dissemination of digital repositories, 

where databases were spread in computational “islands” interconnected through the 

World Wide Web. This scenario has evolved, and nowadays we have to face the 

challenges of the Knowledge Age, with emphasis on integrating and processing this huge 

volume of information to reach some useful purpose. This information can be found in 

structured databases (e.g. relational, object-oriented), in semi-structured databases (e.g. 

in XML documents), in text files, as well as flat files. In sync with such (r)evolution, the 

techniques for database management have been radically altered since the traditional 

database system architectures are no longer suited for current problems. 

Data mining techniques have increasingly been studied, especially their application in 

real-world databases. One typical problem is that databases tend to be very large, and 

these techniques often repeatedly scan the entire set. Sampling has been used for a long 

time, but subtle differences among sets of objects become less evident. There are several 



10 

 

advantages of using a database management system (DBMS) to manage and process 

data sets instead of conventional flat files. This approach has been a major concern of 

several researches, because it represents a natural solution for data mining since DBMS 

have been successfully used in business management of very large data bases and may 

store valuable hidden knowledge. 

One requirement of data mining is efficiency and scalability of mining algorithms. 

Therefore, parallelism can be used to process long running tasks in a timely manner. In 

this context, parallel database systems come to play an important role, because they can 

offer, among other advantages, transparent and painless implementation of parallelism 

to process large data sets. Due to high costs in parallel database systems and application 

migration, we propose the use of a database cluster software layer combined to parallel 

data mining algorithms. A database cluster can be defined as a cluster of PC running 

off-the-shelf DBMS at each node.  

ClusterMiner addresses a variety of inter-related issues with focus on high 

performance environment for data, text and Web mining. Several problems have been 

investigated from issues on how to efficiently store, fragment and replicate large 

databases, to issues on how to efficiently integrate parallel mining algorithms to DBMS 

parallel query processing. Our goal is divided in three main areas: (i) distributed 

database design, (ii) parallel data mining algorithms, and (iii) database clusters, outlined 

as follows. 

Distributed database design. We are developing and evaluating fragmentation and 

allocation techniques to obtain high performance through data parallelism. This includes 

a methodology to find adequate fragmentation techniques and fragment sizes, as well as 

algorithms to define fragments and allocate those fragments among cluster nodes while 

deciding upon replication. 

Parallel data mining algorithms. Implementation of data mining algorithms in 

high-performance parallel and distributed computing environments is crucial for 

ensuring system scalability and interactivity as datasets grow in size and complexity. We 

have implemented several DM algorithms such as: a parallel k-NN algorithm with 

Genetic Algorithm optimization, a parallel neural network implementation, and a fuzzy 

rule based classification. We have evaluated these parallel implementations with 

benchmark problems obtaining good results encouraging experiments with new 

applications and implementations of other DM techniques. 

Database cluster. Parallel query processing is a key issue to efficiently access data 

stored in database systems. However, parallel database systems often require parallel 

machines and parallel DBMS software, which contribute to their high cost. In addition, 

database migration can be also costly. A database cluster that uses a sequential off-the-

shelf DBMS running on each node of a PC-cluster as a black-box component is a 

cheaper alternative and respects the autonomy of the database. We have developed 

ParGRES, a database cluster middleware and evaluated it with typical queries from 

knowledge discovery activities, such as OLAP (on-line analytical processing) queries. 

Our results with a 32 dual node machine show super linear speed-up in many scenarios. 



11 

 

In addition to these three research tracks we also work on the combination of these 

techniques by integrating data and text mining into DBMS queries. Several experiments 

are under development considering our own developed tools, and open software as well 

as commercial products. Our research group has fostered contact with groups related to 

target applications such as environmental, business and bioinformatics. Collaborating 

research activities within these areas have produced initial data cleaning, data analysis 

and sequential data mining to prepare for the next phase where parallel data processing 

on such databases is expected. 

The purpose of this paper is to briefly survey the main achievements of the 

ClusterMiner project. Mostly we will reference our own published work to emphasize 

our contribution. Details of the tasks executed, including the mapping of each task with 

the original proposal, the use of funds, papers published, difficulties encountered, 

students involved, approximation with companies and international cooperation can be 

found in the project technical reports, available in http://clusterminer.nacad.ufrj.br/. 

The rest of this paper is organized as follows. In Section 2, we address the main issues 

in the distributed design of databases, which are the basis for data parallelism. Section 3 

presents our proposal for parallelizing several data mining algorithms with the 

performance improvements obtained. Section 4 describes the database cluster prototypes 

we have developed and presents some of several experimental evaluations developed 

along this project. We discuss the data mining and database systems coupling issues in 

Section 5, including specific issues of text mining. In Section 6 we discuss the work we 

have been doing with potential applications for ClusterMiner environment tools. Finally, 

the conclusion of this paper and research tasks for the next two years are presented in 

Section 7. 

2   Distributed database design 
The design of distributed databases is a crucial task to improve the performance of 

applications in a distributed environment, and involves making decisions on the 

fragmentation and placement of data across the sites of a computer network. The first 

phase of the distribution design in a top-down approach is the fragmentation phase, 

which clusters in fragments the information accessed simultaneously by applications. 

Most distribution design algorithms propose a horizontal or vertical class fragmentation. 

However, the user has no assistance in the choice between these techniques. In this 

project we present a detailed methodology for driving the choice between the horizontal 

and the vertical partitioning techniques, or even the combination of both, in order to 

assist distribution designers in the fragmentation phase of databases. Experiments using 

our methodology [Baião et al., 2004] [Florentino, 2003] have resulted in fragmentation 

schemas offering a high degree of parallelism together with an important reduction of 

irrelevant data. 

2.1   Data fragmentation  

In the design of distributed databases, the fragmentation phase is responsible for 

analyzing the most frequent data access pattern and for indicating the best way to group 

data into fragments that will be allocated to the distributed nodes. The database 



12 

 

fragmentation is considered a NP-Hard problem, thus requiring heuristic approaches to 

provide a design that decreases the volume of unnecessary data accessed by applications 

while increases data locality. We have developed the ODARA methodology, which 

implements heuristics to guide the distribution designer in the fragmentation phase of 

the design of distributed databases in the logical level of data representation. The 

ODARA methodology contemplates the object oriented, object-relational and relational 

data models, and may be used in a broad spectrum of existing environments in current 

organizations. Evaluations with ODARA generated fragmentation schemas for the 

Bucky benchmark with better performance when compared to results from other 

relevant works in the literature can be found in [Florentino, 2003].  

2.2   Data allocation  

Allocation algorithms are typically used to find a data distribution among the sites of the 

network such as to minimize the execution cost of the application. Due to the huge 

number of possible solutions, the allocation problem is an NP-Complete problem. In 

this project, we proposed two algorithms for fragment allocation in distributed database 

systems: Aloc – a heuristic algorithm – and GRADA – an algorithm based on the 

GRASP meta-heuristic [Wildemberg, 2004a],[Wildemberg et al., 2003].  

Through simulations performed on top of the TPC-C benchmark, it was possible to 

identify scenarios where Aloc found the optimal allocation solution and other scenarios 

where Aloc obtained a reduced allocation cost when compared to related work 

[Wildemberg et al., 2003]. GRADA obtained better allocation schemas than the Aloc in 

scenarios with a large number of sites [Wildemberg et al., 2004a]. The XAloc software 

tool [Wildemberg et al., 2004a] was developed to evaluate fragment allocation scheme 

according to different allocation algorithms with three different cost functions 

embedded in the system. 

2.3   Using theory revision in distributed database design  

We have developed a framework to handle the fragmentation problem of the design of 

distributed object databases. One of the components of this framework is the Theory 

REvisioN on the Design of Distributed Databases (TREND3) [Baião et al., 2003] which 

automatically revises the heuristic algorithm of the analysis phase of the distributed 

database design (called analysis algorithm) through the use of the Inductive Logic 

Programming system FORTE. The analysis algorithm decides the fragmentation 

technique to be used for the distribution design of database objects. The Prolog 

implementation of the analysis algorithm is provided as the initial domain theory, and 

fragmentation schemas with previously known performance, obtained from 

experimental results, are provided as the set of examples.  

We compared the costs of the resulting fragmentation schema obtained from the 

initial and the revised versions of the analysis algorithm on the OO7 benchmark 

application, after executing the vertical and horizontal fragmentation algorithms. Figure 

1 shows the cost of executing each OO7 query. Our results show the effectiveness of the 

TREND3 approach in automatically improving the analysis algorithm and obtaining a 



13 

 

new version that produced a fragmentation schema that reduced the cost (i.e., increased 

the performance) of the OO7 application in 38% [Baião et al., 2003]0. 

5,228 5,228

18

17,652

1,882

15,294

2,391 2,391

16

1,022

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Q1 Q2 Q3 T1 T2

IO
 +

 C
P

U
 +

 C
o

m
m

u
n

ic
a
ti

o
n

 c
o

s
ts

Initial Analysis Algorithm Revised Analysis Algorithm

5,228 5,228

18

17,652

1,882

15,294

2,391 2,391

16

1,022

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Q1 Q2 Q3 T1 T2

IO
 +

 C
P

U
 +

 C
o

m
m

u
n

ic
a
ti

o
n

 c
o

s
ts

Initial Analysis Algorithm Revised Analysis Algorithm

 

Figure 1: Comparing the costs of the fragmentation schemas  

3   Parallel Data Mining Techniques 

The huge amount of data generated by Data Warehousing and database transactions has 

led Data Mining algorithms to parallel implementations. In this section we describe 

some aspects of three DM algorithms, among others, 0that have been implemented in 

the ClusterMiner project (see reports in http://clusterminer.nacad.ufrj.br/): (i) a parallel 

k-NN algorithm with Genetic Algorithm optimization, (ii) a parallel neural network 

implementation, (iii) a fuzzy rule based classification. Parallel techniques are discussed 

in the following sub-sections where the results obtained show very good performance 

improvements.  

3.1   K-NN Fuzzy with Genetic Algorithm Optimization 

We developed a k-NN fuzzy classifier, optimized with a Genetic Algorithm and 

obtained results that corroborate the hypothesis that this approach can minimize CPU 

time, with a good/excellent sorting ratio 0Rosa, 2003; Rosa et al., 2003]. The machine 

available in this work was an academic pc-cluster of the NACAD/COPPE/UFRJ High 

Performance Computing Laboratory. This machine contains 8 nodes (Intel Pentium III 

with 256 MB  memory) each connected by a Fast Ethernet network).  

The parallel implementation considered the data parallelism approach that keeps a 

copy of the entire labeled samples, with the internal variables and functions, in each 

processing node partitioning training data set among nodes. This approach ensures that 

all values needed during the training phase like K, m and variable weights, are locally 

available, reducing the number of messages passing among nodes and the algorithm 

synchronization. The implementation of data parallelism uses a control node that 

performs genetic operations, realizes chromosome encoding and decoding, broadcasts 

the values of the parameters and summarizes the interested value (total of right classes). 

All nodes start with same internal parameters but with different subsets of training data. 

During training phase of KNN-Fuzzy method [Rosa et al., 2003]0, each node passes its 

training data subset producing partial errors that must be combined with partial errors 

produced by other nodes, generating an overall error. This error is used to update the 



14 

 

weights of the variables in each node, until the procedure reaches the minimal 

acceptable overall error. 

We have evaluated this parallel kNN-fuzzy implementation with 1998 KDD´s cup, 

Sisyphus dataset, which represents a private company of life insurance data warehouse. 

After the data preparation, the database size becomes 64 columns and 130143 strings. 

The class label has only two labels. The application of Amdahl's Law for performance 

evaluation shows a 99,6% of parallelization coefficient for the developed algorithm. 

This is explained by the large time expended by KNN-Fuzzy procedure in the overall 

application time (in a serial evaluation the total computation time is equal 105057 s and 

the KNN-Fuzzy procedure evaluation time is equal 104634 seconds. 

3.2   Neural Networks 

Neural network model is inherently parallel with basic independent units performing 

local calculations. The current implementation [Costa et al., 2004]0 uses a data 

parallelism approach, which keeps a copy of the entire neural architecture in each 

processing node partitioning training data set among nodes. This approach ensures that 

all values needed during the training phase, like output calculation and error back 

propagation, are locally available, reducing the communication among nodes and the 

algorithm synchronization. In distributed memory machines this approach can lead to 

significant performance gains. 

The parallel implementation uses a control node (node 0) that gets the training data 

set, normalizes and distributes it among the processing nodes. All nodes are started with 

same internal parameters but with different subsets of the training data. During training 

phase, each node passes its training data subset producing partial errors that must be 

combined with partial errors produced by other nodes, generating an overall error. This 

error is used to update the connection weights in each node, until the procedure reaches 

the minimal acceptable overall error. It can be pointed out that each node only 

broadcasts its partial error to other nodes at this time. All other calculations involve 

local data and can be made without synchronization. This drastically reduces the 

communications needs.  

We have evaluated this parallel neural network implementation with KDD´s cup 

Sisyphus dataset. The preprocessing phase of this work got an improved data set with 

attributes and registers that properly represent data to train the neural network. 

Attributes with discrete and continuous values were evaluated for columns and registers 

removal, using graphical and statistical algorithms for columns reduction. The resulted 

data set presented 64 attributes and 130,143 registers. The network suitable for 

modeling those data has 64 neurons on input layer, 136 neurons on hidden layer and 1 

neuron on output layer. The parallel neural network application reads the data set and 

splits it into training and testing sets, with the percentages of 70% and 30% respectively. 

The training set is distributed for the processing nodes before the learning phase of the 

algorithm starts. At the end of training phase the control node tests the obtained model 

with the testing set.  



15 

 

Applying Amdahl’s Law to evaluate the parallel application performance, it can be 

showed that 99.3% of the serial application can be parallelized. This is due to the time 

spent by the training phase with respect to the whole time consumption of the 

application. 

3.3   Fuzzy Logic 

Fuzzy rule based classifier has shown good results in serial implementation. This 

classifier is divided in two steps: (i) derive a fuzzy rule based classifier to each variable, 

and (ii) aggregate the partial conclusions of each classifier into a global conclusion. This 

approach allows a simple parallel implementation, since each single-variable classifier 

(or a set of them) can be implemented in a different processor in a parallel architecture, 

and partial conclusions are synchronized and processed by a master processor. 

In the parallel implementation [Pereira et al., 2004]0, a master processor selects 

inputs and distributes the inputs among the available nodes. In the learning phase, at 

each node, a fuzzy rule base weight matrix is computed for each sub-model for the input 

variables, which is assigned to that node. In the processing or testing phase, the rule 

base weight matrix for each sub model is used to compute a partial conclusion on class 

descriptions. All partial conclusions are synchronized in the master processor and final 

conclusions are computed by aggregation of partial conclusions of each sub-model (see 

Figure 2). 

Input Selection
(Master Processor)

FRB 1
Node 1

. . .

Final Conclusion
(Master Processor)

FRB 1
Node 1

FRB 2
Node 2

 

Figure 2. The parallel implementation workflow 

In order to evaluate the scalability of the algorithm for larger problems, a set of 

synthetic problems were generated. Each data set was created using independent 

normally distributed random variables with different means for each class. All synthetic 

problems were generated using two classes, distributed with the same a priori 

probability. The number of variables was varied as  256,128,64,32,16  and the number 

of registers of the data set was varied as  100,50,20,10  thousands of registers. All 

combinations of number of variables and number of registers were considered, resulting 

into 20 synthetic data sets. 

The processing time for each one of the synthetic data set, running in a single 

processor machine, is shown in Figure 3. All experiments used five membership 

functions for the fuzzy partition of each input variable. The processing time increases 



16 

 

almost linearly with the number of variables and the number of registers. For instance, 

the time for the 256 variables data set with 50 thousands of registers was 85.544s, while 

the same number of variables and 100 thousand was 196.971s. The execution time for 

the 128 variables data set and 50 thousand of registers was 43.276s. Considering the size 

scalability described above, the speed-up study was carried out with the 100 thousands 

registers datasets. 

Several experiments were performed in order to evaluate the speed-up analysis 

(Figure 4). Despite the communicating overhead due to data distribution, the 

performance of the algorithm is primarily influenced by the processing of base rule. 

Speed-up is calculated against serial execution time of the algorithm. It can be 

concluded that the effect of the parallel implementation is more efficient as the number 

of variables increases. For 16 variables the efficiency speed-up does not justify the 

parallel implementation. However for 256 variables the speed-up efficiency increases 

almost linearly with the number of processors. 

16
32

64
128

256

10

20

50

100

0

20

40

60

80

100

120

140

160

180

200

Time (s)

Num. of Variables

Num. of 

Registers

(x1000)

16
32

64
128

256

10

20

50

100

0

20

40

60

80

100

120

140

160

180

200

Time (s)

Num. of Variables

Num. of 

Registers

(x1000)  

Figure 3. Size scalability 

analysis 

0

2

4

6

8

10

12

2 4 12

processors

s
p
e
e
d
-u

p
16

32

64

128

256

 

Figure 4. Speed-up analysis

4   Database Clusters 

Clusters of PC servers appear as a cost-effective alternative to parallel database servers. 

Recently, the database cluster approach has gained much interest for various database 

applications. A database cluster is a set of PC servers interconnected by a dedicated 

high-speed network, each one having its own processor(s) and hard disk(s), and running 

an off-the-shelf DBMS. Similar to multiprocessors, various cluster system architectures 

are possible: shared-disk, shared-cache and shared-nothing. Shared-nothing (or 

distributed memory) is the only architecture that does not incur the additional cost of a 

special interconnect. Furthermore, shared-nothing can scale up to very large 

configurations. In the ClusterMiner project, we strive to exploit a shared-nothing 

architecture.  

Each cluster node can simply run an inexpensive (non parallel) DBMS. In our case, 

we use the PostgreSQL DBMS, which is freeware. Furthermore, the DBMS is used as a 

"black-box" component. In other words, its source code is considered not available and 

cannot be changed or extended to be "cluster-aware". Therefore, extra functionality like 



17 

 

parallel query processing capabilities must be implemented via middleware [Vieira et 

al., 2003] . Our database cluster solution, called ParGRES [Mattoso et al., 2005a], along 

with its prototype implementation [Mattoso et al., 2005b], represents a generic and 

efficient solution to build the parallel application server devised for ClusterMiner. 

On-Line Analytical Processing (OLAP) applications typically access large databases 

using heavy-weight read-intensive queries. These queries belong to typical activities in 

knowledge discovery process. Particularly summarization and sorting queries are also 

part of data mining tasks. OLAP query processing in a database cluster is addressed in 

[Lima et al., 2004b, Mattoso et al., 2005a, Mattoso et al., 2005b]. The approach which 

we refer to as simple virtual partitioning (SVP) consists in fully replicating a database 

along a set of sites, and breaking each query in sub-queries by adding predicates. Each 

DBMS receives a sub-query and is forced to process a different subset of data items. 

Each subset is called a “virtual partition”. Such strategy allows for greater flexibility on 

node allocation for query processing than physical (static) data partitioning. A 

preventive replication protocol, which scales up well in cluster systems, could be used 

to keep copy consistency.  

We address the partition size determination problem by using an adaptive approach 

that dynamically tunes partition sizes. We propose adaptive virtual partitioning (AVP) 

which is completely DBMS-independent and uses neither database statistics nor query 

processing time estimates. AVP avoids full table scans on huge database tables in 

addition to parallel processing. It is also easy to implement. To validate our approach, 

we implemented AVP in a Java prototype and ran experiments on a 32-node cluster 

using PostgreSQL. The results show linear and sometimes super-linear speedup for 

many tested OLAP queries (Figure 5-a). In the worst cases, almost linear speedup is 

achieved, which is excellent considering the simplicity of AVP [Lima et al., 2004a].  

We also evaluated AVP in the presence of non uniform load distribution. To address 

data skew we implemented an innovative load balance algorithm combined to the AVP 

strategy. Figure 6 shows normalized execution times for the OLAP queries specified by 

the TPC-H benchmark. These queries contain typical operations found in data mining 

activities such as sum, count and group by. Performance results (Figure 5-b) have shown 

excellent speed-up and load balance [Lima et al., 2005]. These results are part of the 

international collaboration with Patrick Valduriez from Inria, France, supported in part 

by the ClusterMiner project. 

 

                                  (a) 



18 

 

#Nodes

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 2 4 8 16 32

N
o

rm
a
li
z
e
d

 T
im

e
Q1 Q5 Q6 Q12 Q14 Q18

#Nodes

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 2 4 8 16 32

N
o

rm
a
li
z
e
d

 T
im

e
Q1 Q5 Q6 Q12 Q14 Q18

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 2 4 8 16 32

N
o

rm
a
li
z
e
d

 T
im

e
Q1 Q5 Q6 Q12 Q14 Q18

 

                                        (b)

Figure 5. TPC-H queries execution normalized times with (a) uniform values and 

(b) skewed values 

5   Data Mining and Database System Coupling  

Many data mining implementations have already used a DBMS. However, most of 

implementations use DBMS only to issue queries that are going to be processed by a 

client machine. The problem with loosely-coupled solutions is that DBMS facilities are 

underemployed. They treat the DBMS simply as a container from which data is 

extracted directly to the main memory of the computer responsible for running the data 

mining algorithm, just before the main execution begins.  

Therefore, the idea of tightly-coupled integration between data mining operations and 

a DBMS is to execute user-defined computation within databases. This integration 

provides security (the data is controlled by the DBMS), interaction with the data miner 

(the user may query partial results), among others. Also, updates in the original data set 

may be incrementally propagated to the mine database relation. One way of 

implementing this integration is through DBMS query languages.  

In the ClusterMiner project we are evaluating solutions that integrate typical mining 

data accesses with a coupled use of DBMS, addressing performance issues with 

database cluster parallel processing (section 4). The main goal of this approach is to 

combine code flexibility and simplicity provided by current commercial as well as open 

software DBMS with the efficiency of parallel processing.  

In this section we present the several initiatives evaluated by the ClusterMiner team. 

Initially, we present typical SQL queries that can help data mining tasks and show how 

these query executions can be parallelized, for example by a our database cluster. 

Section 5.2 briefly discusses how we are coupling text mining algorithms based on 

summarizations to XML documents query processing using DBMS. We have also 

evaluated commercial solutions such as an industrial standard initiative to access DBMS 

from data mining algorithms, presented in section 5.3. We have obtained good results 

but still without parallel support. Finally, in section 5.4 we describe the implementation 

of a complete classification algorithm taking advantage of DBMS fuzzy queries.  



 

19 

 

 

5.1   Typical DBMS queries in data mining tasks 

Most queries issued in data mining tasks, deals with two kinds of operations: grouping 

(GROUP BY) and sorting (ORDER BY), when working with continuous attributes. In 

the following SQL example, attribute represents one of the predictor attributes, class 

represents the target attribute.  

SELECT attribute, class, COUNT(*) 

FROM mine_relation 

GROUP BY attribute, class  

Database clusters can process this kind of query very efficiently taking advantage of 

parallel PC cluster resources. In distributed memory architectures such as PC clusters, 

each node can independently compute counts on the records stored locally. In the next 

phase, a coordinator process can consolidate these counts, and then return the result 

back to the user. 

We have evaluated these types of query in several experiments through TPC-H 

(OLAP queries) benchmark using ParGRES, our database cluster prototype on top of 

PostgreSQL, an open-source DBMS [Lima et al., 2004a; Lima et al., 2004b; Lima et al., 

2005]. Our results with a 32 dual node machine show super linear speed-up in many 

scenarios (section4), evidencing the parallelism that can be obtained. In the next phase 

of the project we intend to use these kinds of queries in data mining algorithms 

presented at section 3.  

5.2   Text Mining and DBMS queries  

Text mining is concerned with the management of very large document collections and 

the extraction of hidden knowledge from text-based data. The volume of textual data in 

semi-structured format, particularly in XML, is expected to grow tremendously in the 

next few years, resulting in huge databases of documents, such as news, patent 

documents, genome databases, etc. Consequently, the support for the management of 

XML data inside database systems is rapidly growing both in the academy and in 

companies. Also, these massive XML databases may contain knowledge in textual 

format that extrapolates their original purpose. Currently many DBMS can process, 

through XQuery, queries on XML documents [Curotto and Ebecken, 2003]0. 

One of the main Text Mining tasks is Text Categorization (TC), which is the 

supervised-learning assignment of labels to documents in a collection. Today, the task 

of categorizing large collections of documents stored in a DBMS is done with little (if 

any) integration between the TC algorithm and the DBMS [Bezerra and Mattoso, 2004].  

In this activity of the ClusterMiner project, we propose a new way in which TC 

algorithms can be constructed. We have defined a database primitive for the TC task 

using XQuery. A database primitive can be seen as a core operation that is data-

intensive. Our database primitive aims at providing statistical summaries extracted from 

XML documents stored in a DBMS. These statistical summaries can be used by TC 

algorithms implemented on top of the DBMS or a database cluster, hence scaling these 

algorithms to handle large volumes of textual data. The main goal of our database 



 

20 

 

 

primitive is to move some of the computational processing of the TC task into the 

DBMS query processing capabilities. 

We have evaluated our database primitive with a Naïve Bayes algorithm on top of an 

XML database engine to construct a predictive model built from the new Reuters 

collection of XML documents. Currently, we are investigating two issues in the 

production of statistical summaries in an XML format. First, XML data contains a lot of 

verbose, which increases the amount of space needed to store the results of our 

primitive. Second, the results must be represented in a standard format in order to be 

used by many text mining applications. To deal with the first problem, are investigating 

the use of XML compressors (like XMill) to reduce the amount of space needed to store 

the results of our primitive. To deal with the second problem, we are using PMML 

(Predictive Model Markup Language) to represent the results of the primitive [Bezerra 

and Mattoso, 2004; Bezerra et al., 2005]. 

In addition to the evaluation of text mining with DBMS we are also investigating 

new algorithms for text categorization. TextRISE [Pina and Zaverucha, 2004]0 is a 

modification of RISE (a well-known multi-strategy algorithm that combines the best 

characteristics of rule induction and instance-based learning in a single algorithm) for 

information extraction. We developed the SUNRISE algorithm [Pina and Zaverucha, 

2004],0 which achieves comparable accuracy to that of the RISE algorithm but in a 

lower average running time. 

5.3   Data mining tasks in commercial DBMS systems 

Using Database Management Systems (DBMS) technology with Data Mining (DM) 

activities are becoming very popular. It is efficient, inexpensive, safe, adequate, 

comfortable and reliable to develop an application in the same environment that 

supports and manages all data and knowledge. 

To achieve this goal, Microsoft released the Object Linking and Embedding Database 

for DM (OLE DB for DM) specification, a protocol based on the SQL language that 

provides software vendors and application developers with an open interface to more 

efficiently integrate data mining tools and capabilities into line-of-business and e-

commerce applications. About 55 independent software vendors (ISVs) participated in 

the elaboration of this specification. 

OLE DB for DM provides an industry standard for DM so that different DM 

algorithms from various DM developers can be easily plugged into user applications and 

specifies the Application Programming Interface (API) between DM consumers 

(applications that use DM features) and DM providers (software packages that provide 

DM algorithms). This approach seems to be a promising solution for the integration of 

DM and DBMS technologies. Using this technology, a Simple Naive Bayes Incremental 

classifier was implemented supporting numeric input attributes, multiple prediction 

attributes and incremental update of data. Computational experiments using real word 

data sets were used to evaluate the results obtained by this classifier [Evsukoff and 

Ebecken, 2003]0. 



 

21 

 

 

5.4 Automatic Generation of Fuzzy Queries  

Typical DBMS queries, expressed in query languages such as SQL have several 

limitations to deal with uncertain and vague information. Moreover, standard queries in 

DBMS are processed using Boolean logic resulting in a non-ordered sequence of 

registers. Many applications, e.g. database marketing, need a ranking of the registers to 

perform target selection. Fuzzy queries and Fuzzy Queries Languages can deal with 

uncertain and vague query information and also return an ordered sequence of registers. 

Fuzzy 

Classifier

Data Base

)()()()(

)2()2()2()2(

)1()1()1()1(

121

121

121

121

NyNxNxNx

yxxx

yxxx

YXXX

n

n

n

n











Training Set

Fuzzy Queries Fuzzy Rule

Base

Fuzzy SQL

Application

Rule Base

Translation

Fuzzy 

Classifier

Data Base

)()()()(

)2()2()2()2(

)1()1()1()1(

121

121

121

121

NyNxNxNx

yxxx

yxxx

YXXX

n

n

n

n











)()()()(

)2()2()2()2(

)1()1()1()1(

121

121

121

121

NyNxNxNx

yxxx

yxxx

YXXX

n

n

n

n











)()()()(

)2()2()2()2(

)1()1()1()1(

121

121

121

121

NyNxNxNx

yxxx

yxxx

YXXX

n

n

n

n











Training Set

Fuzzy Queries Fuzzy Rule

Base

Fuzzy SQL

Application

Rule Base

Translation

 

Figure 6. Automatic generation of fuzzy queries 

The generation of fuzzy queries by supervised learning methods has been subject of 

several studies. An original methodology (Figure 6) has been developed [Branco, 2004] 

to generate a set of fuzzy queries for classification tasks. Those queries are obtained 

from a set of fuzzy rules that are learned from a Fuzzy Classification System and can 

select the members of each class from the database.  

A simple approach to evaluate the weighted fuzzy queries is presented and some 

results are examined using a commercial tool. A fuzzy query simplification approach is 

also derived, showing the same classification accuracy with much better interpretability 

characteristics. The results show that the proposed methodology may improve target 

selection in a database market application. 

This methodology is a time consuming task, however, it can be directly extended 

through parallel implementations since the parallelization of this fuzzy classification 

technique has already been developed (see section 3.2). In addition, the database cluster 

middleware can be adapted to parallelize the execution of fuzzy SQL queries providing 

high performance.  

6   Applications 

This section describes potential applications areas where the techniques described at the 

previous sections can be applied. We have experimented sequential data mining 

algorithms on applications of environmental and commercial areas. We also describe 

collaboration initiatives with bioinformatics groups, however with these applications we 



 

22 

 

 

are still structuring and gathering data. These experiences are briefly presented as 

follows. 

Insolvency Detection in a Telecom Operator. Insolvency impacts all companies, 

generating injuring processes and flow of investments, yielding revenue losses and, 

specially, customer losses. The involuntary actions of insolvency are semi-controlled 

events that can be analyzed and classified. After implementing and executing cluster and 

classification models, there are many opportunities to develop and deploy a prediction 

model to prevent the involuntary events of insolvency and detection of fraud actions. 

However, frauds happen in different ways, and due to its intentional characteristic, they 

can be more volatile in a time series, changing the form and the mode of its occurrence, 

making the events, more difficult to cluster, classify and predict. We have developed 

[Evsukoff et al., 2004]0 a system for insolvent customer detection, using unsupervised 

learning neural network models. In [Evsukoff et al., 2004]0 we present a case study on 

the development of a model to identify and prevent insolvency events in a telephone 

operator database. The model identifies the defaulters’ profile, indicating the variables 

related to the insolvency. 

Coast Management. Environmental data often need to be analyzed in order to obtain 

information necessary for environmental management decision. The main task today is 

to shift what is natural and atrophic variability and the assessment of trophic status to 

forecast the future ecosystem behavior. Sometimes it is necessary to use the data to 

build a model of the environmental processes that we want to manage. In other cases, 

we must identify and understand the interrelationships of different physical, chemical 

and biological parameters. The case studied is the algal community growth in coastal 

upwelling area of Cabo Frio Island at Rio de Janeiro state, southeastern of Brazil as an 

indicator since this place is becoming an operational support base of oil drilling 

companies [Evsukoff and Ebecken, 2004]0. A machine learning approach is used to 

elicit regularities and dependences that include both numerical and logical conditions. 

Traffic Information Systems. This application [Pinheiro et al., 2003]0 presents a 

fuzzy system for pattern recognition in a real application: the selection of traffic 

information messages to be displayed in Variable Message Signs located at the main 

routes of the city of Rio de Janeiro. In this application, flow and occupancy rate data is 

used to fit human operators’ evaluation of traffic condition, which is currently done 

from images of strategically located cameras. The fuzzy rule-base mining is presented 

considering the symbolic relationships between linguistic terms describing variables and 

classes. The application presents three classifiers built from data. 

Geochemistry Exploration. In this study [Gama et al., 2004]0, fuzzy reasoning 

numerical techniques were applied to integrate surface geochemical (headspace C1 to 

C6+ concentrations from soil samples) and geologic data in a Sub-Andean sedimentary 

basin. A methodology is proposed to compute anomalous regions combining Fuzzy c-

Means clustering and fuzzy classifiers. The results of the proposed approach have 

allowed a good definition of anomalous areas, taking into account all the geochemical 

parameters in an integrated way. 

Key Account Management. Key Account Management is the strategic marketing 

approach that provides an effective, practical and rather simple method for companies 

interested in increasing their profits by adequate customer and relationship management. 



 

23 

 

 

In companies which data is decentralized in business units, the implementation of a Key 

Account program passes through the accounts selection problem, and through the 

implementation process, that can be seen as a Knowledge Discovery in Database 

process where the goal is to search for accounts under given restrictions in the 

marketing utility function. This work [Nahm and Mooney, 2002]0 presents a case study 

based on the implementation of a KAM program in a Brazilian Insurance Company, 

where a naive KDD approach supported an information system construction. 

Dynamic Systems Identification. This application [Evsukoff et al., 2004]0 presents 

an algorithm for identification of fuzzy recurrent models of non-linear dynamic systems. 

The identification algorithm is based on a general purpose genetic algorithm. The 

resulting recurrent fuzzy system is encoding into a fuzzy finite state automaton in which 

the linguistic terms of the fuzzy model are the states and rule base weights are transition 

possibilities. The identification algorithm is tested against benchmark identification 

problems found in literature. 

Bioinformatics. In-silico scientific experiments encompass multiple combinations of 

program and data resources. Each resource combination in an execution flow is called a 

scientific workflow. In bioinformatics environments, program composition is a frequent 

operation, requiring complex management. We have combined metadata support with 

Web services within a framework that supports scientific workflows. We have used this 

framework with a real structural genomic workflow, showing its viability and 

evidencing its advantages [Cavalcanti et al., 2004]. In addition, we used data parallelism 

to improve the performance of typical bioinformatics workflows [Meyer et al., 2004]. 

Our main efforts were in managing bioinformatics workflows which generate specific 

datasets to be mined. 

7   Conclusion and Future Work 

In this report paper we have outlined some research results from the ClusterMiner 

project. We were able to make advances in the areas of parallel database clusters, 

parallel data mining algorithms and coupling of mining with database techniques, 

following our original goals. We have made progress both in obtaining theoretical 

results as well as implementing and evaluating new parallel techniques, as planned for 

our high performance environment. We successfully accomplished the development of 

key components for the ClusterMiner environment, such as: the parallel execution of 

typical data mining tasks, the parallel implementation of important data mining 

algorithms and prototypes that combine data, text mining with parallel database systems, 

parallel data mining with database systems, among other DM-DB couplings. Results 

show very good performance improvements through parallel processing. Therefore, we 

have successfully achieved the goals devised for the project.  

We have also been in contact with potential applications of the ClusterMiner 

environment. This contact aims at gathering data, analyzing data, structuring data and 

performing some sequential data mining analysis, which has produced important results 

in publications. Future work include (i) fine tuning and evaluation of other applications 

with our database cluster, (ii) coupling and evaluations of parallel data mining 

algorithms with our database cluster intra-query parallelism, (iii) implementations of 

Web mining tools and text mining algorithms, (iv) continue the developments on data 



 

24 

 

 

preparation and analysis of potential applications of the ClusterMiner environment, (v) 

integration of software components into the ClusterMiner environment, and (vi) 

evaluation of target applications with ClusterMiner tools. 

Acknowledgement. The authors are grateful to CNPq for the financial support for this 

project.  

References 

BAIÃO, F., MATTOSO, M. L. Q., SHAVLIK, J., ZAVERUCHA, G. Applying Theory 

Revision to the Design of Distributed Databases In: International Conference on 

Inductive Logic Programming (ILP 2003), 2003, Szeged. Lecture Notes in Artificial 

Intelligence. Springer-Verlag, 2003. v.2835. p.57 – 74 

BAIÃO, F., MATTOSO, M. L. Q., ZAVERUCHA, G. A Distribution Design 

Methodology for Object DBMS. Distributed and Parallel Databases. Kluwer 

Academic Publishers, v.16, n.1, p.45 - 90, 2004. 

BEZERRA, E. MATTOSO, M. L. Q., On the integration of Text Mining and Database 

Systems, In: ClusterMiner Technical Report RT-007-04 

(http://clusterminer.nacad.ufrj.br/), 2004. 

BEZERRA, E. XEXÉO, G. MATTOSO, M. L. Q., A Database Primitive for 

Classification in Text Mining, submitted to ACM SAC Data Mining Track 2005. 

BRANCO, A. C. S. Fuzzy Queries Generation for Data Mining. D.Sc. Thesis, 

COPPE/UFRJ, Brazil, 2004. 

CAVALCANTI, M. C., TARGINO, R., BAIÃO, F., ROSSLE, S., BISCH, P., PIRES, P. 

F., CAMPOS, M. L. M., MATTOSO, M. L. Q. Managing Structural Genomic 

Workflows using Web Services. Data & Knowledge Engineering., 2004. Available at 

http://authors.elsevier.com/sd/article/S0169023X04001120 

COSTA, M. C A., EVSUKOFF, A., EBECKEN, N. Data Mining High Performance 

Computing Using Neural Networks. In: ClusterMiner Technical Report RT-008-04 

(http://clusterminer.nacad.ufrj.br/), 2004. 

CUROTTO, C. L. Integrating Data Mining Resources and Database Managers. D.Sc. 

Thesis, COPPE/UFRJ, Brazil, 2003. 

CUROTTO, C. L., EBECKEN, N. F. F. Evaluating the Scalability of Data Mining 

Provider Classifiers, Data Mining IV – Fourth International Conference on Data 

Mining, WIT Press, ISBN 1-85312-806-6, Rio de Janeiro, 2003, p. 651-660. 

EVSUKOFF, A. EBECKEN, N. F. F. Mining fuzzy rules for a traffic information 

system. V. Palade, R. J. Howlett e L. Jain (editors). Proceedings of the Knowledge –

based Intelligent Information and Engineering Systems – KES2003, LNAI 2773, 

2003, p. 237-243. 

EVSUKOFF, A., COSTA, M. C A., EBECKEN, N. Parallel Implementation of Fuzzy 

Rule Based Classifier. In: VECPAR2004 - High Performance Computing for 

Computational Science, Valencia. Lecture Notes in Computer Science. Springer 

Verlag. 2004  

http://clusterminer.nacad.ufrj.br/
http://clusterminer.nacad.ufrj.br/


 

25 

 

 

EVSUKOFF, A., EBECKEN, N. F. F.. Identification of Recurrent Fuzzy Systems with 

Genetic Algorithms. Proceedings of the International Conference on Fuzzy Systems – 

FUZZ’IEEE 2004, 2004.  

EVSUKOFF, A., GONÇALVES, F. T. T., BEDREGAL, R., EBECKEN, N. F. F, Fuzzy 

Classification of Surface Geochemistry Data Applied to the Determination of HC 

Anomalies. Joint 2nd International Conference on Soft Computing and Intelligent 

Systems and 5th International Symposium on Advanced Intelligent Systems SCIS & 

ISIS 2004  

FLORENTINO, P. V. ODARA: Methodology for Database Fragmentation Design. 

M.Sc. Dissertation, COPPE/UFRJ, Brazil, 2003. 

GAMA, C. A., EVSUKOFF, A., MOTTA, J. P. A Naive KDD Approach in Key 

Account Management Framework: A case study. Data Mining 2004. Wessex 

Institute of Technology, Malaga, 2004. 

HUSCHKA Jr, E. R., HRUSCHKA, E. R., EBECKEN, N. F. F. A Feature Selection 

Bayesian Approach for Extracting Classification Rules with a Clustering Genetic 

Algorithm. Applied Artificial Intelligence. , v.17, n.5, p.489 - 506, 2003. 

LIMA, A. A., ESPERANÇA, C. MATTOSO, M. L. Q., Efficient Processing of Heavy-

Weight Queries in Database Clusters In: ClusterMiner Technical Report RT-001-04 

(http://clusterminer.nacad.ufrj.br/) 

LIMA, A. A., MATTOSO, M. L. Q., VALDURIEZ, P. Adaptative Virtual Partitioning 

for OLAP Query Processing in a Database Cluster In: Simpósio Brasileiro de Banco 

de Dados, 2004, Brasília. XIX Simpósio Brasileiro de Banco de Dados. SBC, 2004a.  

LIMA, A. A., MATTOSO, M. L. Q., VALDURIEZ, P. Load Balancing of OLAP 

Queries in a Database Cluster, ICDE 2005, 2005, Int. Conf. Data Engineering, IEEE. 

LIMA, A. A., MATTOSO, M. L. Q., VALDURIEZ, P. OLAP Query Processing in a 

Database Cluster In: Euro-Par 2004, Pisa. Lecture Notes in Computer Science, 

Springer Verlag, 2004b.  

MATTOSO, M., ZIMBRÃO, G. ,LIMA, A., BAIÃO, F., BRAGANHOLO, V., 

AVELEDA, A., MIRANDA, B., ALMENTERO, B., NUNES, M. ParGRES: uma 

camada de processamento paralelo de consultas sobre o PostgreSQL. In: WSL2005 - 

6 Workshop Software Livre 2005, 2005a, Porto Alegre. 6 Fórum Internacional 

Software Livre, 2005. p. 259-264. 

MATTOSO, M., ZIMBRÃO, G. ,LIMA, A., BAIÃO, F., BRAGANHOLO, V., 

AVELEDA, A., MIRANDA, B., ALMENTERO, B., NUNES, M. ParGRES: 

Middleware para Processamento Paralelo de Consultas OLAP em Clusters de Banco 

de Dados. In: Simpósio Brasileiro de Banco de Dados - Sessão de Demos, 2005, 

Uberlândia. Sessão de Demos em Bancos de Dados, 2005b. 

MEYER, L. A. V. C., ROSSLE, S., BISCH, P., MATTOSO, M. L. Q. Parallelism in 

Bioinformatics Workflows In: VECPAR2004 - High Performance Computing for 

Computational Science, Valencia. Lecture Notes in Computer Science. Springer 

Verlag. 2004.  



 

26 

 

 

NAHM, U. Y., MOONEY, R. J. Text Mining with Information Extraction. In: 

Proceedings of the Spring Symposium on Mining Answers from Texts and 

Knowledge Bases. AAAI Press, Stanford, CA (2002) 6067 

PEREIRA, G. C, EVSUKOFF, A., COUTINHO, R., EBECKEN, N. F. F. Coastal 

Environmental Management by Fuzzy System Modeling. Proceedings of the 

International Conference on Fuzzy Systems – FUZZ’IEEE 2004, 2004.  

PINA, A., ZAVERUCHA, G. The SUNRISE Algorithm: Improving the Performance of 

the RISE Algorithm. 8th European Conference on Principles and Practice of 

Knowledge Discovery in Databases (PKDD), Pisa, Lecture Notes in Artificial 

Intelligence, Springer-Verlag. 2004. 

PINHEIRO, C. A. R., EVSUKOFF, A., EBECKEN, N. F. F. Identifying the insolvency 

profile in a telephony operator database. Data Mining 2003, Wessex Institute of 

Technology, Rio de Janeiro, 2003. 

ROSA, J.L.A. Classificação de Dados através da Otimização do Método KNN-Fuzzy 

em Ambiente de Computação Paralela. 2003. Tese (Engenharia Civil) - Universidade 

Federal do Rio de Janeiro 

ROSA, J.L.A., EBECKEN, N.F.F., COSTA, M.C.A. Towards on an Optimized Parallel 

KNN-FUZZY Classification Approach, Data Mining IV – Fourth International 

Conference on Data Mining, WIT Press, ISBN 1-85312-806-6, Rio de Janeiro, 2003, 

p. 81-88. 

RUBERG, N., RUBERG, G., MATTOSO, M. L. Q. Digging Database Statistics and 

Costs Parameters for Distributed Query Processing In: International Conference on 

Cooperative Information Systems - CoopIS 2003, 2003, Catania. Lecture Notes in 

Computer Science. Springer-Verlag, 2003. v.2888. p.301 – 318 

VICTOR, A.O., MATTOSO, M. L. Q. Distributed Query Routing in a Cluster of 

Autonomous Databases, In: ClusterMiner Technical Report RT-002-04 

(http://clusterminer.nacad.ufrj.br/), 2004. 

VIEIRA, H., RUBERG, G., MATTOSO, M. L. Q. Xverter: Querying XML Data with 

OR-DBMS In: ACM Fifth International Workshop on Web Information and Data 

Management (WIDM'03). 2003. v.1. p.37 – 44 

WILDEMBERG, M. Fragment Allocation Techniques in Distributed Database Design, 

M.Sc. Dissertation, COPPE/UFRJ, Brazil, 2004. 

WILDEMBERG, M., PAULA, M., BAIÃO, F., MATTOSO, M. L. Q. Alocação de 

dados em Bancos de Dados Distribuídos In: Simpósio Brasileiro de Banco de Dados, 

2003, Manaus. XVIII Simpósio Brasileiro de Banco de Dados. SBC, 2003. p.215 – 

228 

WILDEMBERG, M., PAULA, M., BAIÃO, F., MATTOSO, M. L. Q. Data Allocation 

in Distributed Databases, submitted to SBBD´03 Post Proceedings, Lecture Notes in 

Computer Science, 2004a. 

WILDEMBERG, M., PAULA, M., BAIAO, F., MATTOSO, M.,  XAloc – Uma 

ferramenta para avaliar algoritmos de alocação de dados. In: Simpósio Brasileiro de 

Banco de Dados, SBBD-Demos, 2004b. 

http://clusterminer.nacad.ufrj.br/

