

Programming fundamentals and human factors: an

empirical study of three variables

Osvaldo Luis de Oliveira1, Ana Maria Monteiro1, Norton Trevisan Roman2

1Faculty Campo Limpo Paulista – Campo Limpo Paulista, SP – Brazil

2University of São Paulo – São Paulo, SP – Brazil

osvaldo@faccamp.br, anammont@cc.faccamp.br, norton@usp.br

Abstract. In this study, we identify and experimentally investigate three

important variables that are present in environments for the learning of

programming fundamentals. These are the type of the problem source

(concrete vs. abstract); the type of the programming language grammar

(context-free vs. natural language-like); and the distance between the concepts

in the problem source and the programming language primitives (close vs.

distant). Results show that (i) there is no significant evidence to support any

influence that the type of problem source or the type of programming language

grammar may have in the learning of programming fundamentals; and (ii)

languages whose primitives are close to the problem source concepts favor the

learning of programming fundamentals when compared to languages whose

primitives stray from these concepts. We understand that these results can be

used to design better courses and learning material to improve students'

performance in the learning of introductory programming.

1. Introduction

Computer Science and several technological fields rely on computers and the software
that is used on them. The software developers must have programming skills that is why
a student needs years to become a good programmer.

 Learning and teaching programming is considered a difficult task because it
requires a correct understanding of abstract concepts and the development of problem-
solving strategies. For years, instructors have reported high failure rates in their courses
[Devey and Carbone, 2011; Guzdial and Soloway, 2002], and research reveals that the
dropout rates in the first two years of Computer Science programming courses are
between 30% and 70% [García-Mateos and Fernández-Alemán, 2009; Moskal et al.,
2004].

 Decades of research have been devoted to alleviating the problem of learning
and teaching programming. Several methods and various methodologies have been
proposed, which are based mainly on the global effectiveness of classroom experiences
[Moskal, Lurie and Cooper, 2004]. Despite the large amount of research that has been
conducted, there is currently no consensus on the most effective ways to learn
programming. As such, beginning programming courses still have high dropout and
failure rates [Mullins and Conlon, 2008].

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

 With these considerations in mind, we begin our research to determine and
elucidate some variables that potentially influence the learning of programming
fundamentals, i.e., the learning of basic programming concepts such as sequences of
sentences that express actions, conditions and repetitions. To do this, we have defined a

set of sources of problems (or domains of problems) areas about which programming
problems are proposed. A source of problems comprises a theme and involves elements
and relationships between them. Algebra is an example of a source of problems that is
commonly used in the learning of programming. In addition, we have developed some

programming languages and compilers, along with Integrated Programming

Environments (IPEs) comprising, among other things, a set of tools used to edit,
compile, run and debug a program.

 Such environments are necessary to investigate experimentally the influence, on
the learning of programming fundamentals, of the following variables, which will be
described in detail in Section 3.2:

− v1: Type of problem source: concrete or abstract;

− v2: Type of programming language grammar: traditional context-free or natural
language like; and

− v3: Distance between concepts in the problem source and the programming
language primitives: close or distant.

 Within this setup, a programming learning environment configuration is a
system comprising the following elements: students, teachers, a single source of
problems, problems, one programming language and one IPE. For simplicity,
considering the focus of this article, we will denote a programming learning
environment configuration as a set of two elements {source of problems, programming
language}, although all of the configurations bear the six types of elements mentioned
above.

 Finally, the learning of programming fundamentals refers to the introductory
learning of the writing of sequences of sentences that express actions, conditions and
repetitions to create programs that solve a problem.

 The remainder of this article is organized as follows. Related work is described
in Section 2. In Section 3, we structure the research, declaring hypotheses about the
effects of the variables in the learning of programming fundamentals, along with the
materials and methods used in the experiments. The results are described in Section 4
and are discussed in Section 5}. In Section 6, we present our conclusions.

2. Related Work

The importance of programming for the modern society and the difficulty of learning
programming fundamentals have motivated the study of this theme from different
perspectives by many research groups. The PPIG (Psychology of Programming Interest
Group) brings together people with different backgrounds to explore common interests
in the psychological aspects of programming [PPIG, 2014]. This group, which is active
since 1987, organizes annual workshops, publishes regular newsletters, and hosts a
discussion list. The SIGCSE (Special Interest Group on Computer Science Education

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

[SIGCSE, 2014]) and SIGITE (Special Interest Group for Information Technology
Education [SIGITE, 2014]) are forums with general interests in computer education
which often schedule exclusive sessions in their meetings to address this issue. Focusing
on the design, implementation, and efficient use of programming languages, the
SIGPLAN (Special Interest Group on Programming Languages [SIGPLAN, 2014]) has
also investigated the difficulties in the learning of programming. Finally, the SIGCHI
(Special Interest Group on Computer-Human Interaction [SIGCHI, 2014]) has dedicated
efforts to understand the human factors that affect the interaction with computer
programming systems.

 Within this context, an environment for learning programming fundamentals is a
system that traditionally involves (1) one or more sources of problems and (2) a
programming language, in addition to students, teachers, and an environment for writing
programs. This work aims to investigate a question about the source of problems, a
question about programming language, and a question about the relationship between
source of problems and programming language.

 The question of the influence of the type of source of problems, concrete or
abstract, is on the agenda of many working groups. The great motivation for this
question lies in Piaget's theory of cognitive development [Piaget and Inhelder, 1972].
This theory suggests that child development moves from the concrete stage to the
abstract stage. In the concrete stage, a child learns about tangible things, which are
directly accessible to their visual, auditory, tactile, and kinesthetic senses. This stage
occurs when the child is approximately 7 to 11 years old. Along the years, the child
develops the ability to understand more abstract concepts, manipulate symbols, logically
reason and generalize over things, moving to the abstract stage. The question then
becomes whether Piaget's theory of cognitive development could be generalized to the
learning of programming fundamentals for undergraduate students and, more
specifically, if this learning should necessarily evolve from concrete to abstract
problems? These are questions which are still in the need for answers.

 Many studies about introductory programming have been proposed to explore
concrete sources of problems: low-cost robot kits (e.g. [Summet et al., 2009;
McWhorter and O’Connor, 2009]), graphical interfaces that simulate robot inhabited
micro-worlds (e.g, [Xinogalos et al., 2006; Pattis, 1995]), image processing (e.g,
[Wicentowski and Newhall, 2005]), computer networks (e.g, [Murtagh, 2007]),
geometrical drawing (e.g, [Kordaki, 2010]), and 3D (e.g, [Mullins and Conlon, 2008;
Moskal et al., 2004}) and 2D (e.g, [Resnick et al., 2009]) multimedia animation. In a
systematic literature review covering 36 papers, Major et al. [Major et al., 2012]
examine the effectiveness of using physical and simulated robots in the learning of
introductory programming. On this matter, the Alice 3 programming environment was
designed to suggest the movement from concrete to abstract: “the teacher can gradually
lead students from the concrete context of animation to abstract data and structures in
Java and a traditional context” [Dann and Cooper, 2009, pp. 29].

 The difficulties imposed by the programming language used in introductory
programming courses is another question that has occupied much space on the agenda of
different research groups. With the premise that learning a context-free formal language
represents a hurdle to the learning of programming fundamentals, many studies propose

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

tools and pedagogical strategies to facilitate this learning: interactive learning objects
(e.g, [Villalobos et al., 2009]), visualization tools for lecture demonstrations and course
assignments (e.g, [Kasurinen et al., 2008]), program representations in a flow-control
diagram (flowchart) (e.g, [Lavonen et al., 2003]), drag-and-drop tools to make it easier
to write programs (e.g, [Esteves, 2008; Klassen, 2006; Mullins and Conlon, 2008]),
and suggestions to solve the problem in English (or native language) first (e.g, [Fidge
and Teague, 2009; Kaplan, 2010]).

 Another line of research proposes to investigate how programming languages
might be designed to facilitate the learning of programming fundamentals. A branch of
this line of research investigates how to close the gap between programming languages
and natural language. Empirical studies (e.g, [Chen et al., 2007; Simon et al., 2006;
Lewandowski et al., 2007]) show that novices exhibit fairly advanced problem-solving
skills when they express the solution in English; however, programming languages
create difficulties for them to express these same skills. HCI (Human Computer
Interaction) knowledge has been used to develop new programming and debugging tools
which enable people to express their ideas in the same way they think about them
[Myers et al., 2004]. Examples of systems developed for experimenting with natural
language programming include the pioneer MIRFAC [Gawlik, 1963], which was
specifically designed for the mathematical formulas domain, NL [Biermann et al.,
1983], which was designed for the tables and matrices domain, and PEGASUS [Knöll
and Mezini, 2006], which is an active project that facilitates programming in German or
English in several domains.

 Although both previously mentioned questions have taken a good deal of space
in the research agenda of many groups, the question about the influence of the distance
between concepts in the source of problems and the programming language primitives is
new. This study differs from existing research in this sense, but mainly because,
methodologically, it proposes to separately investigate the influence of each variable,
described in the previous section, while holding all other variables constant. Languages,
compilers, and integrated programming environments were specially developed for the
set of experiments conducted. A further particularity that differentiates this study is that
it focuses on learning sequences of sentences that express actions, conditions, and
repetitions.

3. Material and Methods

In our experiments, we investigate the isolated influence of the variables v1, v2 and v3 in
the learning of programming fundamentals by students who have no previous
background on this subject. The tested hypotheses were:

− Hypothesis 1: A concrete problem source is better for the learning of
programming fundamentals than an abstract one;

− Hypothesis 2: Programming languages whose grammars are close to the natural
language spoken by the student are better for programming fundamentals
learning than those with traditional grammars; and

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

− Hypothesis 3: Languages whose primitives are close to the concepts in the
problem source favor the learning of programming fundamentals when
compared to languages whose primitives stray from those concepts.

3.1. Programming Learning Environment Configurations

To test the setup hypotheses, we designed four programming learning environment
configurations:

− World of the Robots and MRt Language;

− World of the Robots and MRp Language;

− Small Algebra and Pascalish Language;

− Academic Record Management and Pascalish Language.

Configurations 1 and 2 use the World of the Robots problem source, being different
only in their programming language. Whereas MRt is a language that is a language
defined by a context-free grammar, MRp bases its sentences on Portuguese, therefore a
natural language. Configurations 3 and 4, on the other hand, work on the Small Algebra
and Academic Record management problem sources, respectively, both using Pascalish,
a language based on Pascal (i.e., a language defined by a traditional context-free
grammar), with statements translated to Portuguese.

Amongst all possible combinations for the variables under examination, we constrained
our research to this set of four basic configurations to focus on answering the questions
elicited by the tested hypotheses.

3.1.1. World of the Robots and MRt Language

Folloving Pattis [Pattis, 1995], the World of the Robots comprises a rectangular board
(representing the “world”), robots, walls and disks. This setup leads to create problems
related to the movement and manipulation of objects (disks) in the board, which can
sometimes present some barriers (depicted as walls) to the robot. Figure 1 presents a
screenshot of the World of the Robots. Its IDE includes a graphical editor (which is used
to build scenarios in the World of the Robots, as shown in the figure), a text editor (for
coding the program), compilers and debuggers for the MRt and MRp languages (which
are described in the next sections).

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Figura 1. The IPE of the {World of the Robots, MRt} programming learning

environment

 Through the selection of buttons in the graphical editor's tool bar, the user can
create and delete robots, disks, vertical and horizontal walls. In response to the request
for executing a program, the programming environment shows an animation of the
programmed movements. It is also possible to run programs in debug mode, line by line,
so that their execution can be traced and compared to the corresponding animation in the
World of the Robots.

 Because MRt was designed to accommodate traditional context-free grammar
structures under the imperative paradigm (such as those found in programming
languages like Pascal and C), it allows for the following1:

− Sentences such as MoveForward(r), TurnLeft(r), TakeDisk(r), and DropDisk (r),

which will have the robot r, respectively, move forward, turn left (90°) and take
or drop a disk (at the robot's current position);

− Boolean expressions that can be built from boolean primitives such as
FrontClear(r), OnDisk(r), ThereAreDisksInBag(r), HeadsNorth(r),
HeadsSouth(r), HeadsEast(r) and HeadsWest(r), with the operators and, or and
not. These primitives evaluate to true, respectively, if there is no wall before r
(the robot), if r lies above a disk, if there is at least one disk in r's bag, and if r is
heading (i.e., points toward) north, south, east or west;

− Conditional sentences, such as if FrontClear(r) then MoveForward(r) else

TurnLeft(r), that test whether the space before r is clear and, if so, make the
robot move forward or, otherwise, turn left;

1
 Grammars developed in this study use terms in Portuguese. Aiming to facilitate the reading of this

article, we translated into English the sentences derived from these grammars.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

− Repetition sentences, such as while FrontClear(r) and OnDisk(r) do TakeDisk
(r), which repeats the instruction for the robot r to collect a disk if there is any
left at its position and the space ahead is clear;

− Sets of sentences, grouped together by begin and end delimiters;

− An identification to the program, with the reserved word program; and

− The definition of variables (robots and disks), as in uses list of robot names:
Robot.

 Figure 2 illustrates an initial scenario of the World of the Robots (left) along
with a complete program (right) that was written in MRt to solve the problem of making
a robot r find a disk that is adjacent to a wall.

Figure 2. Example of a complete program written in MRt.

3.1.2. World of the Robots and MRp Language

This configuration differs from the previous one in that MRt is replaced by MRp as the
adopted programming language. The two languages differ in the way that statements are
written: whereas MRt provides a traditional context-free grammar, MRp is based in
Portuguese, a natural language. Figure 3 shows some sample sentences generated by the
MRp grammar.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Figure 3. Sample sentences and clauses in MR

 The body of a program written in MRp comprises a sequence of zero or more
sentences, each ending with a dot. Each sentence comprises one or more clauses, which
are separated by commas or by the conjunction and, as shown in Figure 3-a. Within
MRp, the clauses can be either imperative (Figures 3-b and c), which may or may not
begin with the word make; conditional (Figure 3-d), which are characterized by the
words if, then and, optionally, else; or repetitious (Figure 3-e), which always begins with
the word while. Additionally, clauses always have a subject, which can be made explicit
(as in Figure 3-b) or not (as in Figure 3-c), in which case the subject corresponds to that
of the previous clause (in Figure 3-c, the subject is therefore r).

 Conditions can be plain statements, such as the robot r is heading north, which
semantically evaluates to true if r is pointing north, or more complex structures, which
are built from such statements joined with the words or, and, or not. Figure 4 shows a
sample program, written in MRp, and its corresponding “world”, to solve the same
problem presented in Figure 2. To improve readability, the program is shown in MRp
along with its translation to English

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Figure 4. Example of a complete program written in MRp.

3.1.3. Small Algebra and Pascalish Language

Traditional environments for the learning of programming fundamentals frequently take
Algebra, with its sets, functions, expressions and equations, as their source of problems.
Languages under the imperative paradigm, such as Pascal or C, for example, are
commonly used to implement programs that describe solutions to problems in this
source. For the purposes of this research, we used a subset of Algebra (called Small
Algebra) as our problem source, along with a subset of Pascal, with statements written
in Portuguese, which we call Pascalish, as the programming language to be used when
solving these problems.

 Small Algebra comprehends:

− Sets of integers and floats;

− Constants and variables (also integers and floats); and

− Algebraic expressions, which involve constants, variables and arithmetic (+,$
$-, *, /, mod), boolean (or, and, not) and relational (<, <=, =, <>, >=, >)
operators.

 Pascalish was designed so that its primitives directly reference elements in the
Small Algebra problem source, thereby allowing for constants, variables and
expressions to be used in a way that resembles regular algebraic statements. An example
of a program written in Pascalish is shown in Figure 5. In this figure, the problem to be
solved is that of calculating the amount of even and odd numbers in a list of positive
integers, taken one by one, and whose stop condition is the reading of a negative
number.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Figure 5. Example of a complete program written in Pascalish

3.1.4. Academic Record Management and Pascalish Language

In this programming learning environment configuration, the source of problems is an
adaptation of the academic record management system used in a university in Brazil. As
such, it involves the following concepts:

− Test types (i.e., either short-term, long-term or a general test);

− Individual scores (along with their mean values), obtained by the students in
each test;

− Mean scores obtained by the students in a specific course, considering the
different test types; and

− Class attendance frequencies, obtained by students in a specific course.

 The problems in this learning environment involve calculations such as averages
and frequencies and approvals check. The language used in this configuration is
Pascalish.

3.2. Variables

Table 1 summarizes the investigated variables, their possible values and examples. Each
variable will be treated in detail in what follows.

Table 1. Investigated variables

Variable /

Description

Possible values Examples

v1

Type of source of problems

Concrete 1.World of the Robots

2.Academic Record Management

Abstract 1. Algebra

2. Arithmetic

v2

Type of language grammar

Traditional (context-free

grammar)

1. Pascal, Pascalish

2. MRt

Natural language like 1. MRp

v3

Distance between concepts of
the source of problems and the
programming language
primitives

Close 1. World of the Robots and MRt

2. Small Algebra and Pascalish

Distant 1. World of the Robots and Pascal

2. Academic Record Management
and Pascalish

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

3.2.1. Variable v1 – the Type of Source of Problems

Problem sources can be concrete or abstract. In this article, we consider problem source

to be abstract whenever its elements can be used to refer either to a set of objects and
phenomena in the world or to another set. As such, elements in an abstract problem
source are ideas and abstractions of objects and phenomena in the world. Conversely, a

concrete source of problems is built from elements that keep a direct relation to specific
sets of existing objects and phenomena. Elements in a concrete source of problems are,
thus, specific instances of these objects and phenomena.

 The World of the Robots is an example of a concrete problem source; another
is Academic Record Management. The elements of these sources map directly to their
counterparts in the real world. In contrast, Algebra and Arithmetic are examples of
abstract sources of problems whose elements are generalizations of real-world concepts
and operations (e.g., the concept of an algebraic variable can be used to model both the
temperature of thermodynamic systems and currency in market simulations). In this
research, v1 may take the values of “Abstract” or “Concrete”, depending on whether
the source of problems can be characterized as abstract or concrete, respectively.

3.2.2. Variable v2 – the Type of Language Grammar

Traditional programming language grammars, such as Pascal’s and C’s, differ to a great
extent from those of natural languages. Hence, one might suspect that programming
languages whose structures are closer to a natural language could facilitate the learning
process by native speakers of the language, given the assumed reduction in the cognitive
load during the learning of the grammar.

 We account for this disparity by assigning to the variable v2 the value
“Traditional” whenever the learning environment has a programming language whose
grammar belongs to the context-free class, according to Chomsky's hierarchy [Hopcroft
et al., 2006], which is the case of Pascalish and MRt. Alternatively, by assigning it the
value “Natural language like”, we imply that the programming language grammar lies
much closer to that of a natural language when compared to its “Traditional”
counterpart. An example of such a language is MRp.

3.2.3. Variable v3 – the Distance between Concepts in the Source of Problems and

Programming Language Primitives

One might conjecture that if the semantics and grammar of a programming language
match those of the source of problems, i.e. if the primitives of the language faithfully
describe the concepts in the source, then the effort that is spent in writing programs
might be reduced because strategies for addressing the elements of the source of
problems will be more directly expressed by the structures of the language. This
phenomenon would not occur, for example, in programming languages whose
primitives stray from the concepts presented in the source of problems.

 To test this assumption, we assign to the variable v3 two discrete values, namely,
“Close”, which indicates that the concepts in the source can be directly mapped to
primitives in the programming language, and “Distant”, which is applicable whenever
there is a need to model, translate or simulate these concepts using the language's
primitives. In this research, MRt is an example of a Close-type language for the World

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

of the Robots source of problems because its primitives, such as MoveForward and
TurnLeft, are directly related to the robot's movements. In contrast, the concepts of
World of the Robots would have to be translated into variables, constants and data types
of a language like Pascalish, for example. In this case, we take Pascalish to be a Distant-
type language for the World of the Robots. Other examples include that Pascalish is a
Close-type language for the source of problems Small Algebra, being at the same time a
Distant-type language for the Academic Record Management.

3.3. Participants

Forty-four first-year undergraduate students of a university in Brazil volunteered for the
experiment. Of these, four did not show up for the experiment (i.e. a 9.1 % dropout
rate). Of the remaining 40 participants, 24 (60 %) were male, whereas 16 (40 %) were
female, with 22 (55 %) coming from the exact sciences and 18 (45 %) from the social
sciences. The ages ranged from 17 to 33 years old, with 21 as the mean and 19 as the
median. Additionally, none of the participants had previous knowledge of programming,
as determined by a questionnaire.

3.4. Experimental Setup

We set up four different experimental conditions, each corresponding to a different
programming learning environment configuration, shown in Table 2.

Table 2. Learning environment configurations and variables used in each
experimental condition.

Group Configuration

{source of problems, programming language }

v1 v2 v3

I { World of the Robots, MRt } Concrete Traditional Close

II { Small Algebra, Pascalish } Abstract Traditional Close

III { World of the Robots, MRt } Concrete Natural
language
like

Close

IV {Academic Record Management, Pascalish } Concrete Traditional Distant

 The initial set of participants (i.e. all 44) was randomly distributed among the
experimental conditions. Because four of them dropped out by the time that the
experiment was performed, the number of participants was not the same across the
experimental conditions (the distribution was 11 participants for conditions I, II and III
and 7 for condition IV). Due to time and resource limitations, the experiment was
conducted in two different dates, separated by experimental condition. Hence, groups III
and IV undertook the experiment one week after groups I and II.

 For each of the experimental conditions, the experiment was split into two
phases, designed to take place during the morning (phase 1) and afternoon (phase 2)
periods of the same day, with a one and a half hour break for lunch between them. Phase
1 constituted 3 hours and 30 minutes classes, with one class per experimental condition
and with a 15 minute break halfway through. During the classes, students were

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

introduced to the elements of their experimental condition’s source problem, along with
concepts such as sequence of sentences and sentences of the imperative, conditional and
repetitive type, tailored to each condition’s programming language. Before the 15
minute break, participants took part in an exercise, in which they had to address these
concepts, applying them to the source of problems they were using. During this task, the
teachers interacted with the participants on an individual basis. At the end, a possible
solution was developed and was shown to all the participants.

 The elements of each source of problems, along with sample problems and
programs presented in Phase 1, are shown in Table 3. It is worth mentioning that, before
taking the class, each participant was given a text that described the concepts to be
learned in that class, so that they did not have to worry about taking notes on the entire
lecture; instead, they only wrote down complementary notes as they felt necessary.

 At phase 2, participants had up to two hours to answer a four-question
evaluation test. Each question presented a problem and asked the participant to write a
program to solve it. Tests were carefully elaborated so that questions would be
equivalent across the experimental conditions, with regard to the concepts and skills
necessary to solve the problems. Hence, for each experimental condition:

− Question 1 evaluated the use of sequences of imperative sentences;

− Question 2 evaluated the use of conditional sentences;

− Question 3 evaluated the use of repetitive sentences

− Question 4 evaluated the use of imperative, conditional and repetitive sentences
altogether.

Table 3. Elements of the source of problems and program samples presented at
phase 1 to each group

Group Elements of the source

of problems

Sample problem Sample program

I Robots, walls and
disks.

Write a program to make
the robot r turn left and
take disks as many times
as the quantity of disks
that are placed under its
position.

programa Girar;

usa r: Robô;

início

enquanto EstáSobreDisco (r) faça

início
 GirarEsquerda (r);
 PegarDisco (r)

fim

fim.

II Integer and real
variables.

Write a program to sum
the first n positive
integers.

programa SomaInteiros;

var n, i, soma: inteiro;

início
 Leia (n); i := 1; soma := 0;

 enquanto i <= n faça

 início
 soma := soma + i;
 i := i + 1

 fim;
 Escrever (soma)

fim.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

III Robots, walls and
disks.

Write a program to make
the robot r turn left and
take disks as many times
as the quantity of disks
that are placed under its
position.

programa Girar.
Usa Robô r.

início

 Enquanto r estiver sobre um disco, faça
ele girar à esquerda e pegar um disco.

fim.

IV Scores, means,
frequencies and test
types.

Write a program that, for
each student in a
discipline, reads the
number of classes that he
attended and outputs the
student’s frequency.
First, the program must
read the number of
students and classes in a
discipline.

programa Frequências.

var aulas, presenças, n: inteiro;
 frequência: real;

início
 Leia (aulas); Leia (n); i := 1;

 enquanto i <= n faça

 início
 Leia (presenças);
 frequência :=100*(presenças/aulas);
 Escreva (frequência)

 fim
fim.

 The questions presented in each experimental condition can be found in Table
4. The answers were separately analyzed by two of the authors, who assigned them a
score from 0 to 5. The evaluators discussed disagreements on the scores until agreement
was reached.

Table 4. Questions presented to each group at Phase 2

Question What was

evaluated?

Could be answered

with

Question description

1 The use of a
sequence of
imperative
sentences.

A sequence of
imperative
sentences.

Groups I and III

Write a program to signal a path with disks. The
left figure presents an initial configuration in the
World of the Robots and the right figure the final
configuration that must be reached after executing
the program.

Group II

Write a program that reads the number of sides in
a regular polygon, along with each side’s length,
and calculates its perimeter.

Group IV
Write a program to calculate the overall mean M
of a student’s scores from the mean in short-term
(C), long-term (L) and general (G) tests. (At this
point, an extra text reminded the student thatM =
0.1 C + 0.7 L + 0.2 G).

2 The use of Conditional Groups I and III

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

conditional
sentences.

sentences, nested or
not.

Write a program that makes the robot r point
north. You do not know the initial configuration of
the robot in the World, in other words, you do not
know whether the robot is currently pointing
north, south, east or west.

Group II

Given a second degree equation Ax2 + Bx + C = 0,
it has 1, 2 or 0 real roots depending on whether the
result of B2 – 4AC is zero, positive or negative,
respectively. Write down a program that reads the
values A, B and C and informs how many roots
the equation has.

Group IV

Write a program that takes as input the mean score
of a student, the number of classes that he missed
and the number of classes presented in the
discipline. The program should inform whether the
student has passed the exam, failed to attend the
classes, or must undertake the final exam (an extra
text describes the adopted criteria for approval).

3 The use of
repetition
sentences.

A repetition of
imperative
sentences.

Groups I and III

Write a program to make the robot r take all disks
in a line situated before it until it reaches a wall.
The figures show a possible starting (left) and final
(right) condition. These figures are only an
example. Your program must work for lines with
an undetermined number of disks.

Group II

Write a program to calculate the sum of the n first
even numbers that are higher or equal to 2. Hence,
for example, if n is 5, then the program must
calculate the sum of 2, 4, 6, 8 and 10
(2+4+6+8+10).

Group IV

Given 3 scores for the long-term tests of each of
the n students in an Introduction to Philosophy
course, write a program to calculate and inform
the mean score of each student in the long-term
tests.

4 The combined
use of imperative,
conditional and
repetition

A repetition of a
condition with
imperative
sentences.

Groups I and III

Write a program to make the robot r jump over
barriers such as those in the figure until it finds a
disk. Again, this figure is merely illustrative. Your

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

sentences. program must address an undetermined number of
barriers with unknown positions. The barriers are
always equal in size to those indicated in the
figure.

Group II

Write a program that reads a number of positive
integers (until the input number is -1) and
calculates the number of odd and even numbers
that were read. The number -1 must not be
accounted for in the result.

Group IV

Write a program to read the students’ final mean
score and to inform the number of students whose
mean is under 5, along with the number of
students with a mean of 5 or more. The end of the
input is indicated by a -1 score. This score must
not be accounted for when calculating the result.

4. Results

Table 5 shows the test results for each group. Groups I and II have the same value for
variables v2 and v3. The difference between them is the value of the variable v1, i.e. the
source of problems. While Group I used a concrete source of problems, Group II deald
with an abstract one. The mean obtained by Group I (3.98) is higher than that obtained
by the Group II (3.08). However, this result is not statistically significant (W = 83.5, p =
0.14)2. As such, Hypothesis 1 could not be confirmed (cf. [Oliveira et al., 2011]).

Table 5. The results for all four experimental conditions

Group Learning environment configuration

{ source of problems, programming language }

Values of the variables

(v1, v2, v3)

Mean

0 to 5

SD

I { World of the Robots, MRt } (Concrete, Traditional, Close) 3,98 0.82

II { Small Algebra, Pascalish } (Abstract, Traditional, Close) 3,08 1.35

III { World of the Robots, MRt } (Concrete, Natural language like,
Close)

3,91 0.79

IV { Academic Record Management, Pascalish } (Concrete, Traditional, Distant) 1,93 1.08

2
 Since the data seem not to follow a normal distribution, we decided to use Wilcoxon-Mann-Whitney

non-parametric test.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

 The experiments with Groups I and III differ only by the value of the variable v2,
i.e. the type of language grammar used. While Group I used a traditional context-free
grammar, Group III used a natural language like grammar. In this case, both means were
almost identical (3.98 and 3.91, respectively), which, thereby, does not confirm
Hypothesis 2 either (W = 67.5, p = 0.67).

 Finally, the value of the variable v2 is the only difference between Groups I and
IV. While Group I used a language with primitives close to the problem source
concepts, Group IV used a Distant-type language. We noticed a better performance by
the first group. This result was statistically significant (W = 73, p = 0.002), which
confirms Hypothesis 3.

5. Discussion

Our results show, for the studied population, that:

− There is no significant evidence to support that the type of source of problems
(either concrete or abstract), or the type of language grammar (either traditional
or natural language like), affect the learning of programming fundamentals; and

− Languages whose primitives are close to the problem source concepts favor the
learning of programming fundamentals when compared to languages whose
primitives stray from these concepts.

 The question of the type of problem source (whether concrete or abstract) has
occupied many research agendas. As an alternative to an abstract source of problems,
such as Algebra, many educators and researchers proposed a concrete one for
introductory programming course. However, the experiences reported are contradictory
regarding the effectiveness of using a concrete source of problems in the learning of
programming fundamentals.

 Take Alice, for example, which is an environment for learning programming
fundamentals [Dann and Cooper, 2009; Moskal et al., 2004; Mullins and Conlon, 2008]
that has established, as one of its design principles, a concrete source of problems
through the animation of objects and 3-D characters. While Moskal et al. (2004)
reported improvements in student performance; Cliburn (2008) discourages the use of
Alice in introductory courses.

 Robot kits or computer-simulated robots also have been used to create a concrete
source of problems for an introduction to programming. Here too, reported experiments
are divergent. While Xinogalos et al. (2006) evaluate their system as an effective tool
for teaching novice programmers; others report that these systems have little or no effect
whatsoever on motivation [McWhorter and O’Connor, 2009] and students' performance
[Summet et al., 2009].

 We understand that our results are consistent with the divergences that are
highlighted in the literature. Because we observed no evidence that the type of source of
problems affects the learning of programming fundamentals, it is acceptable that
different practical experiences and research have led to contradictory results. We
conjecture that other variables have led sometimes to positive experiences and, at other
times, to negative ones, in relation to students' performances.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

 The learning of a traditional context-free programming language grammar also
has occupied research agendas. Fidge and Teague (2009) conjecture that the effort to
learn a traditional programming language drives the student's focus away from the logic
that defines the solution to the problems. Thus, some studies try to identify what
language structures are natural for beginners (e.g. [Pane et al., 2001]), while other aim at
facilitating the assimilation of the programming language grammar through Interactive
Learning Objects (e.g. [Villalobos et al., 2009]), animations of program execution (e.g.
[Hundhausen, 2002; Levy et al., 2003]), use of visual programming languages (e.g.
[Navarro-Prieto and nas, 2001; Lavonen et al., 2003]), use of dragging-and-dropping
blocks of sentences (e.g. [Resnick et al., 2009]), pair programming (e.g. [Hanks, 2008})
and even the use of auditory cues to enhance program comprehension (e.g. [Stefik et al.,
2011]).

 Our results show that the use of natural language for the learning of
programming fundamentals is an alternative, no better or worse, to the use of
programming languages based on traditional context-free grammars. This alternative is
attractive because it means that is not necessary to learn a traditional programming
language to learn programming fundamentals, and thus, it brings comfort to the learner
and the teacher. This result does not contradict or disqualify the work that has focused
on facilitating the learning of a traditional programming language. At some time, the
student should be exposed to a traditional context-free programming language, but this
exposure can be facilitated if the student is already aware of the programming
fundamentals.

 The relevance and complexity of learning programming fundamentals has
motivated research on a wide variety of phenomena that are associated with this subject.
Even so, the literature has not reported practices or research findings on the effect of the
relationship between the distance of the primitives of programming languages and the
concepts in the source of problems. We believe that this work is the first to make this
effect explicit.

6. Conclusions

Traditionally, research on the learning of programming fundamentals is focused on
investigating the global effectiveness of learning environments. This work differs from
traditional research mainly because it makes the identification and isolated investigation
of variables that are present in environments for learning programming fundamentals.
We accomplished this goal for three variables. In future studies, other important
variables can be investigated such as, for example: (1) the students' prior knowledge
about a source of problems, (2) the motivation of students to solve problems of a
specific source, (3) the usefulness of an integrated programming environment for
writing, grammatical checking, execution and debugging of a program, and (4) gender.

 Our results about the type of source of problems, the type of the programming
language grammar and the relationships between the primitives of the programming
language and the concepts present in the source of problems can be directly used by
educators when designing educational environments, tools and instructional material for
learning programming fundamentals.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

We should note, too, that experiments that involve a larger population are important to
ensure the generality of our results.

References

Biermann, A. W., Ballard, B. W., Sigmon, A. H. (1983) An experimental study of
natural language programming, International Journal of Man-Machine Studies 18, p.
71–87.

Chen, T,, Xavier, G. L., McCartney, R., Sanders, K., Simon, B. (2007) Commonsense
Computing: using student sorting abilities to improve instruction, In: SIGCSE’2007:
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education, ACM Press, New York, NY, USA, p. 276-280.

Cliburn, D. C. (2008). Student opinions of Alice in CS1, In: FIE’2008: Proceedings of
the 38th ASEE/IEEE Frontiers in Education Conference, IEEE Computer Society
Press, Los Alamitos, CA, USA, p. T3B1–T3B6.

Dann, W., Cooper, S. (2009) Alice 3: concrete to abstract, Communications of the
ACM 52(8), p. 27–29.

Devey, A., Carbone, A. (2011) Helping first year novice programming students PASS,
In: ACE’2011: Proceedings of the Thirteenth Australasian Computing Education
Conference, Australian Computer Society, Inc, Perth, Australia, p. 135-144.

Esteves, M. (2008) Contextualization of programming learning: a virtual environment
study, In: FIE’2008 Frontiers in Education Conference, 22-25 October 2008,
Proceedings of the 38th ASEE/IEEE Frontiers in Education Conference, New York:
IEEE Publisher, p. F2A17-F2A22.

Fidge, C., Teague, D. (2009) Losing their marbles: syntax-free programming for
assessing problem-solving skills, In: ACE’2009: Proceedings of the 11th
Australasian Computing Education Conference, Australian Computer Society, Inc.,
Wellington, New Zeland, p. 75–82.

García-Mateos, G., Fernández-Alemán, J. L. (2009) A course on algorithms and data
structures using on-line judging, ACM SIGCSE Bulletin 41(3), p. 45–49.

Gawlik, H. J., 1963. MIRFAC: A compiler based on standard mathematical notation and
plain english. Communications of the ACM 6(9), 545–547.

Guzdial, M., Soloway, E. (2002) Teaching the Nintendo generation to program,
Communications of the ACM 45(4), p. 17–21.

Hanks, B. (2008) Empirical evaluation of distributed pair programming, International
Journal of Human-Computer Studies 66, p. 530–544.

Hopcroft, J. E., Motwani, R., Ullman, J. D. Introduction to automata theory, languages,
and computation, 3rd ed. Addison-Wesley Longman Publishing, 2006.

Hundhausen, C. D. (2002) Integrating algorithm visualization technology into an
undergraduate algorithms course: ethnographic studies of a social constructivist
approach, Computers & Education 39 (3), p. 237–260.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Kaplan, R. M. (2010) Teaching novice programmers programming wisdom, In:
PPIG’2010: Proceedings of the 20th Workshop of Psychology of Programming
Interest Group, Madrid, Spain, p. 1–8.

Kasurinen, J., Purmonen, M., Nikula, U. (2008) A study of visualization in introductory
programming, In: PPIG’2008: Proceedings of the 22th Workshop of Psychology of
Programming Interest Group, Lancaster, UK, p. 1–14.

Klassen, M. (2006) Visual approach for teaching programming concepts, In:
ICEE’2006: Proceedings of the 9th International Conference on Engineering
Education, p. TIA 1– TIA 6.

Knöll, R., Mezini, M. (2006) Pegasus – First steps toward a naturalistic programming
language, In: OOPSLA’2006: Proceedings of the 21st Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Application, ACM Press,
New York, NY, USA, p. 542–559.

Kordaki. M. (2010) A drawing and multi-representational computer environment for
beginners’ learning of programming using C: design and pilot formative evaluation,
Computers & Education, 54(1), p. 69–87.

Lavonen, J. M., Meisalo, V. P., Lattu, M., Sutinen, E. (2003) Concretizing the
programming task: a case study in a secondary school, Computers & Education
40(2), p. 115–135.

Levy, R. B., Ben-Aria, M., Uronen, P. A. (2003) The Jeliot 2000 program animation
system, Computers & Education 40(1), p. 1–15.

Lewandowski, G., Bouvier D, J., McCartney, R., Sanders, K., Simon B. (2007)
Commonsense computing (episode 3): concurrency and concert tickets. In:
Proceedings of the Third International Workshop on Computing Education Research
(ICER 2007). Atlanta, GA, USA, p. 133–144.

Major, L., Kyriacou, T., Brereton, P. (2012) Teaching novices programming using a
robot simulator: Case Study Protocol, In: PPIG’2012: Proceedings of the 24th
Workshop of Psychology of Programming Interest Group, London, UK, p. 1–12.

McWhorter, W., O’Connor, B. (2009) Do LEGO® Mindstorms® motivate students in
CS1?, In: SIGCSE’2009: Proceedings of the 40th ACM Technical Symposium on
Computer Science Education, ACM Press, New York, NY, USA, p. 438–442.

Moskal, B., Lurie, D., Cooper, S. (2004) Evaluating the effectiveness of a new
instructional approach, In: SIGCSE’2004: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, ACM Press, New York,
NY, USA, p. 75–79.

Mullins, P. M., Conlon, M. (2008) Engaging students in programming fundamentals
using Alice 2.0, In: SIGITE’2008: Proceedings of the 9th ACM SIGITE Conference
on Information Technology Education, ACM Press, New York, NY, USA, p. 81–88.

Murtagh, T. P. (2007) Weaving CS into CS1: A doubly depth first approach, In:
SIGCSE’2007: Proceedings of the 38th SIGCSE Technical Symposium on Computer
Science Education, ACM Press, New York, NY, USA, p. 336–340.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Myers, B. A., Pane, J. F., Ko, A. (2004) Natural programming languages and
environments, Communications of the ACM, 47(9), p. 47–52.

Navarro-Prieto, R., Cañas, J. J. (2001) Are visual programming languages better? The
role of imagery in program comprehension, International Journal of Human-
Computer Studies 54, p. 799 –829.

Oliveira, O. L., Monteiro, A. M., Roman, N. T. (2011) From concrete to abstract?:
problem domain in the learning of introductory programming, In: ITiCSE’2011:
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, ACM Press, New York, NY, USA, p. 173–177.

Pane, J. F., Ratanamahatana, C. A., Myers, B. A. (2001) Studying the language and
structure in non-programmers’ solutions to programming problems, International
Journal of Human-Computer Studies 54, p. 237–264.

Pattis, R., E. Karel the robot: a gentle introduction to the art of programming, 2nd ed.,
John Wiley & Sons, New York, 1995.

Piaget, J., Inhelder, B. The psychology of the child, Basic Books, New York, USA,
1972.

PPIG (2014) Psychology of Programming Interest Group, http://www.ppig.org,
December 2014.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E. Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y. (2009) Scratch:
programming for all, Communications of the ACM 52(11), p. 60–67.

SIGCHI (2014) ACM Special Interest Group on Computer-Human Interaction,
http://www.sigchi.org, December 2014.

SIGCSE (2014). ACM Special Interest Group on Computer Science Education,
http://www.sigcse.org, December 2014.

SIGITE (2014) ACM Special Interest Group for Information Technology Education,
http://test.sigite.hosting.acm.org/, December 2014.

SIGPLAN, 2013. ACM Special Interest Group on Programming Languages home page,
http://www.sigplan.org , December 2014.

Simon, B., Chen, T., Xavier, G. L., McCartney, R., Sanders, K. (2006) Commonsense
computing: what students know before we teach (episode 1: sorting), In: ICER’2006:
Proceedings of the 2006 International Workshop on Computing Education Research,
ACM Press, New York, NY, USA, p. 29–40.

Stefik, A., Hundhausen, C., Patterson, R. (2011) An empirical investigation into the
design of auditory cues to enhance computer program comprehension, International
Journal of Human-Computer Studies 69, p. 820–838.

Summet, J., Kumar, D., O'Hara, K., Walker, D., Ni, L., Blank, D., Balch, T. (2009)
Personalizing CS1 with robots, ACM SIGCSE Bulletin 41(1), p. 433–437.

Villalobos, J. A., Calderon, N. A., Jiménez, C. H. (2009) Developing programming
skills by using interactive learning objects, ACM SIGCSE Bulletin 41(3), p. 151–
155.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

Wicentowski, R., Newhall, T. (2005) Using image processing projects to teach CS1
topics, In: SIGCSE’ 2005: Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education, ACM Press, New York, NY, USA, p. 287–191.

Xinogalos, S., Satratzemi, M., Dagdilelis, V. (2006) An introduction to object-oriented
programming with a didactic microworld: objectKarel, Computers & Education
47(2), p. 148–171.

Sean
Texto digitado
OLIVEIRA, O. L.; MONTEIRO, A. M.; ROMAN, N. T.
Programming fundamentals and human factors: an empirical study of three variables
iSys - Revista Brasileira de Sistemas de Informação, Rio de Janeiro, vol. 8, No. 1, p. 102-124, 2015.

