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Abstract. The COVID-19 pandemic has been pressuring the whole society and
overloading hospital systems. Machine learning models designed to predict hos-
pitalizations, for example, can contribute to better targeting hospital resources.
However, as the excess of information, often irrelevant or redundant, can impair
predictive models’ performance, we propose a hybrid approach to attribute se-
lection in this work. This method aims to find an optimal attribute subset through
a genetic algorithm, which considers the results of a classification model in its
evaluation function to improve the hospitalization need prediction of COVID-19
patients. We evaluated this approach in two official databases from the State
Health Secretariat of Rio Grande do Sul, covering COVID-19 cases registered
up to October 2020 and June 2021, respectively. As a result, we provided an
increase of 18% in the classification precision for patients with hospitalization
necessities in the first database, while in the second one, considering a temporal
evaluation with sliding window, this gain was on average 6%. In a real-time
application, this would also mean greater precision in targeting resources and,
consequently and mainly, improved service to the infected population.

Keywords. Feature selection, COVID-19, Genetic algorithm, Machine learning, Hospitaliza-
tion prediction.

1. Introduction
COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), initially identified in China in December 2019. Af-
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ter spreading rapidly around the world, the Coronavirus 2, also called new coron-
avirus, infected over 79 million people in just one year, bringing over 1.7 million to
death [World Health Organization 2020]. Naturally, one of the pandemic sectors most
affected is health, which, in addition to the challenges posed by a new disease, has faced
the burden of hospital systems and the scarcity of resources. During the COVID-19 pan-
demic, according to the Pan American Health Organization (PAHO), information systems
are essential for the proper performance of primary health care functions [PAHO 2020].
In addition to the agility and numerous benefits of electronic medical records, health in-
formation systems integrated with other local and national systems provide a large volume
of data with high strategic potential.

Machine Learning (ML) techniques can be applied in the automated analysis of
this data to obtain valuable knowledge, which assists in resource management and de-
cision making. In particular, predictive models, based on previous experiences, can be
constructed from classification algorithms [Alpaydin 2010], which seek to extract patterns
from the data and thus describe and distinguish data classes or concepts [Han et al. 2011].
Although several classification techniques and the most robust ones, such as for en-
sembles, tend to perform better, in the health context, the interpretability of predic-
tive results is of great importance, especially considering COVID-19, which is a dis-
ease whose knowledge is constantly updating. In this sense, Decision Tree (DT) algo-
rithms are attractive options, as, in addition to predictions, they allow us to know the
patterns identified in the data and observe their trends. As the name suggests, these
algorithms construct hierarchical classification models, with tree-shaped structured pat-
terns [Funchal and Adanatti 2016], in which each inner node represents a test on an at-
tribute; each branch represents a test result, and each leaf node indicates a class label
(decision/prediction) [Han et al. 2011].

Although DT models tend to provide good predictive results and are widely
adopted, due to their simplicity and interpretability, in different application areas such
as medicine, financial analysis, and molecular biology, they are very susceptible to over-
fitting [Han et al. 2011]. In other words, while learning, these classifiers can incorporate,
due to noise or outliers, anomalous patterns from the training data, which do not ade-
quately represent the overall dataset [Han et al. 2011]. To avoid the overfitting problem,
we can establish hyperparameters that limit the growth or depth of the tree. In addition,
the dimensionality reduction via attribute/feature selection is beneficial for unregularized
models, such as DTs [Raschka and Mirjalili 2017].

We can use automatic attribute selection techniques to reduce processing cost and
prevent irrelevant or redundant dimensions of the data from impairing the generalizabil-
ity and, consequently, the performance of classification/prediction models, additionally
providing simpler and clearer models [Han et al. 2011]. Attribute selection techniques
aim to find the minimum subset of attributes that best contributes to model performance.
However, because the evaluation of the entire solution space is unfeasible, heuristics are
used to search for an optimal subset, which does not necessarily correspond to the opti-
mal global [Alpaydin 2010]. In this context, we can use genetic algorithms (GA), which
are bio-inspired meta-heuristics whose search and optimization process is based on the
theory of biological evolution, considering the principle of survival of the individual (or
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solution) more apt [Linden 2008].

Thus, considering that predicting and knowing the patterns of hospitalization
needed for COVID-19 patients would be of great importance for the development of tools
to support decision-making, we propose a hybrid approach to attribute selection, com-
posed of a GA and a DT classifier, to improve the results of an interpretable model for
predicting the need for hospitalization of COVID-19 patients. We used a GA heuristic
to search for a subset of optimal attributes and DT models to evaluate the aptitude of the
subsets of candidate attributes. Notably, although the target variable of our model is hos-
pitalization, we are not proposing to use our approach to decide to admit or not a patient.
This decision should always depend exclusively on the clinical situation and the medical
evaluation of each patient. However, considering the context of the pandemic, in which
the scarcity of resources in health is even more remarkable, an accurate and interpretable
model for predicting the need for hospitalization of COVID-19 patients can create op-
portunities, based on knowledge of patterns and predictions, for better management of
resources and services that are not linked to severe neglect of patients. An example of an
application would be the prioritization of home follow-up contacts, where there is already
a natural lack of assistance due to the health teams’ impossibility to contact all patients
undergoing home treatment daily.

We initially evaluated our approach in an official database, covering cases of
COVID-19 patients registered by the State Health Secretariat of Rio Grande do Sul (in
Portuguese, Secretaria Estadual da Saúde do Rio Grande do Sul – SES/RS), until Oc-
tober 2020. As a result, we provided an average increase of 18% in the classification
precision for patients with hospitalization necessities. We published our approach and its
initial evaluation in [Colpo et al. 2021], at the last Brazilian Symposium on Information
Systems (SBSI), where we received an honorable mention and the invitation to submit
this extended version.

As a differential, we use an additional database, updated with COVID-19 cases
registered until June 2021, to expand the previous evaluation and better simulate the re-
ality of future predictions. Considering the dynamic character of the contagion and the
disease, in this new assessment, we used different temporal divisions of the training and
test data, in order to verify, in the long term, the performance stability of our model to
predict the need for hospitalization of COVID-19 patients. In addition, for a fairer com-
parison between the results of adopting our attribute selection approach, we started to
consider automatic optimization of hyperparameters in the model’s development. With
this additional process of hyperparameters optimization, we intend to include a strategy
to avoid the overfitting problem in the scenario of non-adopting attribute selection and
boost learning of the minority class in both scenarios (with or without attribute selection).
Considering a temporal evaluation with a sliding window, we provide an average increase
of 6% in the classification precision for patients with hospitalization necessities, selecting
attributes for each temporal division of training. Finally, it is worth mentioning that, in
addition to detailing the new database, the methodology, and the results related to this
extension of the evaluation, we included in this article details about the pre-processing
carried out on the data, which, although important, had been omitted in the previous pub-
lication due to space limitations.
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We organized this article as follows: in Sections 2 and 3, we present some re-
lated works and details of the proposed approach; in Section 4 we describe the techni-
cal/methodological decisions that guided the development of this study; and finally, in the
Sections 5 and 6, we discuss the results obtained and present the conclusions of this work,
respectively.

2. Related Work

Several studies have explored ML techniques to predict diseases and assist health profes-
sionals in decision-making. In [Lynch et al. 2017] and [Pradeep and Naveen 2018], for
example, authors evaluate different ML algorithms in predicting lung cancer patients’
survival, considering that this information has great importance in determining the care
or treatments to be adopted. In [Lynch et al. 2017], authors present an ensemble model to
predict the number of months patients would survive after being diagnosed. This ensem-
ble was composed of linear regression models, DT, Gradient Boosting Machines (GBM),
and Support Vector Machines (SVM). Results presented the best performance when com-
pared to isolated algorithms. Also, in [Pradeep and Naveen 2018] a DT, generated from
the C4.5 algorithm, presented the best performance to predict whether patients are more
than a year old when compared, in large data sets, to the algorithms Naive Bayes and
SVM. Also related to lung diseases, in [Heckler et al. 2020] a tool was developed to pre-
dict the abandonment of patients from a Pulmonary Rehabilitation Program, considering
models based on DT, SVM, and Randon Forest (RF), which is an ensemble composed of
DTs.

More directed to the context of COVID-19, [Arvind et al. 2021]
and [Burdick et al. 2020] propose predictive models of intubation and mechanical
ventilation for COVID-19 patients, aiming to facilitate the identification of high-risk
cases and the allocation of hospital resources, such as respirators. For this, both works use
ensembles of DTs, considering the RF and XGBoost algorithms, respectively. Although
the studies mentioned above, related to cancer patients and pulmonary rehabilitation,
consider manually selection of attributes in the pre-processing of the data, based on
the previous knowledge of specialists, this approach may not be a good option for the
domain of COVID-19, considering its novelty [Arvind et al. 2021]. Thus, automatic
attribute selection techniques are a possible alternative for reducing the dimensionality
of COVID-19 data to improve classification/prediction results. In the pre-processing
data context, we can perform the automatic selection of attributes by methods such as
(i) filter – when considering the characteristics of the training data, based on specific
metrics, and order the relevance/importance of the attributes without involving ML
algorithms; and, (ii) wrapper – when use a sorting algorithm to evaluate the performance
provided by each subset of attributes evaluated in the search space during the selection
process [Cueto-López et al. 2019]. In the context of predicting the risk of colorectal
cancer, for example, [Cueto-López et al. 2019] evaluates the use of attribute selection
techniques to improve the performance of different ML models and avoid overfitting. The
authors obtained the best results by selecting the wrapper of SVM and Pearson correlation
filter, preceding the training of SVM and logistic regression models, respectively. The
paper presented in [Monteiro et al. 2020] also addresses the selection of attributes as an
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essential technique for improving predictive performance, however, in the context of
mortality in intensive care units (ICUs). Among other multivariate statistical analysis
methods, the authors analyze principal components to reduce dimensionality.

Although less common, researchers also used genetic algorithms as meta-
heuristics to search for subsets of attributes, obtaining good results, such as
presented in [Zhou et al. 2021, Maleki et al. 2021, Pawlovsky and Matsuhashi 2017].
In [Zhou et al. 2021], they treated attribute selection as a multi-objective optimization
problem and proposed the PS-NSGA (Problem-Specific Non-dominated Sorting Genetic
Algorithm). Authors based their approach on the framework NSGA-III and sought to
minimize the rate of incorrect classifications, calculated from a classifier k-Nearest-
Neighbors (kNN); the proportion of selected attributes; and a distance metric, which
aims at greater generalization capacity. The method surpassed other evolutionary algo-
rithms and more traditional selection techniques by being evaluated using different dis-
ease databases in predictive tasks. Additionally, in the context of predicting the prognosis
of patients with breast and lung cancer, respectively, [Pawlovsky and Matsuhashi 2017]
and [Maleki et al. 2021] use GA to select attributes and thus improve the results of kNN-
based prediction models. Both studies use small databases containing information from
a maximum of 1000 patients and address attribute selection as a single-goal optimization
problem. However, in the [Maleki et al. 2021] work, GA uses an evaluation function that
combines the number of selected attributes and the classification result obtained by kNN,
causing both factors to be weighted.

As [Arvind et al. 2021] and [Burdick et al. 2020], this work is inserted in the con-
text of predictions related to COVID-19. However, the hospitalization need of patients
is addressed here rather than the need for respiratory support. In addition, although we
use automatic attribute selection, as [Cueto-López et al. 2019] and [Monteiro et al. 2020],
to improve the predictive model, we propose a hybrid selection approach, which uses
a GA in the search for an optimal subset of attributes, addressing the selection pro-
cess as a single-goal optimization problem, as in [Pawlovsky and Matsuhashi 2017]
and [Maleki et al. 2021]. Finally, despite we based our approach in [Maleki et al. 2021]
work, in addition to a different context, we considered large databases, with information
from more than 200 thousand patients, which motivated different technical decisions. We
will describe these methodological differences in Section 4 properly.

3. Proposed Approach
As mentioned before, this study seeks to reduce the dimensionality of patients’ data from
COVID-19 to allow classification algorithms to concentrate their learning processes on
more relevant attributes and provide better results for predicting the need for hospital-
ization of these patients. For this, we proposed a hybrid approach of attribute selection,
composed of a GA, responsible for the search for a subset of optimal attributes; and by
a classification algorithm, designed to test the predictive capacity of each subset of at-
tributes and, thus, to promote their evaluations during the evolutionary process of GA, as
illustrated in Figure 1.

As a heuristic method based on biological evolution, the GA starts from an ini-
tial population, in which each individual represents a solution to be evaluated, and leads
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Figure 1. Overview of our hybrid approach to attribute selection.

the search for an optimal solution, which may not be global, based on the principle of
survival of the fittest individual [Linden 2008]. The evolutionary process occurs through
genetic operators, which are applied to the population, generation by generation, benefit-
ing the fittest individuals until they meet a particular stop criterion (usually a maximum
number of generations), and the best solution is found [Zhou et al. 2021]. Basically, with
each generation, the population’s individuals are evaluated by a function of evaluation,
which determines the aptitude of each individual, that is, how satisfactory is its solution
to the problem treated [Linden 2008]. This aptitude is then considered by an operator of
selection, in the choice of which individuals will participate, as parents, in the reproduc-
tive process. The descending individuals’ determination, which will compose the next
generation population, is then performed by the crossover and mutation operators, con-
sidering individual probabilities. For example, while crossing two previously selected
parents exchange parts of their genetic material to form two new child individuals, the
mutation operator arbitrarily incorporates new genetic traits in these children, ensuring
genetic diversity to the new population [Maleki et al. 2021, Linden 2008].

Notice that the evaluation function significantly influences the evolutionary pro-
cess since the best-evaluated individuals are more likely to be selected for crossing and,
consequently, reproduce and perpetuate their characteristics. Also, when GA considers
the elitism strategy, the best individuals of a generation are added to the next, ensuring
the preservation of the best characteristics and that the performance of the GA never de-
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teriorates in the course of evolution [Linden 2008].

In the problem considered here, each individual of the GA corresponds to a spe-
cific subset of attributes that is one of the possible solutions for selecting attributes in
the search space. We aim to improve the prediction results of COVID-19 patients’ hos-
pitalizations, then each individual’s aptitude should be evaluated from the impact that its
attributes cause in the prediction. Therefore, the proposed approach integrates a classifi-
cation algorithm (classifier) to the attribute selection process, allowing each individual’s
evaluation to trigger the training and testing of a new prediction model, considering only
the data related to the subset of attributes under evaluation. The influence of each subset
of attributes on the prediction performance is now considered in its respective individ-
ual’s aptitude, composing the evaluation function of GA. Although based on the study
by [Maleki et al. 2021], mentioned in Section 2, this work, in addition to considering
another domain of prediction (need for hospitalization of COVID-19 patients), contains
several methodological differences, which we will explain in the next Section.

4. Methodology
Initially, concerning the technologies and tools used, we implemented the proposed ap-
proach in the Python language. We used the Pandas1 and NumPy2 libraries for data load-
ing and manipulation, and we used the Scikit-Learn3 package in data pre-processing and
in the classification/prediction process. Details about the data used, the attribute selection
process’ implementation, and the construction and evaluation of predictive models are
presented in Sections 4.1, 4.2 and 4.3, respectively.

4.1. Datasets
In this work, we used the SES/RS data, which contains the registered cases of COVID-19
in the Brazilian State of Rio Grande do Sul. Initially, as the data are updated daily, a copy
of the database4 was created and stored, referring to 10/21/2020, for the experiments’ later
reproducibility. Moreover, as the government considers recovered the patients without
hospitalization after 14 days of the onset of symptom manifestation [SES/RS 2020], pa-
tients with symptom onset date posterior to 10/07/2020 were removed from this database
because they are considered unstable, that is, without definitive hospitalization. There-
fore, as shown in Table 1, the records of 219,343 COVID-19 patients were kept in this
dataset (Database I), of which 18,832 (8.59%) correspond to hospitalized patients. We di-
vided the resulting database into a training-validation set and another test set, in the usual
proportions of 70% and 30%, respectively. We used the training-validation database to
select attributes, specifically in the training and validation of the models provided by the
subsets of attributes evaluated in the GA; the test base was reserved and used to evaluate
the final predictive model after selecting attributes.

In addition, in order to extend the predictive model evaluation and thus better
verify the impact of attribute selection, an updated database5 was collected, referring to

1https://pandas.pydata.org
2https://numpy.org
3https://scikit-learn.org
4https://bit.ly/sesrs covid data 10212020
5https://bit.ly/sesrs covid data 07282021
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Database I (10/06/2020) Database II (06/30/2021)
Hospitalized Patients 18832 (8.59%) 77208 (7.54%)
Non-Hospitalized Patients 200511 (91.41%) 946763 (92.46%)
Total Records/Patients 219343 1023971

Table 1. Quantitative of patients and hospitalizations by database.

07/28/2021. Still considering the stability of the data, we considered only the records of
patients with symptom onset until 06/30/2021, that is, until the end of the first semester
of 2021. Thus, as shown in Table 1, the records of 1,023,971 patients were kept in this
new dataset (Database II), of which 77,208 (7.54%) correspond to hospitalized patients.
We can note that, besides covering a more significant period, this new database includes
a context of expanding the circulation of the SARS-CoV-2 variants [Faria et al. 2021],
which allows evaluating the stability of the predictive model over time and, consequently,
over the pandemic evolution. We will present details about the database segmentation in
Section 4.1, together with the description of this temporal evaluation.

4.1.1. Pre-processing

We preliminarily removed some duplicated or unsuitable attributes during the data pre-
processing:

• The pregnancy indicator attribute also had its information registered in the multi-
categorical attribute of conditions/comorbidities, being unnecessary;

• Location attributes (as country of birth, region, city, and neighborhood) in addition
to not having a direct relationship with the hospitalization need, could impair the
models’ generalizability since more populous cities or regions naturally have more
records of hospitalizations;

• We considered uninformative the attribute that indicated whether patients are
health professionals, as all hospitalized patients had the value “uninformed”;

• The attribute of indigenous ethnicity had an empty or “uninformed” value for the
vast majority of records, being more suitable to keep only the indigenous indica-
tion, in the race/color attribute;

• As the objective is to predict the hospitalization need of the COVID-19 patients,
we do not consider attributes related to their evolution and death since this infor-
mation refers to future events;

• Practically all hospitalized patients presented Severe Acute Respiratory Syn-
drome. However, as this condition tends to be a post-hospitalization evolution,
this attribute was considered inadequate for early predictions.

Additionally, attributes that demonstrated to leak information related to the hos-
pitalization event also needed to be discarded since they would disqualify any attempt to
predict:

• We excluded the information source attribute indicating whether the case of
COVID-19 from a hospital stay, a health care on sentinel unit, etc.;
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• We removed the attribute related to diagnostic criteria because molecular tests
were mostly performed in hospitals, especially at the pandemic’s beginning.

We treated missing data after removing the inappropriate attributes for the pre-
dictive task. Among the remaining attributes, those related to conditions/comorbidities
and symptoms have missing values. However, considering that this information, due
to its importance, would hardly go unrecorded by health professionals, these absences
were understood as inexistence of symptoms or special conditions. Thus, while the
multilabel attribute of conditions had its empty values filled with the value “no condi-
tion/comorbidity”, the categorical attributes of symptoms (dyspnea, fever, cough, throat,
and other symptoms) had their missing values filled with “No”.

Finally, as the classification algorithms of the Scikit-Learn package only work
with predictive attributes of numerical types, transformations were carried out on the non-
numeric attributes. The symptom onset date and disease confirmation date attributes were
processed and gave rise to two new temporal contextualization attributes: (i) days between
symptom onset and COVID-19 confirmation, and (ii) days between pandemic onset6 and
symptoms onset. We binarized categorical attributes after removing the original date
attributes by the one-hot coding technique. To get the desired result concerning the multi-
categorical attribute “conditions/comorbidities” (that is, only one binary attribute for each
condition), it was also necessary to correct some spelling errors identified in the condition
records (some records had condition names with a missing letter, for example).

Thus, in addition to the target attribute (class), which indicates whether or not the
patient was hospitalized, 51 attributes were used, related to social data, to indicate gender,
age group, race/color, and deprivation of liberty; indicators of pre-existing symptoms and
conditions/comorbidities; and temporal contextualization, according to Table 2.

4.2. Attribute Selection

As in this work, one GA individual corresponds to a subset of attributes, in the implemen-
tation, as in [Maleki et al. 2021], we represented each individual by a binary vector, in
which each position represents a gene (attribute). Its value indicates whether a particular
attribute is selected in the subset of attributes corresponding to the individual. In this case,
considering that the database has 51 predictive attributes, as specified in Section 4.1, each
individual is described as a binary vector of 51 positions.

Additionally, we defined some GA parameters according to the values empirically
established in [Maleki et al. 2021]: populations of 20 individuals; crossing and mutation
probabilities of 70% and 2%, respectively; and maximum amount of generations equal to
10 (stop criterion). Although GAs generally use a more significant number of generations,
we need to consider that, in the attribute selection problem, the evaluation of each gener-
ation’s individual involves training and testing a machine learning model, which requires
a considerable computational cost (e.g., a GA with a population of 20 individuals and
ten generations involves the construction and evaluation of 200 models). Therefore, in

6Here, we took the symptom onset date of the state’s first COVID-19 patient as the onset date of the
pandemic.
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Table 2. Dataset attributes.
# Description Type
0 female boolean
1 fever symptom boolean
2 cough symptom boolean
3 throat symptom boolean
4 dyspnea symptom boolean
5 other symptoms boolean
6 deprivation of freedom boolean
7 age range 1 to 4 boolean
8 age range 5 to 9 boolean
9 age range 10 to 14 boolean
10 age range 15 to 19 boolean
11 age range 20 to 29 boolean
12 age range 30 to 39 boolean
13 age range 40 to 49 boolean
14 age range from 50 to 59 boolean
15 age range from 60 to 69 boolean
16 age range from 70 to 79 boolean
17 age group > 80 boolean
18 age group < 1 boolean
19 race/color yellow boolean
20 race/color white boolean
21 race/color indigenous boolean
22 uninformed race/color boolean
23 race/color brown boolean
24 race/color black boolean
25 asthma boolean
26 diabetes boolean
27 diabetes mellitus boolean
28 chronic cardiovascular disease boolean
29 chronic haematological disease boolean
30 chronic liver disease boolean
31 chronic neurological disease boolean
32 chronic kidney disease boolean
33 chronic heart disease boolean
34 advanced chronic kidney disease boolean
35 chronic respiratory disease decompensated boolean
36 pregnant boolean
37 high-risk pregnant boolean
38 immunodeficiency boolean
39 immunosuppression boolean
40 no condition/comorbidity boolean
41 obesity boolean
42 another chronic pneumatopathy boolean
43 other conditions/comorbidities boolean
44 chronic pneumatopathy boolean
45 chromosomal disease or immuno fragility boolean
46 puerpera boolean
47 puerpera up to 45 days of childbirth boolean
48 down syndrome boolean
49 days between symptom onset and confirmation numeric
50 days between pandemic onset and symptoms numeric
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preliminary tests, we also evaluated the use of 20 and 50 generations, with no significant
changes in the GAs results, except for the execution time, which was severely impaired.

In contrast to [Maleki et al. 2021], the present work uses a strategy of elitism,
where 2 (10%) best individuals of a generation are kept in the next one. In this study,
the last individual receives the value 1 in all his genes to represent the complete set of
attributes, although the initial population is generally randomly created. Thus, we ensure
that only the subsets/individuals that provide the same prediction results as the initial set
will be considered better during the evolutionary process. Additionally, in this study,
different selection and crossing operators were implemented in the GA to evaluate their
results and choose the combination to be adopted definitively. We evaluated the following
selection methods:

Roulette wheel selection, in which we simulated a roulette, in which each individual of
the population receives a piece proportional to its evaluation, and then selected the
individual to whom belongs a certain position, previously selected [Linden 2008];

Tournament selection, in which we selected randomly k individuals of the population
and, after, the best rating is chosen [Linden 2008]. In this study, we considered
k=2;

Truncated selection, in which individuals in the population are ordered by their evalua-
tion, in a decreasing way, and only the first k individuals participate in the selection
process [Linden 2008]. In this work, we established the cut-off point k as 25% of
the population (i.e., five individuals), and we used the two-individual tournament
in the selection.

We implemented the following crossover methods as described in [Linden 2008]:

One-point crossover, in which a cutoff point is drawn in the representation of the indi-
vidual, separating the parents into two parts, one to the left of the cutoff point and
the other to the right. We generated the first child from genes’ concatenation of
the left part of the first parent with those of the right part of the second, while we
constituted the second child from the remaining parts;

Two-point crossover, in which we have drawn two cutoff points so that the first child is
formed by the parts of the first parent external to the cutoff points and by the part
of the second parent that lies between the cutoff points, while the second child
consists of the remaining parts;

Uniform crossover, in which we have drawn zero or one number for each gene/position
of the individual representation. If the drawn value is one, the first child receives
the gene from the first parent, and the other child receives the gene from the second
parent. Otherwise, we reversed the assignments.

Regarding the classification algorithm integrated into the attribute selection pro-
cess, we used a DT with the default configuration of the Scikit-Learn library, contrast-
ing the kNN algorithm used in [Maleki et al. 2021]. This difference in classifier choice
stems from the data-set used since, unlike [Maleki et al. 2021], in this work, an exten-
sive database is used, with more than 150,000 records destined to the process of selecting
attributes, which would make kNN processing very slow. In addition to faster, decision
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trees often have good results and have straightforward interpretation, a significant differ-
ential to understanding the patterns found by the predictive models [Han et al. 2011]. It
is also important to mention that the data used in selecting attributes were divided, strat-
ified, in the proportions of 80% and 20% for training and validation, respectively, of the
prediction models related to the subsets of attributes evaluated (individuals of the GA).
This decision also considered the size of the databases and the time added by using a more
robust separation and validation strategy, such as k-folds cross-validation.

Finally, while [Maleki et al. 2021] works with a balanced data-set and evaluates
the subsets of attributes from the Misclassification Rate (MCR) that they provide in the
classification; in this implementation, due to the unbalanced nature of the data, it was
considered more appropriate to use the F1-score [Han et al. 2011] metric in the evalu-
ation. Thus, although inspired by [Maleki et al. 2021], this work’s evaluation function
becomes a maximization (MaxZ) problem and no longer a minimization (MinZ) task.
In the Equations 1 and 2 are presented, respectively, the evaluation function proposed
by [Maleki et al. 2021] and the adaptation considered here.

MinZ = mcr(1 + β · nf ) (1)

MaxZ = f1score(1− β · nf ) (2)

In these Equations, nf represents the number of attributes selected and β a fac-
tor/weight, between 0 and 1, multiplied by the number of attributes selected to penalize
individuals who select a more considerable amount of attributes. That is, among two
subsets of attributes that provide the same f1score, for example, you will get a better eval-
uation (considered fitter) of the subset that contains fewer attributes. In this work, we
used a low value (0.0001) for β in order to assign a soft penalty to the number of selected
attributes and thus prioritized the classification result (f1score) in the evaluation.

4.3. Classification/Prediction
As a result of the attribute selection process, we obtained the subset of attributes that best
contributed to maximizing predictive task performance within the solution space evalu-
ated by the GA. Thus, we removed the attributes that did not belong to this subset from
the data, and we trained a predictive model to compare its results with those of the model
trained on the entire set of attributes and verify the impact of attribute selection on the pre-
dictions’ performance. We constructed these predictive models (with or without attribute
selection) using the DT algorithm, previously adopted in the attribute selection process. It
is essential to highlight that, although more robust models such as ensembles could pro-
vide better results, as mentioned in Section 1, our goal is to develop an interpretable model
from decision tree algorithm and provide to it, through attribute selection, greater gener-
alizability and, consequently, a better predictive performance. Therefore, our evaluation
does not aim to compare different classification techniques but to verify the feasibility and
influence of our attribute selection approach on the results of our interpretable model;

Initially, we trained the models using the training-validation dataset and the default
parameterization of the Scikit-Learn. Then, the evaluation of these models was performed
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on the test dataset, using the standard metrics of precision, recall, f1-score, and accuracy.
Besides, we confirmed the results using 10-fold cross-validation. As described in Section
4.1, the training-validation dataset corresponds to 70% of the records in Database I, so
that the other 30% composes the test dataset in a stratified division.

However, to better simulate the reality of the future predictions and thus assess
the stability of predictive performance over time, considering the dynamic character of
the contagion and the disease, the evaluation was extended to consider temporal divisions
for training and testing data. As mentioned in Section 4.1, we performed this process
using Database II, which is complete and updated, allowing that the analysis considers a
more extended time. Figure 2 shows the monthly distribution of COVID-19 infections in
Database II, considering the date of symptom onset as reference. As the COVID-19 con-
tagion occurred progressively, the monthly number of cases in the first eight months (until
October 2020) is naturally much smaller than the others. Thus, in order to mitigate this
disparity and ensure an acceptable volume of data per set, the records were divided into
six datasets (A, B, C, D, E, F), covering temporal ranges of different sizes, as indicated in
Figure 2. Thus, while datasets A, B, and C cover February to July, August to October, and
November to December 2020, datasets D, E, and F sequentially consider the first three
bimesters of 2021.

Figure 2. Relation between monthly occurrences of COVID-19 and the composi-
tion of datasets A, B, C, D, E, and F, from Database II. In the color legend, each
dataset is accompanied, in parentheses, by its quantitative of records.

After the temporal data separation, we used the six sets to carry out nine exper-
iments, varying the training and test sets’ composition to create and evaluate different
predictive models. In addition to simulating predictions in future data, this evaluation
aims to assess the stability of patterns related to the need for hospitalization and, conse-
quently, the predictive performance. As can be seen in Figure 3, the first five experiments
consider all datasets in the sequential and iterative expansion of the training set. Notice
that, although inspired by the walk-forward validation strategy, in these five experiments,
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we did not select as the test set only the set immediately after the training set. Consid-
ering the example of the second experiment, which has sets A and B in the training set,
instead of only selecting set C as the test set, we keep all the remaining data in the test
set. With that, we want to verify whether we maintained the predictive power provided by
initial data over the long term. In the last four experiments, in turn, we consider the walk-
forward validation with a sliding window width of two training sets. That is, we advance
the validation over time, sequentially updating the two sets that make up the training data
and using the next set for testing. These experiments allow us to verify how the model
behaves when updated and trained only on data closest to each prediction context. This
fact is important because the pandemic presented different contexts throughout its evolu-
tion, and each of these contexts can affect hospitalization patterns and, consequently, the
model’s predictive performance.

Figure 3. Relation between the temporal divisions (datasets A, B, C, D, E, and F)
and the composition of the training and test sets of each experiment performed
on Database II.

As with the previous evaluation, we performed each experiment restricting the at-
tributes to the result of the selection performed on its respective training set. That is, we
developed models for each temporal division of training from Database II, considering the
entire set of attributes or just the subset selected by our genetic approach for each of these
partitions. In addition, for a fairer comparison between the results of adopting or not our
attribute selection approach, all models developed in this extended/temporal evaluation
had their hyperparameters optimized, using the Scikit-Learn GridSearchCV method, with
5-fold cross-validation. In order to avoid the overfitting [Han et al. 2011] and thus guaran-
tee greater generalizability to the models, we optimized the hyperparameters of maximum
depth and minimum samples per leaf. In addition, considering the natural imbalance of
the data7, the hyperparameter that assigns different weights to classes during training was
also considered, searching to boost the minority class learning. Table 3 shows the values

7As presented in Section 4.1, less than ten percent of the records correspond to hospitalized patients.
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evaluated in the hyperparameters optimization, with the default values of the DT algo-
rithm highlighted. Table 4 presents the hyperparameter combinations resulting from the
optimization process and considered in the construction of each evaluated model. Fields
marked with “D” in the table represent the default values of hyperparameters, already
informed in Table 3.

# Hyperparameter Considered Values
hp 1 max depth [None, 3, 5, 7, 10, 15, 20, 25]
hp 2 min samples leaf [1, 0.001, 0.003, 0.005, 0.01]
hp 3 class weight (yes, no) [(1, 1), (2, 1), (3, 1), (5, 1)]

Table 3. List of hyperparameters evaluated in the optimization process.

Training Without Attribute Selection With Attribute Selection
Dataset hp 1 hp 2 hp 3 hp 1 hp 2 hp 3
A 15 0.001 D D 0.001 (2, 1)
AB 15 D D D 0.001 D
ABC 15 D D 15 D (2, 1)
ABCD 15 D D 15 D (2, 1)
ABCDE 10 D (2, 1) 7 D (2, 1)
BC 15 D D 10 D (3, 1)
CD 15 D D 10 D D
DE 10 D (2, 1) 10 D (2, 1)

Table 4. Hyperparameter setting of the models trained on Database II, without or
with attribute selection.

5. Results and Discussions
This section will present and discuss the results of this work. In Section 5.1, we initially
describe the results of the experiments performed to choose the GA selection and crossing
operators carried out on Database I. Afterwards, we present the attributes selected by our
genetic approach, considering Databases I and II, separately. Finally, in Section 5.2, we
present the impact of using the selected attributes in predicting the hospitalization need of
COVID-19 patients, considering both the initial evaluation presented in the SBSI article
and performed on Database I (Subsection 5.2.1), and the extended evaluation performed
on the updated data from Database II concerning the temporal aspect (Subsection 5.2.2).

5.1. Attribute Selection

As mentioned in Section 4.2, we implemented and evaluated different genetic operators
of selection and crossing in order to choose the best configuration of our GA and, conse-
quently, our attribute selection process. Table 5 displays the results of this validation, per-
formed on Database I. The approach implemented in this work is referenced by GA+DT,
accompanied, in parentheses, by the considered selection and crossing operators. To posi-
tion the results before other attribute selection techniques, we evaluated the classification
results after applying the Recursive Feature Elimination with Cross-Validation (RFECV)
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and SelectKBest methods from Scikit-Learn [Scikit-learn 2020]. In RFECV, a standard
decision tree was used to define the importance of attributes and recursively remove the
less important attributes, considering cross-validation of 5 folds. In SelectKBest, which
performs based on univariate statistical tests, we considered selecting the best k attributes,
and a k=27 test, which corresponds to the average of attributes returned by the other se-
lectors.

Table 5. Comparison between attribute selectors on Database I.

Attribute Selector F1-Score nf Time(s)
1. GA+DT (roulette, two-points) 0.895 26 276
2. GA+DT (roulette, one-point) 0.898 21 279
3. GA+DT (roulette, uniform) 0.903 28 265
4. GA+DT (tournament, two-points) 0.897 27 260
5. GA+DT (tournament, one-point) 0.903 38 281
6. GA+DT (tournament, uniform) 0.908 28 257
7. GA+DT (truncated, two-points) 0.900 42 302
8. GA+DT (truncated, one-point) 0.899 28 250
9. GA+DT (truncated, uniform) 0.889 23 243
10. RFECV 0.892 9 240
11. SelectKBest 0.885 27 3
12. None 0.880 51 2

We can notice that the genetic selector with tournament selection and uniform
crossing (line 6) obtained the best result, eliminating 23 attributes and increasing the f1-
score by 2.8%, compared to the ranking without any selection strategy (line 12). Besides,
it is possible to notice that we achieved the other two best results by combinations that
included either the tournament’s selection or the uniform crossover (lines 3 and 5), which
motivated the choice of these operators to make up our genetic approach, definitively.
Considering the most common methods, selection by statistical test (line 11) was naturally
faster, almost instantaneous, but showed little contribution in f1-score. On the other hand,
the RFECV (line 10) provided the most significant reduction in the number of attributes
and improved the classification’s performance by 1.2%, but was at a disadvantage of 1.6%
compared to the genetic selector (line 6). Although faster, the RFECV took only 17s
less regarding the execution time, which confirms the feasibility of the hybrid approach
proposed in this work.

Figure 4 shows the convergence graph of the genetic selector with the chosen oper-
ators (related to line 6 of Table 5). We can observe that the GA found a subset of attributes
that exceeded all other selection methods’ performance already in the fourth generation,
considering the f1-score. Besides, the GA’s performance is continually increasing with
elitism, and, including one individual with complete attributes set in the initial population,
we have only solutions that improve the classifier’s initial performance (that is, without
any selection of attributes).

Next, Table 6 shows the attributes that presented the three largest selection
recurrences, considering the 11 methods evaluated in Table 5. We can notice that
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Figure 4. The convergence of the genetic selector, considering the chosen op-
erators (tournament, uniform) and the f1-score (vertical axis), across the genera-
tions (horizontal axis).

all methods selected the attributes related to the indications of the following condi-
tions/comorbidities8: diabetes mellitus, chronic cardiovascular disease, chronic neuro-
logical disease, other chronic pneumopathy, and other diseases/comorbidities. Also,
the attributes related to dyspnea symptoms (shortness of breath) and the condi-
tions/comorbidities of asthma and chronic liver disease were no longer selected by only
one selection method, while only two selectors did not consider the indication of the age
group from 60 to 69 years. This fact means that the vast majority of selectors considered
these attributes important for predicting hospitalizations of COVID-19.

Table 6. More frequent attributes in the selections related to Table 5.
Frequency Attributes

11 27, 28, 31, 42, 43
10 4, 25, 30
9 15

Considering precisely the GA adopted in this work, using selection by tournament
and uniform crossing, in addition to all the attributes presented in Table 6, the algorithm
selected the following variables for Database I: [ 0, 1, 6, 9, 10, 11, 17, 18, 21, 29, 32,
35, 36, 38, 41, 44, 45, 46, 47 ]9. Among these attributes, we highlight the inclusion of
indicators of fever symptom; age groups ranging from 10 to 29 years and elderly over
80 years; and conditions related to obesity, chronic decompensated respiratory disease,
pregnant women, and postpartum women.

Also, we trained and ran the genetic selector for all divisions from Database II.
We presented the attribute subsets resulting from these selections in Table 7, and we high-

8We previously presented the mapping between the number and description of each attribute in the
Table 2.

9Notice that these attributes, added to those from Table 6, correspond to the total of 28 attributes indi-
cated in line 6 of Table 5.
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lighted the attributes that demonstrated the three highest frequencies in these selections in
Table 8. Comparing with the attributes selected from Database I and which also presented
a higher frequency of selection in the experiments carried out in such database (Table 6),
we can observe that the attribute related to the age group 60 to 69 not appears among the
most frequently selected for the temporal partitions from Database II (Table 8). On the
other hand, attributes related to brown and black races/colors, to symptoms referred to
as “Other”, and to conditions/comorbidities of diabetes, chronic heart disease, and down
syndrome, which was not among the attributes selected from Database I, showed signifi-
cant frequency among the selections carried out on Database II.

Table 7. Lists of attributes selected for each training division from Database II.

Dataset Selected Attributes Attribute
Count

A [ 0, 1, 4, 5, 6, 7, 9, 15, 16, 18, 21, 22, 23, 26, 27, 28, 30, 31, 32, 35, 36, 3038, 40, 41, 42, 43, 44, 45, 46, 48 ]

AB [ 1, 4, 5, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 3928, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49 ]

ABC [ 0, 1, 4, 5, 6, 7, 8, 12, 13, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 3132, 33, 37, 40, 41, 42, 43, 46, 47, 48 ]

ABCD [ 4, 5, 6, 8, 11, 12, 13, 14, 17, 18, 20, 22, 23, 24, 26, 27, 28, 30, 33, 34, 3535, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ]

ABCDE [ 0, 1, 2, 4, 5, 6, 12, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 31, 33, 3434, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48 ]

BC [ 0, 1, 4, 7, 9, 12, 16, 18, 19, 21, 24, 25, 27, 28, 30, 31, 35, 36, 37, 38, 39, 2741, 42, 43, 44, 45, 48 ]

CD [ 0, 1, 4, 5, 8, 9, 13, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31, 33, 3135, 36, 40, 41, 42, 43, 44, 45, 46, 48 ]

DE [ 0, 1, 3, 4, 5, 9, 10, 11, 13, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 3830, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ]

Table 8. More frequent attributes in the selections presented in Table 7.
Frequency Attributes

8 4, 18, 27, 28, 30, 41, 42, 43, 48
7 1, 5, 26, 31, 35, 36, 44, 45, 46
6 21, 23, 24, 25, 33, 40

5.2. Prediction of COVID-19 hospitalizations
As described in Section 4.3, different predictive models were trained and tested in two
different evaluation processes. At first, standard DT models were built and evaluated con-
sidering Database I. In this case, we performed the evaluation considering the methods of
train/test split (in the proportions of 70-30%) and 10-fold cross-validation. After, to better
simulate the reality of the future predictions and assess the stability of predictive perfor-
mance over time, the evaluation was extended to consider temporal divisions for training
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and testing data. In addition, to consider Database II, which is more updated and covers
a longer period, in this new evaluation, the predictive models had their hyperparameters
optimized for a fairer comparison between the results with or without attribute selection,
as described in Section 4.3. The results of these two evaluations are presented below, in
Sections 5.2.1 and 5.2.2, respectively.

5.2.1. Initial Evaluation

Table 9 shows the results of the train/test split evaluation on Database I, where the left
values correspond to the model that does not consider the attribute selection, while the
values on the right are resulting from the model trained from the attributes selected by
the GA for Database I. In addition to accuracy, we considered the precision, recall, and
f1-score metrics for each predicted class (YES or NO for the need for hospitalization)
to analyze better the impact caused by the attribute selection. We can notice that the
YES class’s precision improved by 18.5% with the subset of selected attributes, from
77.63% to 96.13%; that is, of the patients classified as needing hospitalization, 96.13%
were hospitalized.

Table 9. Results of the predictive models on test dataset.

Without Attribute Selection With Attribute Selection
Class Yes Class No Average Class Yes Class No Average

Precision (%) 77.63 98.06 87.84 96.13 97.56 96.84
Recall (%) 79.36 97.85 88.60 73.47 99.72 86.59
F1-score (%) 78.49 97.95 88.22 83.29 98.63 90.96
Accuracy (%) - - 96.26 - - 97.47

Considering the recall, although it provided a 1.87% improvement in the negative
class, the positive class suffered a reduction of 5.89%, meaning that, with the selection of
attributes, we identified 5.89% less of the hospitalized patients. However, it is essential to
highlight that the YES class is the underrepresented/minority class, corresponding to less
than 10% of patients, as mentioned in Section 4.1. Thus, even a slight reduction in hos-
pitalized patients’ recovery significantly impacts the recall of the positive class. On the
other hand, the 1.87% increase in negative class recall represents that 99.72% of the out-
patients began to be correctly identified. This feature means that a much larger number of
patients were no longer unduly predicted as requiring hospitalization, considering the pro-
portions of the classes. This reduction is of great importance since, although the model’s
objective is to detect the patients who will need hospitalization as much as possible, many
patients should not be unduly predicted as needing hospitalization (false positives) since
this would disperse the focus of patients who need attention.

The results in Table 9 were already included in the SBSI publication. However,
the consistency of these results was also verified by 10-fold cross-validation on Database
I, as shown in Table 10. It is possible to notice that the values remained similar to those
in the Table 9 for all metrics.
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Table 10. Results of the predictive models on 10-fold cross-validation.

Without Attribute Selection With Attribute Selection
Class Yes Class No Average Class Yes Class No Average

Precision (%) 77.39 98.06 87.72 96.31 97.59 96.95
Recall (%) 79.42 97.80 88.61 73.74 99.72 86.73
F1-score (%) 78.34 97.93 88.13 83.38 98.64 91.01
Accuracy (%) - - 96.23 - - 97.49

In order to analyze how we can interpret some attributes in the prediction, we gen-
erated a simplified version of the predictive model that considers the selected attributes,
restricting the decision tree’s depth to five. Figure 5 presents the visualization of this
model, which was generated with the PyDotPlus10 and GraphViz11 packages. Although
a large number of rules have been disregarded with this restriction (only 9 of the 28 se-
lected attributes appear in the visualization, for example), we can notice that, in general,
COVID-19 patients who exhibited the following patterns were considered as needing hos-
pitalization:

P1: With chronic cardiovascular disease or with some condition or comorbidity indi-
cated as “Other”, unless they also have a chronic pneumopathy and, even so, do
not feel short of breath (dyspnea);

P2: Without chronic cardiovascular disease and conditions indicated as “Other”, but
with diabetes mellitus;

P3: Without any of the conditions/comorbidities mentioned in the previous rules, but
which are asthmatic and present dyspnea;

P4: No chronic cardiovascular disease, no conditions indicated as “Other”, no diabetes
mellitus, and no dyspnea symptom, but who have a chronic neurological disease.

Considering the decision tree presented in Figure 5, we can notice that of the
13,18212 hospitalized patients used in the model training, about 60.43% (7966) fit the
rules indicated in P1. This fact is because P1 includes both patients who have a chronic
cardiovascular disease, represented by the right branch of the root; and those with some
condition or comorbidity indicated as “Other”, represented by the branch to the left of the
root and to the right of the subsequent node “Other comorbidities <= 0.5”. Adding the
number of true positives (hospitalized patients who were correctly classified) in the leaf
nodes of these branches, we obtain 7966 (4956 and 301013 for each branch, respectively).
In the same way, P2 is represented by the branch to the left of the root, to the left of the
node “Other comorbidities <= 0.5”, and to the right of the node “Diabetes mellitus <=

10https://pydotplus.readthedocs.io
11https://graphviz.readthedocs.io
12This quantitative can be seen in the “value” field of the root node, which shows the real distribution of

the total number of samples among the hospitalization classes ([No, Yes]).
13Notice that, in the description of pattern P1, we disregarded the division of the node related to the

test “Age range 20 to 29 <=0.5”, which, on the right, leads to the light red leaf. This fact is because this
division involves few examples and low precision, not significantly interfering in the pattern of the superior
branch.
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0.5”, covering 5.43% (716) of the hospitalized patients. Unlike P2, P3 is represented by
the leaf node to the left of the node “Diabetes mellitus <= 0.5”, and then to the right of the
node “Dyspnea <= 0.5” and to the right of the node “Asthma <= 0.5”, satisfying 1.81%
(239) of hospitalized patients. In turn, unlike P3, P4 corresponds to the leaf node to the
left of the node “Dyspnea <= 0.5”, and then to the right of the node “Chronic neurological
disease <= 0.5”, covering 0.52% (69) of the patients hospitalized. Together, these rules
correctly described the hospitalization pattern of 68.19% of the patients used as training
examples for the positive class (with hospitalization need).

Finally, we can also notice that, even in this simplified version, the model cor-
roborates previous studies when relating the pre-existence of chronic diseases, mainly
cardiovascular diseases and diabetes, to the most severe manifestation of COVID-
19 [The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team 2020]
and, consequently, to the need for hospitalization.

5.2.2. Extended/Temporal Evaluation

Regarding the extended evaluation, we developed and evaluated predictive models for
each temporal combination of training and testing data from Database II, considering the
entire set of attributes (without selection) and the subsets of attributes selected by our ge-
netic approach for each training set from Database II, as described in Section 4.3. Table
11 presents the results related to the models that considered attribute selection. Notice that
we used the symbols ▲ and ▼ to signal, respectively, the temporal experiments with best
and worst results for each evaluated metric. See that the model trained and evaluated only
on 2020 data, which correspond to experiment 6, had the highest accuracy (more signifi-
cant than 98%) and similar results to those of the previous evaluation (from Section 5.2.1),
having been able to recover 74.78% of hospitalized patients (positive class recall), despite
the lower precision of 87.19%. We already expected similarity between these results be-
cause, although we did not consider the temporality in separating the training and test
data from Database I, the previous evaluation covered records until part of October 2020,
which corresponds approximately to the union of sets A and B from Database II. That is,
the data used in experiment 6 are close, in time, to those considered in the evaluation on
Database I, presented in Section 5.2.1.

Comparing with the results that this same model (trained by the composition of
sets A and B) presented when tested on the totality of remaining sets (line 2), it is possi-
ble to observe a reduction in the positive class recall. Notice that, although the positive
class precision has increased due to a slight gain in the negative class recall, the loss in
the positive class recall was more significant, resulting in worse f1-scores and accuracy.
These results indicate that this model’s predictive performance was not maintained in the
long term, especially concerning the ability to correctly retrieve/identify patients with a
future need for hospitalization (recall of the YES class). Furthermore, the concentration
of worst results in the model trained on data related to the onset of the pandemic and eval-
uated on all other data (line 1) also shows that, in the dynamic context of the pandemic,
the predictive power of a model is not sustained in the long term.
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This result could suggest that, as the evolution of the pandemic can exert a strong
influence on hospitalization patterns, the models would need to be constantly updated,
considering more and more training samples to maintain a good/stable predictive perfor-
mance. However, the results of the first five experiments do not confirm this hypothesis, as
they do not demonstrate a pattern/trend of increase in positive class recall as new datasets
are added to the training set. On the contrary, the model that concentrated the most sig-
nificant training data (line 5) had the worst recall in the positive class and unattractive
results. The models that had the training data updated from a sliding window (lines 6
to 9) demonstrated, in turn, more stable predictive results, concentrating the best results
of all evaluated metrics. This fact demonstrates that the accumulation of training data
impairs the model’s predictive capacity, being more appropriate to approximate the train-
ing data to the prediction context temporally. Furthermore, this fact suggests that the
predictive power of the attributes and prediction patterns varied throughout the pandemic
so that rerunning the attribute selection and periodically updating the model, considering
data that represent a closer context, allows predictors to follow these variations and thus
provide adequate and stable results over time.

Table 12 presents the differences between the results obtained in the previous ex-
periments, which considered only the attributes selected for each training partition from
Database II and those produced on all attributes, that is, without attribute selection. No-
tice again that, in general, the attribute selection benefits the negative class recall and,
consequently, the positive class precision, the f1-scores, and the overall hit rate (accu-
racy). Considering the models trained and evaluated from data updated by the sliding
window (lines 6 to 9), we can observe that, although the positive class recall may suffer
significant reductions with the adoption of attribute selection (-1.69% on the average of
the experiments), this reduction is smaller than the gains achieved in precision (+6.01%
on the average of the experiments). Given that precision and recall frequently have an
inverse relationship, adopting or not the attribute selection naturally depends on the ob-
jective of the application. For example, considering the domain of COVID-19, in which
the number of infections is significant, as opposed to the size of the health teams, if we
used the model to prioritize contacts for home follow-up, precision would have priority.
That is, as professionals would hardly be able to contact a large number of patients daily,
it would be desirable to optimize as much as possible the service targeting, prioritizing
only patients with a genuine and high possibility of needing hospitalization. In this case,
our attribute selection approach would provide significant benefits.

Finally, in order to verify possible changes in hospitalization patterns, a simplified
version (with the tree depth limited to five) of the most updated model was generated and
presented in Figure 6. Just as the visualization presented in Section 5.2.1 refers to a sim-
plified model trained on attributes selected from Database I and on 2020 data, which ap-
proximately match datasets A and B; this new graph corresponds to the simplified version
of the model related to the DE-F experiment, which was trained on attributes selected for
Database II and on 2021 data. Analyzing Figure 6, we can see that the rules that compose
the branch to the right of the root and the left of the node “No condition/comorbidity <=
0.5” correctly classify 55.76% (25910)14 of the hospitalization examples used in train-

14Please observe the notes described in the caption of Figure 6.
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ing (46464). In addition, these rules determine needing hospitalization for patients with
dyspnea and some condition/comorbidity other than chronic heart disease, chronic de-
compensated respiratory disease, or diabetes. In turn, the patterns related to the branch
to the left of the root correctly describe 10.96% (5079) of the hospitalizations (true pos-
itives) and indicate that, in general, patients without dyspnea only need hospitalization
if they have chronic cardiovascular disease, any comorbidity referred to as “Other”, dia-
betes mellitus, or a chronic neurological disease. Among these patients, only those with a
chronic pneumatopathy, combined with a chronic cardiovascular disease or comorbidity
referred to as “Other”, do not need hospitalization.

Notice that, despite having a different structure, the previously mentioned rules
satisfy the main pattern (P1) of the 2020 model (Figure 5), as they also classify as need-
ing hospitalization the patients with chronic cardiovascular disease or with some condi-
tion or comorbidity indicated as “Other”, unless they also have a chronic pneumopathy
and, even so, do not feel short of breath (dyspnea). However, in the 2021 model, we can
observe new patterns, such as those patients with dyspnea but who do not have any condi-
tion/comorbidity and neither symptoms related to throat, need hospitalization if more than
seven days have passed between the onset of symptoms and the confirmation of COVID-
19. Notice that this pattern describes 7.35% (3417) of the positive samples of hospitaliza-
tion (true positives) but wrongly classifies as hospitalized (false positives) 0.49% of the
negative samples. Although this percentage seems small because it evolves the majority
class, it corresponds to 2558 patients, which generates a considerable loss in the positive
class precision. These more linked and less accurate (leaves with weaker/lighter colors)
rules suggest that with the evolution of the pandemic and, fortunately, the vaccination, the
hospitalization patterns became more complex. However, the predictive results presented
in line 9 of Table 11 are still satisfactory.

6. Conclusions
This work developed a hybrid approach to attribute selection, composed of a genetic algo-
rithm and a classifier, to improve the prediction results of hospitalizations of COVID-19
patients. We used a genetic algorithm to search for a subset of optimal attributes, consid-
ering the classification results provided by such attributes in their evaluation function. In
addition to considering previous works and contextual particularities, we also based some
methodological choices used in this process on experimental validations, such as adopting
tournament selection and uniform crossing in the genetic algorithm.

As a result, we identified that the proposed selection method surpassed traditional
strategies, such as recursive elimination of attributes and selection based on the univariate
statistical test. Additionally, when using the subset of attributes selected by the genetic
algorithm in an initial evaluation, considering only data available until October 2020, we
perceived a very positive impact on the results of the predictive model, which obtained an
average increase of 18% in the classification precision of COVID-19 patients with hos-
pitalization need (positive class). Afterward, by extending the evaluation with data until
June 2021 and considering temporal divisions for training and test data, it was possible
to verify that the accumulation of training data impairs the model’s predictive capacity.
However, considering the temporal evaluation with a sliding window, attribute selection
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continued to provide a significant gain in the positive class precision, which was 6%,
on average. This fact suggests that the predictive power of the attributes and prediction
patterns varied throughout the pandemic, so that rerunning the attribute selection and peri-
odically updating the model, considering data temporally closer to the prediction context,
allows predictors to follow these variations, thus providing adequate and stable results
over time.

Given that precision and recall frequently have an inverse relationship, adopting
or not, the selection of attributes naturally depends on the objective of the application.
Importantly, we are not proposing that our approach be used to decide whether or not a
patient should be admitted. Of course, this decision should always depend exclusively on
the clinical situation and the medical evaluation of each patient. However, considering
the context of the pandemic, in which the scarcity of resources in health is even more
remarkable, an accurate and interpretable model for predicting the need for hospitaliza-
tion of COVID-19 patients can create opportunities, based on knowledge of patterns and
predictions, for better management of services and resources that are not linked to severe
neglect of patients. An example of an application would be prioritizing home follow-up
contacts, where there is already a natural lack of assistance due to the impossibility of
health teams to contact all patients undergoing home treatment daily. In this case, the
model would provide better service targeting, prioritizing contact with patients with a
high possibility of needing hospitalization. However, it would not bring an uncontacted
patient a more significant loss than that already exists today. In other words, in case of
a negative evolution of the disease, the patient would continue to go to the hospital to
receive appropriate clinical evaluation and treatment.

Finally, as future studies, in addition to the integration of the predictive model into
an information system to support decision-making, several improvements can be consid-
ered, such as the performance of more exhaustive experiments, including the evaluation
of methodological decisions inspired by previous studies (population size and probabil-
ities of mutation and crossing of the genetic algorithm, for example). In addition, we
could evaluate data balancing techniques to improve the attribute selection process and
predictive model results.
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R. P., Laydon, D. J., Walker, P. G. T., Schlüter, H. M., dos Santos, A. L. P., Vidal, M. S.,
Caro, V. S. D., Filho, R. M. F., dos Santos, H. M., Aguiar, R. S., Proença-Modena,
J. L., Nelson, B., Hay, J. A., Monod, M., Miscouridou, X., Coupland, H., Sonabend,
R., Vollmer, M., Gandy, A., Prete, C. A., Nascimento, V. H., Suchard, M. A., Bowden,
T. A., Pond, S. L. K., Wu, C.-H., Ratmann, O., Ferguson, N. M., Dye, C., Loman,
N. J., Lemey, P., Rambaut, A., Fraiji, N. A., do P. S. S. Carvalho, M., Pybus, O. G.,
Flaxman, S., Bhatt, S., and Sabino, E. C. (2021). Genomics and epidemiology of
the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 372(6544):815–821. doi:
https://doi.org/10.1126/science.abh2644.

Funchal, J. P. d. S. and Adanatti, D. F. (2016). Um estudo sobre a classificação de risco
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