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ABSTRACT. This paper proposes a multiobjective heuristic search approach to support a 

project portfolio selection technique on scenarios with a large number of candidate projects. 

The original formulation for the technique requires analyzing all combinations of the candidate 

projects, which turns to be unfeasible when more than a few alternatives are available. We 

have used a multiobjective genetic algorithm to partially explore the search space of project 

combinations and select the most effective ones. We present an experimental study based on 

four real-world project selection problems that compares the results found by the genetic 

algorithm to those yielded by a non-systematic search procedure (random search). A second 

experimental study evaluates the best parameter settings to perform the heuristic search. 

Experimental results show evidence that the project selection technique can be used in large-

scale scenarios and that the genetic algorithm presents better results than simpler search 

strategies. 

KEYWORDS: Multiobjective optimization; portfolio selection; risk; dependency. 

1. INTRODUCTION 

Project Portfolio Management has gained attention in recent years, as organizations became increasingly 

project-, program-, and portfolio-oriented [3]. The limited resources available in organizations do not 

allow executing every project that may be presented for its executives. Thus, it is necessary to establish 

a procedure to select a subset of those candidate projects that can be executed within the available 

resources while maximizing profits and minimizing portfolio risk. Levine [4] defines project portfolio 

management as the administration of a company’s portfolio, aiming to maximize the contribution of the 

projects under execution to the overall welfare and success of the company. Cooper et al. [5] outline the 

major goals for portfolio management as maximizing portfolio value, selecting the right projects to 

comprise the portfolio, and linking the portfolio to the organization’s business strategy.  

Selecting the projects which will be executed by the company is a major component of portfolio 

management processes. Project selection aims to define an optimal (or close to optimal) subset of 

projects to comprise the company’s portfolio, taking into account their characteristics and relationships 

among them [8]. Suboptimal portfolios may include projects that do not contribute to the company’s 

strategic or tactic goals, consuming effort, money, and time that could be dedicated for more productive 

actions. Many project selection techniques can be found in the literature [3] [5] [7], but few directly 
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address an aspect that becomes important if these projects are to be executed together, instead of as 

separately managed efforts: the dependencies among candidate projects. 

Recently, Costa et al. [2] presented a project selection technique based on Modern Portfolio Theory [6]. 

The technique evaluates all portfolios which can be formed by combining a set of candidate projects, 

introduces a systematic procedure to calculate the dependencies among them, estimates the risks of all 

portfolios prone to be selected, and generates a return x risk indicator for each portfolio. It was evaluated 

through a set of experimental studies involving decision-makers from the industry and results show 

indications that taking project dependencies into account tends to support better decisions while 

selecting project portfolios. 

On the other hand, the computational cost of executing the technique is a power function of both the 

number of candidate projects and the number of independent risks that may affect these projects. The 

high cost is due to analyzing all combinations of the candidate projects and prevents using the technique 

in large-scale scenarios, with more than a few candidate projects. For instance, the technique evaluates 

32 portfolios in a scenario with five candidate projects, but if there are 40 available projects the number 

of combinations surpasses a trillion possibilities. In such a scenario, which is common for large 

companies, the technique cannot be executed in a feasible timeframe. 

In this paper, we present a multiobjective heuristic optimization approach to support the application of 

the technique proposed by Costa et al. [2] in large-scale scenarios on regard of the number of candidate 

projects available to comprise the portfolio. We present a formal representation for the project selection 

problem and use a bi-objective genetic algorithm to find effective portfolios in terms of their risk x 

return profiles without examining all possible combinations of the available projects. The optimization 

approach was evaluated using four project selection problems made available by a large Brazilian 

company. Experimental results show that the multiobjective heuristic search can find good portfolios in 

feasible time and finds better results than simpler search procedures, such as Random Search.  

Our primary contributions are as follows: (i) a multiobjective heuristic optimization approach to support 

the application of the project portfolio selection technique in scenarios with a large number of candidate 

projects; and (ii) experimental studies to determine the most appropriate parameter settings for the 

proposed multiobjective heuristic search and to compare it with a simpler, non-systematic search 

procedure. 

Besides this introduction, this paper is organized in six sections. Next, we present the Modern Portfolio 

Theory, which provides the theoretical basis for the project selection technique supported by the search 

approach proposed in this paper (multiobjective genetic algorithms). The technique itself is presented in 

Section 3. In Section 4 we describe the multiobjective heuristic search approach that was used to support 

the portfolio selection technique. Experimental studies that were designed and executed to evaluate the 

heuristic search approach are presented in Section 5. Section 6 presents related work, while future works 

and conclusions are drawn in Section 7. 

2. MODERN PORTFOLIO THEORY 

Modern Portfolio Theory (MPT) is a disciplined procedure to support the allocation of capital in 

investment portfolios comprised of financial assets [6]. Under this theory, a portfolio is a weighted 

combination of assets, the weight of each asset being proportional to the amount of capital invested in it. 

MPT suggests how much of the available capital an investor should allocate to each asset to maximize 

the expected return and minimize the risk incurred by the portfolio. It requires calculating the return and 

risk of each possible portfolio which can be built from the available assets. Next, the portfolios are 
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depicted in a scatter plot chart presenting portfolio risk (σP) on the horizontal axis and expected return 

(ERP) on the vertical axis (Figure 1).  

 
Figure 1. A typical Efficient Frontier 

The Efficient Frontier, formed by the uppermost points set forth in the chart, presents all portfolios with 

maximum expected return for a given level of risk. A typical frontier is presented in Figure 1. Given 

how much risk the investor is willing to accept, the frontier shows the portfolio with the greatest 

expected return. On another perspective, it shows the portfolio with minimum risk for a given expected 

return. Thus, the Efficient Frontier comprises all projects that maximize the risk x return ratio.  

The Expected Return yielded by a portfolio (ERP) is represented by the weighted sum of the expected 

returns of its assets. For a portfolio consisting of m assets, ERP can be calculated by equation (1), where 

wi is the percentage of capital invested in asset i and µi is the expected return of the same asset. 

��� = ∑ ��. 	�
��� , where ∑ ��
��� = 100%  (1) 

Portfolio risk (σP) is a function of the independent risks of its assets (σi), the proportion of capital 

invested in each asset, and the correlation (ρij) among them. The risk of a given asset is usually 

estimated by the standard deviation of its observed returns over time. The correlation is a measure of the 

dependence between a pair of assets, indicating the strength and direction of the relationship between 

them. It is represented by a number in the [-1, +1] interval, where -1 represents two assets moving in 

opposite directions with similar strength while +1 represents two assets that tend to move in the same 

direction with similar strength. Correlation 0 (zero) means that no relation between the two assets can be 

inferred from the history of their observed returns. Optimal portfolios usually embed combinations of 

negatively-correlated assets, resulting in less risky portfolios since a negative impact on an asset is 

compensated by a positive impact on another one. Given the weights, the correlation, and the risks of its 

assets, the risk of a portfolio entailing m assets is calculated by equation (2). 

�� = �∑ ���. ���
��� + 2.∑ ∑ ��. �� . ��. ��. ���
���,���
���   (2) 

When MPT is used to support project selection, two restrictions need to be considered. First, the 

proportion of capital invested on each asset in the financial market is an investor’s discretion and can be 

changed at any time by converting assets to money (selling) or money to assets (buying). In a project 

portfolio setting, the proportion of capital invested in each project is dictated by the resources required 

to conduct the project and once a company is committed to a project such resources usually cannot be 

used for other purposes. Moreover, a project cannot be partially taken: it is either selected to comprise 

the company’s portfolio or discarded.  
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Second, investors trading financial assets usually have data about these assets’ performance in the past 

and can use this information to estimate risk and (with restrictions) expected returns. Projects are unique 

by definition and therefore there is no information available about their former performance. Thus, risk 

and return must be estimated according to expectations regarding their future cash flows and influences 

from uncertain factors upon them (opportunities to be explored and risks to be faced or countered). This 

is the basis for the project selection technique presented in the next section. 

3. A PROJECT PORTFOLIO SELECTION TECHNIQUE 

Costa et al. [2] present a technique to select projects to build a portfolio based on concepts underlying 

MPT and restrictions that must be taken into account when applying the theory to a project selection 

context. The technique depends on the following information to characterize candidate projects and risks 

that may affect them. Let P be the set of candidate projects, with |P| ≥ 1 elements. Each project pi ∈ P is 

characterized by its development cost (costi) and the net present value of its expected cash flows (pvi). 

Let R be the set of risks affecting the candidate projects, with |R| ≥ 1 elements. Each risk rj ∈ R is 

described by its probability of occurrence (probj) and expected impact upon each project (impacti,j). The 

impact of a risk upon a project may be positive (if the risk represents an opportunity) or negative (if the 

risk is a threat for the project). Risks affecting more than one project are especially important because 

they allow observing how these projects behave when exposed to the same uncertainties, providing the 

basis to measure dependency (correlation) among them. In software projects, examples of risks that may 

affect more than a single project include creeping user requirements, implementation of new 

technologies, human resources issues, support from senior management, and low productivity. 

Based on the former information, the project selection technique creates all alternative portfolios that 

can be formed by combining subsets of the candidate projects and whose cost is under a limit 

established by the company (the amount of capital available for investments). The magnitude of the 

number of alternative portfolios is 2m, being m the number of candidate projects. Next, all possible risk 

scenarios that may affect the portfolios are created by combining subsets of formerly identified risks. 

These scenarios can vary from the occurrence of no risk to all risks occurring simultaneously. Given n 

risks, the total number of scenarios is 2n. Each scenario is characterized by its probability of occurrence 

and its impact upon each project. The probability of a given scenario S is calculated by multiplying the 

probability of occurrence of all risks participating in the scenario, times one minus the probability of all 

other risks (equation 3). The impact of a scenario S upon a project pi is the sum of the impacts of all 

risks comprising the scenario upon that project (equation 4).  

������� = ∏ �����!"∈$ . ∏ �1 − ������!"∉$  (3) 

'(�)*+��, ��� = ∑ '(�)*+�,�!"∈$  (4) 

The technique follows by calculating risk-adjusted project data. At the financial market, the inputs for 

MPT are the historical time series of observed returns over time for each asset. Risk (standard 

deviation), expected return (mean), and correlations among assets can be calculated from these series, 

allowing for the computation of portfolio risk and expected return by means of equations (1) and (2). 

The observed return time series for an asset is formed due to the passage of time and the changing 

perceptions of market agents (banks, investors, and companies) regarding the asset’s future price. Since 

projects are unique, historical time series on their returns do not exist and other means must be sought to 

estimate project risk, return, and correlation. The project selection technique suggests analyzing the 

frequency of occurrence of risk scenarios and their impact upon the return of candidate projects. The 
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Expected Return (ERi) of a candidate project is calculated as the weighted average return that each risk 

scenario yields for the project, where weights are given by the scenario’s probability of occurrence. 

Similarly, the risk of each project (σi) is calculated by the weighted standard deviation of the return 

yielded for the project on each scenario. Finally, the correlation (ρi,j) between two projects is calculated 

using the Spearman Rank Order Coefficient upon their pair-wise weighted returns for the same 

scenarios. 

Next, risk-adjusted project information can be aggregated at the portfolio level. The cost of a portfolio 

PT (CPT) is calculated by summing up the development cost of each project comprising the portfolio. 

The expected return of a portfolio (ERPT) is calculated by summing up the expected return of each 

project comprising the portfolio. Portfolio risk (σPT) is calculated by equation (5), which is derived from 

equation (2) and takes into account only those n projects comprising the portfolio. Weights were 

removed from the equation because projects taking part on the portfolio have weight equal to 1 (they 

cannot be partially undertaken), while other projects have weight equal to zero. 

��, = �∑ ���-��� + 2.∑ ∑ ��. �� . ���-���,���-���   (5) 

Finally, the technique creates the portfolio chart (such as Figure 1) from the set of pairs (ERPT, σPT) for 

alternative portfolios whose cost is below the investment budget and depicts the Efficient Frontier. Thus, 

it shows the decision-maker which portfolios represent the highest return for a given risk or the lowest 

risk for a given return. This limits the choices of the decision-maker, since choosing portfolios which are 

not part of the frontier is not a rational, optimal decision according to MPT tenets.  

The project selection technique considers only two variables: risk and return. Despite the importance of 

these variables, the decision of which portfolio will be undertaken by the company may be influenced by 

other factors, like risk appetite, the company´s strategic goals, development cost, or type of cash flow 

that a company seeks to develop and/or expend. External factors, such as legal constraints and political 

moves, may also influence the decision, but they are out of the scope of the proposed technique.  

4. PROJECT PORTFOLIO SELECTION AS A MULTIOBJECTIVE PROBLEM 

Project portfolio selection is a bi-objective problem where two incomparable measures (risk and return) 

define the most effective portfolios. Risk must be minimized, while expected return must be maximized. 

Therefore, we are interested in the portfolio which yields maximum return for a given level of risk or, on 

the opposite perspective, which incurs minimum risk to yield a certain return. The most effective 

portfolios form a curve disposed in the risk x return plane. A decision about which among these 

portfolios will be undertaken by the company depends on the decision-makers willingness to accept 

more risk in exchange for more return.  

A bi-objective search to select the most effective portfolios must look for the Pareto-optimal set of 

subsets of P maximizing return and minimizing risk. Under Pareto optimality, one solution is better than 

another if it improves at least one of the individual objectives and does not decrease the remaining ones 

[9] [12]. These are known as non-dominated solutions, since no solution in the Pareto-optimal set can be 

said better than any other solution in the same set for all required objectives. Therefore, a bi-objective 

search algorithm supporting the technique presented in Section 3 yields a set of Pareto-optimal solutions 

PT*, each representing a portfolio comprised of projects pertaining to P. 

We have addressed the optimization problem using the NSGA-II algorithm [1]. NSGA-II is a 

multiobjective genetic algorithm based on a ranking procedure which classifies candidate solutions 
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according to their dominance. Non-dominated solutions are assigned a rank of 1; solutions dominated 

only by non-dominated solutions are assigned a rank of 2; solutions dominated only by the former are 

assigned a rank of 3, and so on. The algorithm evolves a population over a number of generations, 

applying crossover, mutation, and selection upon candidate solutions. The selection process prioritizes 

low-ranking solutions and, when a subset of solutions having the same rank must be selected, a density 

measure allows selecting candidate solutions covering the search space as uniformly as possible. 

The NSGA-II algorithm was programmed to maximize returns and minimize risks. We have used the 

JMetal framework [11] and its implementation of the NSGA-II algorithm in the experiments designed to 

evaluate the effectiveness of the algorithm while searching solutions for the project selection problem. 

The crossover operator uses single point crossover with 90% crossover probability. The mutation 

operator uses uniform mutation with 1% probability. Binary tournament is used as selection strategy. 

Population size was set as two times the number of projects. The maximum number of fitness function 

evaluations was set as 100 times the square of the number of projects. Each candidate solution 

represents a potential portfolio and was encoded as a sequence of bits, one for each available candidate 

project. The bit for a given project indicates whether the project is part of the portfolio represented in the 

solution. 

5. EVALUATING THE SEARCH-BASED APPROACH FOR PROJECT SELECTION 

In this section we present two experimental studies conducted to evaluate the search-based approach to 

the technique presented in Section 3. First, we present the problem instances selected for the evaluation. 

Next, we present an experimental analysis designed to find the best parameter settings to run the NSGA-

II algorithm. Finally, we present a comparison between the genetic algorithm and a multiobjective 

random search applied to the same instances. 

5.1 Problem Instances 

We have analyzed the behavior of the NSGA-II multiobjective genetic algorithm applied to the project 

selection technique using four real-world instances. These instances were provided by a Brazilian 

company acting in the distribution of electric energy and depict an excerpt of the candidate projects that 

were available to form the company’s project portfolio for 2011. The instances also conveyed 

information about the risks that could affect the organization’s business goals and the candidate projects. 

As required by the company that provided the data, we cannot disclose information about the projects 

and their risks. In fact, even the instances we have received contained obfuscated information about the 

name of the projects and risks, disclosing only value and cost data required for our computations. 

To run the study, 250 projects were selected from the 556 eligible projects that could receive 

investments from the company. These projects were grouped into four categories, each representing an 

instance used in the experiment: (a) new buildings, installation and restoration works, consisting of 25 

out of the 66 projects identified in this category; (b) maintenance, improvements, and upgrade projects, 

with 50 out of the 315 projects identified for this category; (c) R&D projects, consisting of 75 projects; 

and (d) new ventures and investments, with a total of 100 projects. 

Projects in categories (a) and (b) were selected according to the date they were registered in the 

information system that supports the executive board on investment decisions, that is, older projects 

were chosen up to the desired number to compose each category. The number of projects in these 

categories was limited to allow experimenting with a set of instances that vary in size, thus depicting 

how the proposed algorithm behaves in different scenarios. The registration date-based criterion was 

used to avoid bias (cost, present value, risk exposure) in the selected projects. Instances representing 
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categories (c) and (d) were selected to evaluate whether the optimization process would be able to find 

good solutions even in large scenarios. 

Each category represents a cost center in the company and has a separate investment budget to 

implement a project portfolio for the period. As we have not selected all projects identified by the 

organization (556 projects), we have used a proportional amount of the budget available for each 

category, as follows (actual values cannot be published): 

(a) The 25 selected projects are worth of approximately 38% of the cost of running the 66 projects in 

this category. Therefore, the constrained budget for this group was estimated at 38% of the budget 

available for projects comprising this category; 

(b) The 50 selected projects are worth of 16% of the total cost of running the 315 projects in this 

category. Similarly to the first group, the constrained budget for this group was fixed at 16% of the 

available budget; 

(c) We have selected all projects from the third category, so the full budget was considered; 

(d) We have also selected all projects from the fourth category, so the full budget was considered. 

Individual costs and estimated present value for future cash flows to be generated by each candidate 

project have been provided by employees and consultants working for the company but cannot be 

disclosed. One hundred and fourteen (114) uncertain events that might affect the business conducted by 

the organization were identified using questionnaires and interviews with employees and project 

stakeholders. Such risk identification process was performed before we have requested the data and 

without the participation of researchers involved in the present work. From these, 106 risks were directly 

related to the selected candidate projects. The probability of occurrence and the total impact of each risk 

were also identified. Based on this information, consultants calculated the impact of each individual risk 

upon each project. Since we were not interested in the effect of an increasing number of risks affecting 

the projects, we selected the 10 most important risks according to project exposure (that is, the risks with 

higher exposures) to perform the evaluation. 

5.2 Parameter Settings 

Parameter settings were configured according to the results of an experimental evaluation which used 

the instance comprised of 25 projects subjected to 10 risks. The NSGA-II algorithm was executed to 

find solutions for this instance under several distinct configurations of crossover probability, mutation 

probability, and population size. Since the budget of fitness function evaluations is calculated according 

to population size, changing the last parameter also affected the budget available for the algorithm. 

Five distinct crossover probabilities were tested (60%, 70%, 80%, 90%, and 100%), along with five 

distinct mutation probabilities (1%, 2%, 3%, 4%, and 5%) and four population-size factors (50%, 100%, 

150%, and 200%). The base population was set as the number of projects in the instance and the 

population-size factor was applied upon this number, thus testing the effects of halving the population, 

using the base population size, and increasing the population by 50% and 100%. All combinations of 

parameters were evaluated to identify the best settings to run the NSGA-II algorithm for the project 

selection technique. A total of a hundred distinct combinations were tested. To account for the variation 

inherent in stochastic heuristic algorithm, NSGA-II was executed 30 times for each configuration. 

Hereafter, we will call each execution of a given configuration a running cycle. 

Each running cycle for a given configuration yielded a Pareto front comprised of a set of solutions 

(PFc,m,f,i), where c represents the crossover probability used in the configuration under analysis, m 
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represents the mutation probability for that configuration, f represents the population size factor, and i 

represents the cycle number. After running all cycles for a given configuration, a best front for that 

configuration was built by joining the fronts yielded by each cycle and removing dominated solutions 

(PFc,m,f). Finally, after running all configurations, the best fronts for each configuration were merged to 

create the best front for the instance (PFbest), again removing dominated solutions. Each vertex of every 

front represents a portfolio and is described by two objectives – expected return and portfolio risk. 

We have selected the parameter settings from the configuration whose best front (PFc,m,f) was closest to 

PFbest. We have used the generational distance quality indicator to compute the distance between two 

Pareto fronts. Generational distance represents the distance between PFc,m,f and PFbest calculating the 

Euclidean distance between each solution pertaining to PFc,m,f and the closest solution composing PFbest. 

Lower numbers are preferable, since they indicate that a given Pareto front is closer to the best front. 

Generational distances are defined in the [0, +∞[ interval.  

Tables 1 to 4 show means and standard deviations for generational distances collected after running each 

configuration. Each table represents a given population size factor. Table rows represent values for 

crossover probability, while table columns represent values for mutation probability. Generational 

distance values are presented in table cells in 1/1,000 scale (that is, actual values are obtained by 

dividing values shown in the tables by 1,000). 

Table 1 – Generational distances for population factor = 50% 

 1% 2% 3% 4% 5% 

60% 5.96 ± 2.4 6.13 ± 3.1 6.75 ± 3.3 6.33 ± 3.7 6.80 ± 3.6 

70% 7.35 ± 4.2 5.70 ±2.7 5.09 ± 2.8 6.47 ± 2.5 6.34 ± 2.2 

80% 6.14 ± 2.8 5.64 ± 2.8 6.67 ± 3.0 5.85 ± 2.77 6.75 ± 3.5 

90% 5.56 ± 2.2 6.40 ± 3.3 7.25 ± 3.2 5.79 ± 2.6 5.92 ± 3.0 

100% 6.58 ± 2.9 6.02 ± 3.3 5.91 ± 2.8 5.26 ± 2.5 5.69 ± 3.0 

Table 2 – Generational distances for population factor = 100% 

 1% 2% 3% 4% 5% 

60% 1.39 ± 0.7 1.36 ± 0.6 1.18 ± 0.4 1.37 ± 0.5 1.29 ± 0.5 

70% 1.12 ± 0.3 1.24 ± 0.5 1.33 ± 0.5 1.34 ± 0.6 1.35 ± 0.4 

80% 1.24 ± 0.4 1.26 ± 0.4 1.23 ± 0.5 1.24 ± 0.4 1.29 ± 0.5 

90% 1.20 ± 0.5 1.34 ± 0.6 1.35 ± 0.5 1.26 ± 0.5 1.09 ± 0.4 

100% 1.10 ± 0.4 1.29 ± 0.4 1.17 ± 0.4 1.12 ± 0.5 1.14 ± 0.4 

Table 3 – Generational distances for population factor = 150% 

 1% 2% 3% 4% 5% 

60% 0.67 ± 0.2 0.70 ± 0.2 0.61 ± 0.1 0.64 ± 0.2 0.62 ± 0.1 

70% 0.62 ± 0.1 0.68 ± 0.2 0.55 ± 0.2 0.60 ± 0.1 0.60 ± 0.2 

80% 0.62 ± 0.1 0.63 ± 0.1 0.57 ± 0.2 0.63 ± 0.2 0.56 ± 0.1 

90% 0.57 ± 0.2 0.67 ± 0.2 0.56 ± 0.2 0.63 ± 0.2 0.51 ± 0.1 

100% 0.56 ± 0.2 0.60 ± 0.1 0.66 ± 0.2 0.61 ± 0.2 0.63 ± 0.1 

Table 4 – Generational distances for population factor = 200% 

  1% 2% 3% 4% 5% 

60% 0.41 ± 0.11 0.41 ± 0.12 0.42 ± 0.14 0.40 ± 0.12 0.39 ± 0.14 

70% 0.37 ± 0.10 0.39 ± 0.12 0.36 ± 0.12 0.38 ± 0.08 0.39 ± 0.10 

80% 0.38 ± 0.10 0.35 ± 0.12 0.34 ± 0.10 0.36 ± 0.13 0.39 ± 0.10 

90% 0.31 ± 0.08 0.38 ± 0.11 0.39 ± 0.12 0.37 ± 0.10 0.35 ± 0.11 

100% 0.33 ± 0.08 0.33 ± 0.09 0.35 ± 0.11 0.35 ± 0.09 0.35 ± 0.07 
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As shown in Tables 1 to 4, the smallest average generational distance was observed under the 

configuration using 90% crossover probability, 1% mutation probability, and 200% population size 

factor (hereafter called base configuration). The base configuration is represented in the grey cell in 

Table 4. All values on Tables 1 to 3 are significantly different from the base configuration with at least 

95% confidence, according to a non-parametric Wilcoxon-Mann-Whitney statistical test. Bold face 

values on Table 4 are not significantly different from the base configuration with 95% confidence. The 

p-values yielded by the statistical test while comparing these configurations to the base one, along with 

effect-sizes, are presented in Table 5. 

P-values closer to zero indicate stronger confidence that the results being compared are statistically 

different. Effect-size measures, such as the non-parametric Vargha and Delaney’s A12 statistics [13] 

used in our analysis, assess the magnitude of improvement in a pair-wise comparison. Given a measure 

M for observations collected after applying treatments A and B, A12 measures the probability that 

treatment A yields higher M values than B. If both treatments are equivalent, then A12 = 0.5. Otherwise, 

A12 indicates the frequency of improvement, e.g., A12 = 0.7 denotes that higher results would be 

obtained 70% of the time with A. In Table 5, an effect-size of 0.38 denotes that the referred 

configuration will be able to yield smaller generational distances than the base configuration in 38% of 

its executions, while the base configuration will yield better values 62% of the time. Means, standard 

deviations, p-values, and effect sizes were calculated using the R Statistical Computing system1 v2.12.2. 

Table 5 – P-values and effect-sizes for the selected configurations 

 P-Value Effect-Size 

PF (70%, 3%, 200%) 0.07 0.38 

PF (80%, 2%, 200%) 0.20 0.41 

PF (80%, 3%, 200%) 0.22 0.42 

PF (80%, 4%, 200%) 0.16 0.40 

PF (90%, 5%, 200%) 0.11 0.39 

PF (100%, 1%, 200%) 0.59 0.47 

PF (100%, 2%, 200%) 0.40 0.44 

PF (100%, 3%, 200%) 0.37 0.44 

PF (100%, 4%, 200%) 0.11 0.39 

PF (100%, 5%, 200%) 0.54 0.37 

While some configurations using 80% and 100% crossover probability could also be considered good 

settings for the search algorithm, effect-size measures add evidence that the base configuration 

represents the best parameter settings (at least for the instance under analysis). Therefore, this 

configuration was used in the experiment reported in the next section and is suggested for further 

applications of the proposed approach. 

We can also observe from Tables 1 to 4 that population-size factor seems to be the most important 

parameter among those selected for the analysis. The percentile difference between the maximum and 

minimum generational distances for all configurations using the same population-size factor (intra-

treatment variation) varies from 28% (Table 2) to 45% (Table 1). On the other hand, the percentile 

difference between the maximum and minimum overall distances (extra treatment variation) varies up to 

2,250%. 

                                                                 
1 http://www.R-project.org  
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5.3 Comparison with a Simpler Search 

To evaluate whether a complex search procedure, such as the NSGA-II algorithm, is required to find 

good solutions for the project selection problem in scenarios of varying sizes, we designed and executed 

an experimental study to compare the heuristic search with a simpler, non-systematic search procedure. 

The study compared the efficiency and effectiveness of both searches using the instances described in 

Section 5.1. 

Two configurations were tested for each instance. The first one, hereafter called GA, used the NSGA-II 

algorithm with the parameter settings and fitness evaluation budget described in Section 4. The second 

configuration, hereafter referred to as RS, used a multiobjective random search with the same fitness 

evaluation budget given to the NSGA-II algorithm. 

The multiobjective random search is a random search that uses an archive of non-dominated solutions to 

build a Pareto front taking into account more than one objective. The algorithm is essentially a loop 

where a solution is randomly generated in each step and compared to the solutions in the archive for 

domination. Solutions dominated by the new one are removed from the archive and the new solution is 

introduced if it is not dominated by any of the former ones. The search procedure continues until it 

consumes its budget of fitness function evaluations. 

To properly account for the randomness inherent in heuristic search procedures, each configuration was 

executed 30 times for all instances. For each pair of configuration and instance, each running cycle 

yielded a Pareto front comprised of a finite set of solutions (PFi). After running all cycles for a given 

instance and configuration, a best front for that pair was built by joining the fronts yielded by each cycle 

and removing dominated solutions (PFGA and PFRS). Finally, PFGA and PFRS were merged to create the 

best front for the instance at hand (PFbest), again removing dominated solutions. Each vertex of the 

Pareto fronts represents a portfolio and is described by two objectives – the expected return and the risk 

incurred by the portfolio.  

To evaluate the efficiency of a configuration, we have collected the execution time for each cycle, 

configuration, and instance. In this context, execution time means the wall-clock time required to run the 

cycle. Lower values are preferred, since they indicate that the configuration under analysis consumes 

less processing power to find solutions for an instance. To evaluate the effectiveness of a configuration, 

we have collected the generational distance and error ratio for each cycle, configuration, and instance. 

Generational distance was already introduced in Section 5.2. Error ratio is calculated by one less the 

count of solutions in PFi which also pertain to the best front (PFbest) divided by the count of solutions in 

PFi. Lower numbers are preferred, since they indicate that a cycle’s front has more solutions pertaining 

to the best front. Error ratios are defined in the [0, 1] interval. 

After collecting execution time, generational distance, and error ratio data, configurations were 

compared in a per instance basis, e.g., results yielded by GA for the instance with 25 projects were 

compared to those presented by RS for the same instance. Smaller execution times for a given 

configuration indicate that it is more efficient than the other. Smaller error ratios and generational 

distances for a configuration denote that it yields more effective results than the second one. These 

values were subjected to a non-parametric Wilcoxon-Mann-Whitney test to ascertain if there was 

statistically significant difference between the configurations.  

The following tables present means and standard deviations of the measures above for each 

instance/configuration over 30 cycles. They also present the p-value for the non-parametric test and the 

Vargha and Delaney’s A12 effect-size measure.  
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Table 6 shows execution times (measured in seconds) collected after performing the experiment. 

Execution time for configuration GA is on average two times greater than under configuration RS, but 

this percentile is severely reduced for the largest instance. Nevertheless, NSGA-II consumes much more 

processing time than the random search to find its solutions. The p-value for the statistical test converges 

to zero for all instances, denoting that differences in execution time are significantly different with, at 

least, 99% confidence. Effect-size values show that NSGA-II will take more time to find its solutions in 

100% of its runs for all but the smallest instance, on which about 6.8% of the random searches consume 

more processing time to run than the respective genetic algorithm. 

Table 6 – Execution time analysis  

 GA RS P-Value Effect-Size 

25P 1.7 ± 0.05 1.3 ± 0.19 < 0.001 93.2 

50P 13.4 ± 0.03 5.2 ± 0.73 < 0.001 100.0 

75P 46.1 ± 0.03 9.8 ± 0.16 < 0.001 100.0 

100P 134.7 ±0.27 80.0 ± 12.7 < 0.001 100.0 

Table 7 shows error ratios collected after running the experiment. As in the former table, it presents 

means and standard deviations for each instance’s error ratio under configurations GA and RS over the 

30 cycles, the p-value for the statistical test, and effect-size. Error ratio under configuration RS is, on 

average, 98% greater than under GA. For all but the smallest instance, no cycle running the random 

search contributed to PFbest. Since smaller values are preferred, the genetic algorithm seems to find more 

effective solutions (in terms of error ratio) than the random search. As in the former table, p-values 

converge to zero for all instances, denoting that differences in error ratio are statistically significant with 

at least 99% confidence. Effect-size A12 measures also converge to zero, indicating that the genetic 

algorithm will be able to yield solutions with less error ratio in 100% of its runs. 

Table 7 – Error ratio analysis  

 GA RS P-Value Effect-Size 

25P 0.45 ± 0.07 0.90 ± 0.03 < 0.001 0.0 

50P 0.53 ± 0.06 1.0 ± 0.0 < 0.001 0.0 

75P 0.41 ± 0.04 1.0 ± 0.0 < 0.001 0.0 

100P 0.63 ± 0.05 1.0 ± 0.0 < 0.001 0.0 

Table 8 shows generational distances collected after running the experiment. These values are 

represented in 1/1,000 scale (that is, actual values are obtained by dividing the values in the table by 

1,000). Conclusions regarding generational distance are not as straightforward as those drawn for 

execution time and error ratio. Even with a larger error ratio, random search was able to find solutions 

with less generational distance than NSGA-II for the smallest instance. This implies that although the 

solutions found by random search were not in the best front, they were close to it. Lower generational 

distances, alongside with lower execution times, indicate that random search might be a feasible 

procedure for solving small instances of the project selection problem. 

On the other hand, generational distance for larger instances under configuration RS is, on average, 

9,702% greater than under GA. This large difference is due to difficulties in finding good solutions for 

the instance with 75 projects, which is the hardest instance in terms of available capital to invest in the 

portfolio. The amount of capital available for this kind of project is only 26% of the total amount 

required to fund all candidate projects in the instance. Thus, many randomly-generated portfolios were 

over budget (that is, unfeasible) and were not even tested for dominance. The genetic algorithm seems 

able to compensate for this restriction, finding significantly better portfolios than random search. 
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Table 8 – Generational distance analysis  

 GA RS P-Value Effect-Size 

25P 0.33 ± 0.12 0.11 ± 0.03 0.99 100.0 

50P 0.10 ± 0.02 1.00 ± 0.12 < 0.001 0.0 

75P 0.13 ± 0.05 43.07 ± 4.33 < 0.001 0.0 

100P 0.10 ± 0.02 4.96 ± 0.61 < 0.001 0.0 

The p-value converges to zero for all instances except for the one with 25 projects, denoting that 

differences in generational distance are statistically significant with at least 99% confidence (they are 

significant in all cases, but the smallest instance is better served by the random search). The effect-size 

A12 shows that in 100% of the runs the genetic algorithm will yield solutions with smaller generational 

distance than the random search, except for the smallest instance in which the reverse is true. 

The former data shows strong evidence in favor of the heuristic search, except for small instances with 

relatively large budgets to fund the project portfolio. The genetic algorithm outperforms the random 

search in finding solutions closer to the best Pareto front, though the random search was able to find a 

good approximation of this front for the smallest instance.  

Nevertheless, one may argue that a fair comparison between the genetic algorithm and random search 

would give a much larger fitness evaluation budget to the later, allowing to compare strategies that 

consume roughly the same amount of resources (in this case, computer processing time). We have 

repeated the experiment described in the former paragraphs, though giving a fitness evaluation budget 8 

times larger to random search (configuration RS8). By being allowed to consume this larger budget, all 

running cycles for RS8 took more processing time to run than the respective NSGA-II.  

We observe improvements for both error ratio and generational distance if RS is compared to RS8. RS8 

produced an average error ratio of 0.81 for the smallest instance, while error ratio remained equal to 1.0 

for instances with more than 25 projects. On regard of generational distance, the average improvement 

across all instances was about 50%, topping in 80% for the smallest instance. However, these numbers 

are still far behind those produced by the genetic algorithm. An exception is generational distance for 

the smallest instance on which random search finds better results than GA regardless of using a larger 

budget. Thus, independent of using the same fitness evaluation budget or a similar amount of processing 

time, random search cannot keep up with results produced by the genetic algorithm. 

5.4 Threats to Validity 

Wohlin et al [10] classify the threats to validity that may affect an experimental study into four 

categories: conclusion, construct, internal, and external threats. Barros and Dias-Neto [14] propose an 

extension of the framework for search-based experiments. 

Conclusion threats are concerned with the relationship between the treatment and the outcome. In SBSE 

experiments, major conclusion threats include not accounting for random variation in the search, lack of 

good descriptive statistics and of a meaningful comparison baseline. These issues were addressed in this 

paper by running 30 experimental cycles for each instance/configuration, by presenting means and 

standard deviation for relevant measures collected after running the experiment, by comparing these 

values using a non-parametric test, and presenting effect-size measures. 

Internal threats evaluate if a relationship between the treatment and the outcome in an experimental 

study is causal or the result of a factor upon which the researcher has no control. In SBSE experiments, 

major internal threats involve poor parameterization, lack of real-world problem instances, and not 

discussing code instrumentation and data collection procedure. These issues were addressed in this paper 

by presenting an experimental analysis which was conceived to find the most appropriate settings for the 
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heuristic algorithm, by using four real-world instances (kindly provided by a private company), by 

describing the data collection procedure used to build the instances, and by using a well-known heuristic 

algorithms library in the implementation.  

Construct threats are concerned with the relation between theory and observation, ensuring that the 

treatment reflects the construct of the cause and that the outcome reflects the construct of the effect. In 

SBSE experiments, major construct threats involve using invalid efficiency and effectiveness measures 

and not discussing the underlying model subjected to optimization. On regard of the model, the project 

selection technique that is supported by the approach proposed in this paper was presented and discussed 

in Sections 2 and 3. Regarding the measures selected for the experiment, using wall-clock time as 

efficiency measure is questionable if the experimental cycles are executed in different computers under 

distinct loads, but we took precautions to run all cycles in the same computer under similar system load. 

The effectiveness measures, error ratio and generational distance, were selected to allow comparing 

Pareto fronts in terms of their proximity to the approximated best front for each instance. Since we are 

interested on the ability of the algorithms to yield solutions closer to the best front, these seem 

reasonable quality indicators for our experiments. 

Finally, external threats are concerned with the generalization of the observed results to a larger 

population, outside the sample instances used in the experiment. Major external threats to SBSE 

experiments include lacking a clear definition of target instances, lacking a clear instance selection 

strategy, and not having enough diversity in instance size and complexity. In our experiment we have 

used four instances of different sizes (in terms of the number of projects), though complexity was not 

directly addressed. In the future, we intend to improve the proposed approach to handle a growing 

number of risks, but this is out of the scope of the present paper. Finally, the instances used in Section 

5.1 are protected by a non-disclosure agreement and cannot be made available for replications of the 

present study. 

6. RELATED WORKS 

The usage of heuristic search algorithms to support the application of MPT (Modern Portfolio Ttheory) 

in the context of financial asset portfolios has been addressed by many authors. Schaerf [15] compared 

three local search strategies (Hill Climbing, Simulated Annealing, and Tabu Search) on their ability to 

address the asset selection problem given constraints on the number of different assets to take part on the 

portfolio and on the maximum amount to be invested in any single asset. The author concluded that 

Tabu Search was the most effective alternative to find solutions for the problem. Lai et al. [16] proposed 

a two-stage asset selection procedure in which a genetic algorithm was used to identify high-quality 

assets (based on their history regarding four financial indicators) and then a second genetic algorithm is 

used to select the best combination of the selected assets (based on MPT). Lin and Liu [17] presented a 

heuristic strategy to address the asset selection problem given minimum lot restrictions, that is, the 

traded quantities of any asset are restricted to multiples of a given quantity. Bakar et al. [18] evaluated 

using a genetic algorithm to select portfolios using equities from the two most important economic 

sectors traded in Malaysia. Chang et al. [19] evaluated a genetic algorithm to select financial portfolios 

based on three risk measures: semi-variance, absolute standard deviation, and variance with asymmetry. 

In relation to project portfolios, a few papers were found to take dependencies into account in the 

optimization process. However, the interpretation of the concept of dependency varies in each case. 

Bhattacharyya et al. [20] presented a project selection approach where projects can have dependencies in 

their outcomes (jointly-executed projects may yield different results than when executed together), 
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techniques (leveraging a given technology used in two or more projects), resources (many projects 

sharing a limited resource pool), and risks (projects executing at the same time may increase their risk 

exposure). Fuzzy set theory is used to model dependencies, while both a single-objective and a multi-

objective genetic algorithm were evaluated in the optimization (using an instance with only six projects). 

Fuzzy set theory is also used by Wang and Hwang [21], who proposed a real-option based hedge 

strategy to reduce the risk of a project portfolio. 

Finally, regarding software projects, Kremmel et al. [22] presents a multiobjective genetic algorithm to 

support selecting software projects. The optimization takes into account potential revenue, strategic 

alignment, resource usage, risk and synergy. The approach was evaluated through an experimental study 

that used 50 projects and compared the proposed multiobjective search strategy to NSGA-II and SPEA2. 

7. Conclusions 

This paper proposed a multiobjective heuristic search approach to support a project portfolio selection 

technique that, in its original formulation, cannot be executed in feasible time for scenarios with more 

than 20 candidate projects. The technique is based on concepts of the Modern Portfolio Theory and was 

formally presented in Section 3. An experimental procedure to find suitable parameter settings for the 

heuristic algorithm selected to support the technique was designed and presented. 

We found evidence that a heuristic search is required for finding proper solutions for large instances or 

those characterized by a severely constrained investment budget. The NSGA-II algorithm outperformed 

random search both in terms of error ratio and generational distance effectiveness indicators for large 

instances. On the other hand, random search seems a feasible alternative for small instances or those 

with large budgets. Limitations of the present work which can be addressed by future research include 

adapting the heuristic search to deal with a large number of risks and repeating the experiment with 

more instances. 
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