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Abstract. Investing in the stock market is a complex process due to its high
volatility caused by factors as exchange rates, political events, inflation and the
market history. To support investor’s decisions, the prediction of future stock
price and economic metrics is valuable. With the hypothesis that there is a re-
lation among investment performance indicators, the goal of this paper was ex-
ploring multi-target regression (MTR) methods to estimate 6 different indicators
and finding out the method that would best suit in an automated prediction tool
for decision support regarding predictive performance. The experiments were
based on 4 datasets, corresponding to 4 different time periods, composed of
63 combinations of weights of stock-picking concepts each, simulated in the US
stock market. We compared traditional machine learning approaches with seven
state-of-the-art MTR solutions: Stacked Single Target, Ensemble of Regressor
Chains, Deep Structure for Tracking Asynchronous Regressor Stacking, Deep
Regressor Stacking, Multi-output Tree Chaining, Multi-target Augment Stacking
and Multi-output Random Forest (MORF). With the exception of MORF, tradi-
tional approaches and the MTR methods were evaluated with Extreme Gradient
Boosting, Random Forest and Support Vector Machine regressors. By means of
extensive experimental evaluation, our results showed that the most recent MTR
solutions can achieve suitable predictive performance, improving all the sce-
narios (14.70% in the best one, considering all target variables and periods). In
this sense, MTR is a proper strategy for building stock market decision support
system based on prediction models.

Keywords. Stock market; Multi-target regression; Decision support system; Machine Learning

1. Introduction
The prediction of stock market is a very challenging task because it is affected by several
macro-economic factors, for instance exchange rates, political events, recession or expan-
sion periods, and investor’s expectations [Atsalakis and Valavanis 2009, Hu et al. 2017].
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Other factors that usually influence this volatility are inflation, interest rates, rising bond
yields and the stock market itself, since it can be overheated1.

When making a decision, the stock price is not the main information source, so
that investors consider parameters that give information on return rates and the associated
risks, such as price to book value ratio, dividend-price ratio, return on investment, return
on equities and systematic risk [Roko and Gilli 2008,Basu 1977,Liu and Yeh 2017,Bruni
2017]. The use of decision support tools in stock trading is also helpful. These tools, as
Kvout2 and Trade Ideas3, are becoming more sophisticated as they use artificial intelli-
gence to improve the prediction of investments performance.

In fact, many computational intelligence (CI) and machine learning (ML) algo-
rithms tried to address stock forecast problem: artificial neural networks (ANNs), lin-
ear and multi-linear regression (LR, MLR), support vector machine (SVM), autoregres-
sive moving average (ARMA) and autoregressive integrated moving average (ARIMA)
models, genetic algorithms (GAs), random forest (RF) and random walk (RW) to name
some [Atsalakis and Valavanis 2009,Bahrammirzaee 2010,Khaidem et al. 2016,Hu et al.
2017]. In these works, the prediction of the stock market price or economic properties
were done by building ML solutions which deals with a single response or output, i.e., a
single-target (ST) approach. Besides, as the stock market outcomes are continuous values,
the related ML problems are called regression tasks [Kocev et al. 2013].

Until now, most of the existing decision support systems modelled the stock mar-
ket performance indicators as separated ST problems. Multi-target regression (MTR),
however, is a research field of ML that deals with predictive problems which present
multiple continuous outputs or responses, and could be better explored in stock predic-
tion problem. In these tasks, the targets may present underlying inter-dependencies, in-
fluencing and being influenced among themselves [Kocev et al. 2013, Borchani et al.
2015, Spyromitros-Xioufis et al. 2016]. Therefore, MTR aims at modelling not only the
input to output relationships in a predictive problem, but also the inter-output relation-
ships.

Many MTR methods with noticeable performance were created in last few years
and have not been used yet to predict performance indicators of a stock portfolio. Our hy-
pothesis is that the multiple stock market performance indicators may present underlying
relationships among themselves. Since different performance indicators share the same
explaining features, they can be modelled as an MTR problem. In this sense, a regression
model for a performance indicator could use information of other outcomes to yield better
predictions and compose a more reliable decision support tool.

Figure 1 presents an overview of two prediction methods: single-target and multi-
target. This kind of prediction method composes a decision support tool in extracting
knowledge from stock-picking concepts as a potential aid to the decision making of an

1CNNMoney (New York) (2018, February 12). How to handle stock market volatility and keep your
retirement plan in check. CNN Money. Retrieved from http://money.cnn.com/2018/02/12/
pf/applenews-stock-market-dow-down/index.html. [Accessed: 25th February 2018]

2www.kavout.com
3www.trade-ideas.com
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investor.

Figure 1. Decision Support Tool from stock market investor, comparing single-target and
multi-target prediction kernels.

This paper is an extension of the work of [Silva et al. 2018], whose goal was
proposing a kernel to decision support tool based on MTR to predict performance indi-
cators of stock market, showing that this approach can generate an accurate model due
to the inter-target influence in this model. This work aims at obtaining the method that
would result in the best prediction performance for the given problem. In this way, we
extend the previous work in the following main aspects:

• Three other MTR methods (DRS, MOTC and MTAS) were added in the discus-
sion, as well as another regressor (XGBoost);

• Other metrics and methods were adopted to investigate inter-target correlation and
to analyse the results;

• The percentage of error reduction and critical difference diagrams were extended
for all regressors instead of showing only for SVM;

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



8

• Discussion on complexity was also added.

The work is organized as follows: Section 2 presents related works, Section 3
describes the experimental setup, Section 4 reports the results and their analysis, followed
by Section 5, that concludes the work.

2. Related Works
Machine learning algorithms have been vastly used in the literature to predict stock market
characteristics. [Roko and Gilli 2008], for example, used classification trees improved by
bootstrap aggregation to predict assets which achieve future returns above the average.
According to the authors, the performance of these portfolios are significantly superior to
recorded indexes.

However, the most common problems deal with continuous responses, implying
in regression models. [Patel et al. 2015] used ANNs, SVM, RF and Naive-Bayes to pre-
dict the direction of movement of stock and stock price index for Indian stock markets and
compared technical parameters such as Relative Strength Index, Momentum, Accumula-
tion/Distribution Oscillator and Commodity Channel Index with a discretization as input
data resulted in higher accuracy than using open, high, low and close prices continuous
parameters.

[Hu et al. 2017] applied sharp ratio, a profit metric, to tune support vector regres-
sion models in stock index forecasting. The results showed that profit guided stock index
forecasting is competitive and is able to produce significantly better performances than
statistical error guided models.

[Liu and Yeh 2017] proposed the use of mixture design, a kind of design of
experiment which the independent factors are used in different proportions, and ANN to
build models in order to optimize weighted scoring stock selection. They found out useful
models for investors to search for the optimal investment strategies to meet their specific
preferences.

When it comes to MTR applied to stock forecasting, [Xiong et al. 2014] used
Multiple-output support vector regression with a firefly algorithm to estimate the lower
and upper values of stock price index, resulting in a promising alternative for forecasting
interval-valued financial time series.

Multi-target regression intends to simultaneously predict multiple continuous vari-
ables in a common set of inputs. Furthermore, MTR provides a more appropriate inter-
pretability of real life problems since it takes the relationship between the targets into
consideration. The prediction of MT tasks had, commonly, been made through two base
approaches: algorithm adaptation and problem transformation [Borchani et al. 2015].
[Kocev et al. 2013] denotes the same strategies as global and local approaches, respec-
tively.

Algorithm adaptation (global) approach provides challenge, since it does not only
aim at dealing with multiple targets by changing a well known ST regression technique,
but also the investigation, modelling and interpretation of the possible relations between
the problem output variables. Through refinement methods as node splitting regression

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
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trees [Kocev et al. 2007] and optimization functions (SVMs) [Borchani et al. 2015],
this approach leads to alteration in the original technique. Although complex, algorithm
adaptation methods have reached satisfactory prediction performances, along with the
generation of unique models and target correlation exploration [Aho et al. 2012, Kocev
et al. 2007, Kocev et al. 2013, Borchani et al. 2015].

Problem transformation (local), the latter approach, consists of data manipulation
and regression techniques as a means of simultaneously predicting separated ST prob-
lems. Even though building separate models for each instance leads to ignoring the
relationship between targets, this method may, sometimes, provide superior predictive
performance and it was used as a baseline method in multiple MTR works [Aho et al.
2012, Borchani et al. 2015, Spyromitros-Xioufis et al. 2016, Mastelini et al. 2017]. Nev-
ertheless, an MTR approach carries more potential on the quality of predictions due to
target dependence exploration.

Throughout the years, some problem transformation methods were created, aim-
ing at exploring inter-target dependencies through the employment of multiple ST regres-
sors [Tsoumakas et al. 2014, Borchani et al. 2015, Spyromitros-Xioufis et al. 2016, San-
tana et al. 2017, Moyano et al. 2017, Melki et al. 2017, Mastelini et al. 2017]. Among
them, some multi-label classification (MLC) methods were adapted to MTR. As pro-
posed in [Spyromitros-Xioufis et al. 2016], two relevant methods, inspired by the MLC
research area, came to fruition: SST (Stacked Single-Target) and ERC (Ensemble of Re-
gressor Chains). They also influenced some posterior researches in MTR [Santana et al.
2017, Moyano et al. 2017, Melki et al. 2017, Mastelini et al. 2017]. To the best of
our knowledge, problem transformation multi-target methods were never used to predict
performance indicators of a stock portfolio.

The SST method consists of two major steps. It begins by training separate d base
ST models, where d represents the number of targets. However, the important part lies
within the second stage, where instead of directly using these models for prediction, the
method employs their predictions as new inputs and performs an additional training step
for each target, thus generating dmeta-models. The employment of predictions from base
models as new inputs for meta models is called stacking, which is also employed in ST
problems as a strategy for combining different predictors in ensembles [Wolpert 1992]. In
essence, SST implements the idea of correcting the predictions acquired throughout the
first stage, thus increasing the task’s description capability and the prediction performance
with the insertion and exploration of target correlations.

The ERC method makes use of target chains, which are randomly chosen to form
a set. By following the chain sequence, ST regression models are formed for each target,
and then trained following the order of the sequence. The method creates new datasets
with the combination of the native variables and the predictions of the last models. After
repeating this process for the whole chain sequence, the training is done. New instances
shall be directed to the set of chains. Then, generating the average result of the predicted y
values should return the final prediction for the y target. Permutation is an important part
of the whole process. ERC makes use of all target combinations, as long as the number of
total permutations is equal to or less than 10. If that is not the case, then 10 combinations

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
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are selected.

Deep Structure for Tracking Asynchronous Regressor Stacking (DSTARS) was
recently proposed by [Mastelini et al. 2017] as an extension to the original SST idea. The
authors proposed the employment of multiple steps of regressor stacking for each target
in a dynamic way. Their hypothesis is that the addition of more stacked regressors could
decrease the prediction error of the most dependent targets. In this sense, differently from
the previous methods, DSTARS considers multiple levels of inter-target dependencies
explicitly. The authors reported superior results than the SST and ERC methods in MTR
benchmarking problems.

Another extension to the SST approach was proposed by [Santana et al. 2017],
named Deep Regressor Stacking (DRS). The authors employed a deep learning strategy
to MTR problems by implementing multiple iterations of base and meta models training.
In their approach, the meta models act as base models for the next stacking stage. In
this sense, at each stacking round d features are added to the original input set, being used
along with the previously created ones for training new meta models. This process repeats
until no error decrease is observed in a validation set or a maximum iteration criteria is
reached. DRS calculates which target generated the smallest errors among all outputs,
and removes this response from the deep stacking procedure, adding it as a fixed element
of the input set. The final responses for the chosen target comprehend the outputs of the
last trained meta model, using stacked features from multiple base models. The deep
procedure repeats for the remaining d − 1 targets, until all responses are assessed. DRS
was evaluated in some scenarios achieving the smallest errors in multiple cases [Santana
et al. 2017, Santana et al. 2018], at the cost of being a very computationally expensive
method.

The Multi-output Tree Chaining (MOTC) [Mastelini et al. 2018] method was pro-
posed as an extension to the ERC approach, which, instead of randomly defining target
orders (as in ERC), employs heuristics (a correlation measurement metric and a statistical
bound to rank target relevance) to build a tree structure to represent inter-target dependen-
cies. These trees are called Chaining Trees (CT) and they also represent the strategy in
which the regressors are going to be created: the process start from the leaves up to the
root; the inner nodes employ the predictions of their descendent’s regressors as additional
features. As stated by the authors, by using the mentioned strategies, MOTC reaches pre-
diction errors very similar to ERC, whereas being more time and memory conservative.
In addition, the CTs offer clues about how the targets interact and influence each other. In
their work the authors also reported an unified graph compression of the obtained CTs as
means of viewing the chains of dependence among all targets. This strategy is also going
to be used in this work.

[Santana et al. 2018] proposed the Multi-target Augment Stacking method as
an application of the traditional ST stacking ensemble approach in MTR problems. In
their method, an arbitrary number of regression techniques are used to generate the base
models, instead of just one as in SST. After, predictions from all base models are added
as new inputs, aiming at exploring increased variability and bias for the new features
and, thus, decrease prediction error. Additionally, MTAS applies a filtering step where
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the inter-dependencies among the outputs are measured via a correlation metric (similar
to MOTC). Based on this measurement, only the predictions of outputs that influence
the current target are added as new features. The authors applied their method in a food
quality evaluation problem, but also validated their approach in benchmarking datasets,
achieving competitive results to other methods.

The Multi-output Random Forest (MORF) method [Kocev et al. 2007,Kocev et al.
2013] is an extension to the original RF formulation and represents an algorithm adapta-
tion (global) method. Instead of using regular regression tree algorithms [Breiman et al.
1984, Breiman 2001], MORF employs Predictive Clustering Trees (PCT), which were
proposed by [Blockeel et al. 1998]. PCTs create at each data partition clusters contain-
ing all instances which match the evaluated decisions made. The root node corresponds
to the cluster containing all the training instances. PCT can be seen as a generalisation
of traditional decision tree algorithms. The PCTs which compose MORF are grown by
creating clusters which aim at minimising the intra-cluster variances, while increasing the
inter-cluster variance. The predictions made for each target correspond to the average
of all instances which lie in the considered leaf node. MORF was employed in multiple
MTR works [Aho et al. 2012, Borchani et al. 2015, Spyromitros-Xioufis et al. 2016] as a
comparison method in past years, and it was also used in our experiments.

The asymptotic time complexity of the methods are summarised in Table 1, where
d represents the number of targets, m the number of features, N the number of training
instances, b the time complexity of the chosen regression algorithm (which depends on
N and tends to vary in DRS due to increases in m), r the cost to calculate the chosen
importance metric for one of the responses, ζ the total number of nodes in the chaining
tree, k the number of partitions of cross-validation, L the number of layers, and t the
number of trees in MORF. In the case of MTAS, the complexity of the multiple base
regressors employed are represented by b1, b2, ..., bz.

Table 1. Asymptotic time complexity of the methods.
Method Complexity Author

ST O(d b) -
SST O(2 d b) [Spyromitros-Xioufis et al. 2016]
ERC O(10 d b) [Spyromitros-Xioufis et al. 2016]
DRS O((k + 1)Ld b) [Santana et al. 2017]

DSTARS O(d [r + 2L b]) [Mastelini et al. 2017]
MOTC O(ζ b) [Mastelini et al. 2018]
MTAS O(d (b1 + b2 + ...+ bz + 2 b)) [Santana et al. 2018]
MORF O(tmN(log2N + d logN)) [Kocev et al. 2013]

Among the evaluated methods, ST, SST, MORF and MOTC can be considered the
most lightweight ones. The global method, MORF, indeed is less costly than the local
ones. The local methods depend on the choice of the regression techniques to define their
definitive costs. In the case of MTAS, multiple techniques can be used, which increases its
costs when compared with SST. ERC and MOTC do not differ in their complexity mag-
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nitude order, but as empirically demonstrated by MOTC’s authors [Mastelini et al. 2018],
their method expends less regressors than ERC, being consequently, lighter than the latter.
DRS was the most costly evaluated method, since it uses a deep learning strategy, as pre-
viously mentioned. DSTARS, by using the chosen set of hyperparameters, presents a cost
superior to SST but lesser than DRS’s, representing a balanced option to deep exploration
of stacked regressors and the employment of a single round of stacking.

3. Experimental Setup
This section presents the datasets used in this work, as well as the chosen regression
techniques and evaluation metrics.

3.1. Datasets

The datasets adopted in this work were based on simulations with Standard and Poor’s
Compustat US database in four periods from 1990 to 2010: the first from September of
1990 to June of 1995, the second from September of 1995 to June of 2000, the third from
September of 2000 to June of 2005 and the fourth from September of 2005 to June of
2010. Each of these periods consists of 63 different weighting combinations, selected
from the top 10% overall weighted scores. Detailed explanation of the dataset can be
consulted in [Liu and Yeh 2017].

It has as feature inputs six different weights related to stock-picking concepts:

1. Book value-to-price ratio (B/P), used to evaluate whether the firm’s stock is un-
dervalued or not. The larger the ratios are, the higher the possibility that the stock
is undervalued;

2. Sales-to-price ratio (S/P), also used to evaluate whether the firm’s stock is under-
valued or not. The larger the ratios are, the higher the possibility that the stock is
undervalued;

3. Return on equity (ROE), used to evaluate a firm’s profitability. The larger the ROE
is, the more profitable the firm is;

4. Return rate in the last quarter, used to select stocks with high return rates. Con-
sidering that the rebalance period of the portfolio in this study is one-quarter,
momentum concept can be adopted, indicating that if the return rate of the stock
is currently high, it will continue to go higher in the future;

5. Market capitalization, used to select stocks with high liquidity and low risk;
6. Systematic risk, used to select stocks with low risk in the next holding period. If

the systematic risk is greater than 1, its fluctuation in return is greater than the
benchmark, and vice versa.

The outputs are 6 investment performance indicators:

1. Annualized Return Rate (ARR), that can be calculated by ((1 + R)1/t) − 1, with
t corresponding to the period (in years) and R to the accumulated return rates;

2. Excess Return Rate (α),
3. Systematic Risk (β), that are coefficients of the regressionRi−Rf = α+β(Rm−
Rf ), where Ri is the investment portfolio return rate, Rf the risk-free return rate
and Rm the market return rate;

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
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4. Total Risk (TR), corresponding to the standard deviation of the return rate of the
portfolio during a certain period;

5. Absolute Winning Rate (AWR), that is the ratio between the number of portfolio
holding periods with positive return rate and the total number of portfolio holding
periods;

6. Relative Winning Rate (RWR), that is the ratio between the number of portfolio
holding periods with a return rate greater than the market return rate and the total
number of portfolio holding periods.

The existence of dependencies among the targets should lead the MTR methods
to increase their predictive performance when compared to the ST strategy. To verify
this, we have comprised all the considered periods within a single set to measure how the
targets relate to each other.

Figure 2 presents the linear correlation coefficients (Pearson coefficient) calcu-
lated over all the targets. The closer to one (or negative one) the coefficient, the more
correlated (or inversely correlated) are the compared targets.
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Figure 2. Pearson coefficient calculation for all the evaluated targets.

As shown in Figure 2, prominent relationships were observed for some targets). In
Figure 2, for instance, the Annualized Return Rate is highly correlated with the Absolute
Winning Rate, as well as the Excess Return Rate is related to the Relative Winning Rate.
Some inverse relationships were also observed, such as the Total Risk and the Absolute
Winning Rate.

Although the observed correlations correspond only to linear relationships, ad-
ditional nonlinear inter-dependencies may be explored by MTR methods. In this sense,
Random Forest Importance [Breiman 2001, Grömping 2009] measure was also calcu-
lated, with the goal to investigate nonlinear relations between target variables. This met-
ric is calculated by the evaluation of the error increase when permuting a feature’s values

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



14

before Random Forest prediction. A positive value means that the evaluated feature con-
tribute to the explanation of the task. Null or negative results mean that the feature do
not contribute and disturb the problem comprehension, respectively. They can be found
in Figure 3.
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Figure 3. Random Forest Importance for all the evaluated targets.

When observing RF importance (Figure 3), all values were positive, meaning that
all targets led to the explanation of others, even that sometimes it was weak, for example
0.07. The strongest relations occur between Excess Return Rate and Relative Winning
Rate, and Absolute Winning Rate and Annualized Return Rate.

3.2. Regression Methods

In this work, Single-Target regression was compared to one problem transformation MTR
method, Multi-output Random Forest, and six problem transformation methods:

- Stacked Single Target;
- Ensemble of Regressor Chains;
- Deep Structure for Tracking Asynchronous Regressor Stacking;
- Deep Regressor Stacking;
- Multi-output Tree Chaining;
- Multi-target Augment Stacking.

The explanation of these methods can be consulted in Section 2.

3.3. Regression Techniques

As problem transformation approach requires base-learners, the experiments made use
of three machine learning regression algorithms: Random Forest (RF), Support Vector
Machine (SVM) and Extreme Gradient Boosting (XGBoost). We aimed at evaluating
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techniques belonging to different ML paradigms. All of the algorithms had their imple-
mentations4 in the R programming language [Ihaka and Gentleman 1996] with a fixed
seed in zero and used standard parameter settings.

Random Forest: As the name suggests, the RF [Breiman 2001] algorithm makes
use of multiple decision trees [Breiman et al. 1984]. When applied to regression, the
tree predictors do not take on class labels, but actually continuous numerical values. The
bagging meta-algorithm [Breiman 2001] is used to grow trees, making different training
datasets be formed by bootstrap sampling. By taking the average results of all trees in the
Forest, the RF predictor is formed. In our experiments we used the ranger R package.

Support Vector Machine: Through the use of support vectors, SVM is a kernel-
based technique for classification and regression. Its main idea is to fit a decision hyper-
plane which adapts to the dealt problem characteristics [Ben-Hur and Weston 2010]. The
modeling of nonlinear tasks is done by transforming the input space. To do so, a kernel
function is applied to the input variables, possibly increasing their dimension. By chang-
ing the characteristics of the input data, data separability also increases. This technique
was executed in R through the e1071 package.

Extreme Gradient Boosting: This framework implements a tree boosting ensemble
strategy by sequentially creating new regressors that aim at minimising the prediction
error of the previous induced ones. XGBoost has been presenting state-of-the-art results
in many prediction tasks [Chen and Guestrin 2016]. This specific implementation of tree
boosting got increased attention by implementing optimisation strategies that reduce the
time for fitting the regressors, as well as constraints and regularisation terms to avoid
overfitting. The experiments were performed using the xgboost R package.

3.4. Evaluation metrics

The evaluation was conducted performing a 10-folds cross-validation strategy. We chose
three metrics to evaluate the performance of the compared MTR methods and regres-
sion techniques on the presented datasets. The mentioned metrics were the Coefficient
of Determination (R2), the average Relative Root Mean Square Error (aRRMSE) and the
Relative Performance (RP) [Borchani et al. 2015, Spyromitros-Xioufis et al. 2016]. Be-
sides, we also reported the percentage of error reduction of the local MTR methods over
the ST strategy, considering all targets.

The R2 can be used to evaluate the adequacy of a regression model, related to
the amount of variability in the data explained or accounted for by the regression model.
It assumes values between 0 and 1. If equal to 1, the model accounts for 100% of the
variability in the data [Montgomery and Runger 2014].

The RRMSE compares the predictive error obtained by a regressor when com-
pared with the performance of a simple predictor which always outputs the target mean.
In this sense, this metric measures how a predictor was capable of learning the distribu-
tion of the evaluated data by comparing it to a baseline regressor. Every time the error
obtained by a regressor is very close to the referred mean predictor, the resulting RRMSE

4https://github.com/smastelini/mtr-toolkit
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will tend to one. If the evaluated regressor performs worse than the mean predictor, the
resulting RRMSE will be greater than one. The RRMSE calculation is given by:

RRMSE(y, ŷ) =

√∑N
i=1(yi − ŷi)2∑N
i=1(yi − y)2

,

where yi and ŷi represent, respectively, the true and the predicted values for the ith in-
stance of the target y. Besides, y represents mean value of the target y, and N represents
the number of evaluated problem’s instances.

The aRRMSE is calculated by averaging the RRMSE of all targets Y . The aR-
RMSE calculation is given by:

aRRMSE(Y, Ŷ ) =
1

d

Y,Ŷ∑
y,ŷ

RRMSE(y, ŷ),

where Ŷ represents the predictions obtained for Y , and d is the number of targets.

Next, RP is obtained by dividing the aRRMSE of the ST approach by the corre-
sponding error metric of another MTR method, as chosen in the next expression:

RPM =
aRRMSEST

aRRMSEM
,

where M represents an MTR method. In our case, we compared the performance of SST,
ERC and DSTARS with the ST approach to verify whether the use of an MTR method
could reduce the error when forecasting stock indexes. A RP greater than one implies that
the chosen MTR method surpassed the ST approach, whereas outcomes smaller than one
indicate that ST approach was the better choice.

Last, we employed the Friedman test to verify whether an MTR method was sta-
tistically better than the others, using a confidence level, α, of 0.05. Anytime the obtained
p-values were smaller than α, we performed the post hoc Nemenyi test to rank the com-
pared MTR methods. We graphically represented the obtained ranks, as proposed by
Demšar (2006).

In this representation, MTR approaches connected by a Critical Distance (CD)
value are statistically equivalent, with respect to the chosen confidence level.

4. Results and Discussion
We performed all the mentioned MTR methods over the four stock index datasets using
the chosen regression techniques. Our goal was to evaluate whether the MTR solutions
would achieve satisfactory predictions results, enabling the creation of a decision support
system to help in predicting the tendencies in the action market.

The obtained aRRMSE values are reported in Table 2. In this table, the smallest
errors obtained per regression technique are in bold, whereas the smallest ones per dataset
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are underlined. MORF presents just a single result per dataset since it is a global MTR
method.

Table 2. The aRRMSE results obtained from all the compared MTR approaches and
regression techniques. The smallest errors obtained per regression technique are in bold,
whereas the smallest ones per dataset are underlined.
Period Regressor ST* ERC SST MOTC MTAS DRS DSTARS MORF

1st
XGBoost 0.80783 0.74113 0.82046 0.84722 0.81423 0.80784 0.82036

0.97860RF 0.80327 0.77498 0.76629 0.76594 0.69102 0.78617 0.78884
SVM 0.71040 0.68019 0.67601 0.68721 0.68332 0.69137 0.71903

2nd
XGBoost 0.85737 0.77782 0.89162 0.87507 0.88812 0.86908 0.89156

0.97678RF 0.82412 0.80428 0.78429 0.80311 0.74283 0.79985 0.79903
SVM 0.75729 0.74028 0.74513 0.74475 0.74985 0.74752 0.77315

3rd
XGBoost 0.66846 0.60054 0.65769 0.67880 0.65855 0.66910 0.65762

0.88958RF 0.67660 0.64860 0.63001 0.65569 0.55019 0.64673 0.62814
SVM 0.56950 0.52853 0.51685 0.55356 0.55164 0.52130 0.50604

4th
XGBoost 0.75891 0.74076 0.79710 0.78251 0.78598 0.76345 0.75736

0.91661RF 0.74849 0.73515 0.70996 0.72986 0.67629 0.71990 0.72607
SVM 0.68315 0.65846 0.65306 0.68651 0.68301 0.67885 0.65152

* ST refers the traditional machine learning

As it can be observed, SVM obtained the best result overall when compared with
the regressors XGBoost and RF, which is also the base of the MORF algorithm. Despite
no fine tuning was performed, SVM achieved the smallest error rates for all evaluated
datasets. When developing a final product with the best set of MTR tools, further adjust-
ments could be made to improve even more the performance of the mentioned regressor.

Regarding the MTR methods, differently from what found out in [Silva et al.
2018], ERC presented the smallest errors in 5 out 12 times, followed by MTAS (the best
4 times), DSTARS (the best 2 times) and SST (the best once). Though ERC presented the
smallest aRRMSE most of times, only in the second period it was the smallest error for
the dataset. SST had the smallest error per dataset in the first period.

MTAS was able to significantly decrease the error in relation to ST when consid-
ering RF, but as SVM in its single target form had already a smaller error than RF, MTAS
was not the the best method for any period.

Nevertheless, the smallest error among all the datasets was obtained by DSTARS
in the third observed period. This dataset consists of observations made in the period
between 2000 and 2005, and presented prominently smaller aRRMSE than the other pe-
riods.

Moreover, it is worth mentioning that DSTARS achieved results very close to the
SST ones in almost all cases, which is explained by the nature of this method. In fact,
DSTARS is an extension of the original SST idea, being built upon stacking multiple
regressors for each target. Potentially DSTARS can mimic the SST behaviour, which ex-
plains the very similar results obtained by the two methods. Notwithstanding, the asymp-
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totic time complexity of SST is smaller than the DSTARS complexity, so this method
ought to present reliable and fast responses in real scenarios. In addition, the global MTR
method MORF presented the worst results in all cases.

Besides aRRMSE, the average coefficient of determination was calculated. The
results were registered in Table 3.

Table 3. The R2 results obtained from all the compared MTR approaches and regression
techniques. The greatest R2 obtained per regression technique are in bold, whereas the
greatest ones per dataset are underlined.
Dataset Regressor ST* ERC SST MOTC MTAS DRS DSTARS MORF

1st
XGBoost 0.59253 0.62606 0.58942 0.58912 0.59535 0.59163 0.58941

0.49240RF 0.58404 0.60777 0.60571 0.60493 0.66596 0.58402 0.58949
SVM 0.63404 0.65683 0.65586 0.65282 0.65981 0.63692 0.63951

2nd
XGBoost 0.59871 0.62752 0.59261 0.58779 0.59445 0.60055 0.59262

0.51667RF 0.59552 0.59091 0.59341 0.58692 0.62799 0.59447 0.57404
SVM 0.62621 0.63647 0.63054 0.63517 0.61771 0.63715 0.61524

3rd
XGBoost 0.70714 0.76928 0.72479 0.68573 0.72122 0.70615 0.72477

0.62723RF 0.71164 0.72848 0.72548 0.69570 0.80110 0.70100 0.72047
SVM 0.78200 0.81392 0.81450 0.78379 0.80400 0.81899 0.82092

4th
XGBoost 0.59873 0.60087 0.59538 0.58670 0.59671 0.59690 0.59545

0.55546RF 0.58723 0.59838 0.60882 0.58933 0.63205 0.59458 0.60414
SVM 0.58427 0.60665 0.61567 0.57126 0.60883 0.59139 0.60613

* ST refers the traditional machine learning

Regarging R2, MTAS was the best method in 5 out of 12 possibilities. Next, ERC
outperformed the other methods 4 times. SST, DRS and DSTARS had the greatest R2

once, each.

When focusing on the best combination for each dataset, MTAS was the best
twice, DRS and DSTARS, once. In addition, RF and SVM were the best 2 times, each.
From Table 3, it is also possible to see how MTR can improve the R2 values: in the first
period, for instance, RF in its ST form obtained an R2 of 0.58404, whereas with MTAS,
it increased to 0.66596.

Next, we compared the performance of the local MTR methods against the ST
approach. Our objective was to verify whether the exploration of the possible existing
inter-dependencies among the stock index outputs led to prediction performance improve-
ments. In this sense, we employed the RP to compare SST, ERC, MOTC, MTAS, DRS
and DSTARS to the ST approach. The obtained results are summarized in the Table 4.

As shown in Table 4, except when combined with XGBoost, most of the cases
obtained RPs greater than one, meaning that they outperformed the ST approach. More-
over, ERC presented the greatest average RP (1.0529), followed by MTAS (1.0524), SST
(1.0298), DRS (1.0214), DSTARS (1.0159) and MOTC (1.0079). In the 3rd period,
MTAS coupled with RF had the greatest RP, 1.2298.
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Table 4. RP values along the four periods.
Period Regressor ERC SST MOTC MTAS DRS DSTARS

1st
XGBoost 1.0900 0.9846 0.9535 0.9921 1.0000 0.9847
RF 1.0365 1.0483 1.0487 1.1624 1.0217 1.0183
SVM 1.0444 1.0509 1.0337 1.0396 1.0275 0.9880

2nd
XGBoost 1.1023 0.9616 0.9798 0.9654 0.9865 0.9616
RF 1.0247 1.0508 1.0262 1.1094 1.0303 1.0314
SVM 1.0230 1.0163 1.0168 1.0099 1.0131 0.9795

3rd
XGBoost 1.1131 1.0164 0.9848 1.0150 0.9990 1.0165
RF 1.0432 1.0739 1.0319 1.2298 1.0462 1.0771
SVM 1.0775 1.1019 1.0288 1.0324 1.0925 1.1254

4th
XGBoost 1.0245 0.9521 0.9698 0.9656 0.9940 0.9519
RF 1.0181 1.0543 1.0255 1.1068 1.0397 1.0296
SVM 1.0375 1.0461 0.9951 1.0002 1.0063 1.0269

Table 5 presents the percentage of error reduction obtained by the MTR when
compared to the ST strategy.

Table 5. Percentage of error reduction achieved by the MTR methods over the ST strategy,
when using XGBoost, RF and SVM as regressors. The best gains in prediction perfor-
mance per dataset are in bold, whereas the worst ones are in italic, and the minus signal
indicates an error reduction.

Period Target XGBoost RF SVM
SST MTAS MOTC ERC DSTARS DRS SST MTAS MOTC ERC DSTARS DRS SST MTAS MOTC ERC DSTARS DRS

1st

ARR 0.49 -0.01 11.07 1.60 0.49 0.15 -11.00 -24.02 1.33 -2.28 -5.39 -11.91 -11.66 -5.96 -5.71 -8.76 -10.19 -8.67
α -2.31 -4.04 16.06 -5.73 -2.41 -1.30 -3.38 -25.49 -11.30 -0.59 2.81 3.57 -11.82 -13.04 -5.78 -5.64 -11.23 -15.31
β -0.07 -2.07 10.10 -12.86 -0.07 0.03 -7.19 -20.86 -9.16 0.84 -2.07 -9.97 -12.65 -8.74 -9.87 -8.94 -9.14 -7.60

TR -0.73 -1.06 -18.15 -12.84 -0.73 -0.43 -7.11 -11.63 -1.12 -2.89 -7.44 -8.38 -4.77 -2.25 -2.53 -6.00 -3.99 2.15
AWR 1.82 1.82 3.83 -8.00 1.82 0.00 -5.10 -5.67 -6.54 -8.59 -8.15 -0.12 -2.09 -9.99 -3.83 -3.72 2.45 -0.31
RWR 3.75 2.49 -0.01 -8.57 3.75 0.84 -1.47 -5.32 -1.45 -2.41 2.70 4.38 -4.52 -1.12 -2.97 -2.85 3.20 0.00

2nd

ARR 0.97 -0.31 -2.14 -18.53 0.97 0.05 -11.06 -14.73 -3.01 -0.44 -6.07 -15.54 -7.40 -8.82 -5.40 -5.58 -6.01 -0.47
α -1.20 -1.11 1.29 -9.45 -1.20 -1.37 -3.79 -13.22 -1.74 0.63 -4.08 -6.07 2.39 -2.99 1.13 -1.97 4.84 0.00
β -3.12 -5.36 4.36 -3.81 -3.15 -0.08 -7.58 -15.78 -4.54 -4.01 -6.45 -7.05 -10.68 -8.98 -5.99 -5.90 -6.77 -11.82

TR 5.75 5.69 -15.81 -15.90 5.75 4.88 -5.04 -12.44 -6.25 -3.75 -8.30 -2.34 -3.86 -2.85 -2.75 -2.42 -3.52 -4.29
AWR 11.15 11.15 21.22 -1.19 11.15 0.00 -1.80 -5.87 2.58 -0.69 -0.93 -1.04 -0.73 -6.59 -2.70 -2.09 1.97 0.60
RWR 0.65 0.65 6.77 -4.98 0.65 0.00 -1.44 0.86 0.93 0.32 4.87 2.93 3.23 14.54 3.02 1.54 6.84 2.57

3rd

ARR -2.20 -2.57 1.91 -3.91 -2.20 -0.29 -12.33 -24.85 -8.22 -8.60 -12.94 -8.42 -15.75 -18.10 -0.88 -9.71 -14.51 -23.40
α 0.34 -0.10 5.58 1.09 0.34 0.00 -12.51 -22.66 -13.01 -1.82 -10.97 -14.65 -15.34 -18.33 -1.26 -9.15 -14.42 -22.61
β -0.78 -1.05 5.15 -2.66 -0.84 0.00 -4.78 -20.38 -3.82 -0.81 -6.12 -4.38 -1.61 6.40 3.25 -1.41 -3.43 3.88

TR 0.00 0.08 14.50 -6.44 0.00 0.05 -3.99 -18.87 -4.17 1.29 -3.39 -0.55 -1.61 2.10 4.33 -4.37 -4.24 -1.82
AWR -4.89 -4.89 -15.73 -19.53 -4.89 1.16 -13.52 -21.58 -7.85 -11.48 -13.76 -3.32 -3.75 -3.77 -10.16 -5.37 -6.73 5.10
RWR -5.13 -3.07 1.59 -19.10 -5.13 0.00 -5.06 -10.34 4.12 -0.50 -7.14 -5.99 -11.16 -2.30 -9.10 -7.67 -15.27 -8.71

4th

ARR -0.67 -1.18 6.02 -3.00 -0.65 0.03 -9.23 -12.55 -5.86 -1.77 -4.83 -6.85 -3.18 -1.90 0.68 -3.04 -3.36 3.89
α 7.71 4.02 3.53 0.46 7.83 4.20 -11.34 -14.00 -6.69 -0.76 -12.04 -11.72 -5.78 -9.47 -0.05 -3.27 -5.84 -0.63
β 2.69 2.50 2.83 1.16 2.65 -0.32 -14.16 -29.94 -7.38 -5.53 -14.90 -12.72 -10.99 -14.19 -1.15 -8.30 -9.43 -17.39

TR 0.68 -1.71 4.18 5.67 0.70 -0.16 -11.37 -26.55 -7.53 -4.84 -12.21 -9.18 -10.99 -14.83 -1.09 -8.65 -8.58 -14.94
AWR 9.60 9.60 -5.32 -9.06 9.60 0.00 -0.11 8.34 2.09 -0.36 0.69 -0.07 1.82 14.14 4.82 2.35 5.58 3.62
RWR 2.21 1.24 5.70 -0.10 2.21 0.85 -4.02 -5.35 -1.88 -3.14 -1.35 -1.85 -6.31 -7.81 -3.93 -5.34 -9.00 1.43

Average 1.11 0.45 2.85 -6.49 1.11 0.35 -7.01 -14.70 -4.19 -2.59 -5.73 -5.47 -6.22 -5.20 -2.41 -4.84 -5.03 -4.78

As observed, with exception of XGBoost, there were gains in almost all cases. The
greatest gain in prediction performance was obtained by MTAS with RF when predicting
the β in the 4th period (29.94% of error reduction). In average, the greatest gains were
obtained with XGBoost and ERC (6.49%), RF with MTAS (14.7%) and SST (7.01%) and
SVM with SST (6.22%).
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Notwithstanding, there were some cases where the MTR methods were surpassed
by the ST strategy. At the worst case, the MTR methods were 21.22% worse than ST
(MOTC with XGBoost for target AWR, 2nd period).

We also performed statistical tests to verify the possible significant statistical su-
periority of some MTR method in the evaluated problems. We considered multiple com-
parison scenarios, using the aRRMSE metric, to evaluate the performance of the MTR
methods.

Firstly, we considered the aRRMSE results obtained by all MTR approaches and
all evaluated regressors. Figure 4 presents the Nemenyi results observed in this scenario.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CD=5.2339

MTAS+RF

SST+SVM

MTAS+SVM

ERC+SVM

DSTARS+SVM

DRS+SVM

MOTC+SVM

ERC+XGBoost

ST+SVM

SST+RF

DSTARS+RF

ERC+RF

MOTC+RF

DRS+RF

ST+XGBoost

ST+RF

MTAS+XGBoost

MOTC+XGBoost

DSTARS+XGBoost

DRS+XGBoost

SST+XGBoost

MORF

Figure 4. Nemenyi post hoc test aRRMSE results when considering all the MTR ap-
proaches and regression techniques.

In this figure, combinations that are connected by a CD present no statistical dif-
ference at α. Besides, the closer to 1, the better the performance.

The first positions were filled by the local methods, mainly when coupled with the
SVM regressor. MTAS appeared in the first position coupled with RF, being followed by
SST, MTAS, ERC, DSTARS, DRS and MOTC coupled with SVM. After that, the rank
shows ERC with XGBoost, ST of SVM, SST and DSTARS with RF, finishing the first
group. There was no statistically significant difference among the elements of this first
group. ST, DRS and MOTC appeared just once in this group, whereas, MTAS, SST, ERC,
DSTARS appeared twice, each.

From this figure we concluded that XGBoost, that appeared in the first group only
for ERC and in the last group for the other methods, with its default R configuration, was
the worst regressor to explain the problem, either in ST or with MTR methods. MORF
was significantly worse than the other approaches.

As many MTR methods were evaluated, we analysed each regressor separately.
Firstly we compared the local MTR approaches when combined with XGBoost, as shown
in Figure 5.
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2 3 4 5

CD=1.4349

ERC

ST

MTAS

MOTC

DRS

DSTARS

SST

Figure 5. Nemenyi post hoc test aRRMSE results when considering all the local MTR
approaches along with XGBoost.

ERC is the first in the rank, isolated from all the other techniques. It justifies its
appearance in the first group of the previous figure. The other methods appear in the last
group, together with ST.

Figure 6 presents the obtained test results using the regressor RF.

1 2 3 4 5 6

CD=1.4349

MTAS

SST

DSTARS

MOTC

ERC

DRS

ST

Figure 6. Nemenyi post hoc test aRRMSE results when considering all the local MTR
approaches along with RF.

For this regressor, MTAS appeared isolated in the first position, presenting the
best result among the compared methods. After that, SST, DSTARS, MOTC, ERC and
DRS come in the same group with no statistical difference. Only the last group englobes
ST.

Next, Figure 7 presents the obtained test results using SVM.
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Figure 7. Nemenyi post hoc test aRRMSE results when considering all the local MTR
approaches along with SVM.

SST appeared in the first position, being statistically equivalent to ERC, MTAS,
DSTARS, DRS and MOTC. Only ST did not figure in the first group, showing the supe-
riority of MTR over ST. This reinforces the evidences of statistical dependencies among
the stock index output variables. In fact, the obtained results show that evaluated prob-
lems are MTR tasks, and thus, they must be modelled in this way to achieve superior
performance.

To sum up, the employment of MTR techniques to model the prediction of multi-
ple stock market variables, indeed, obtained superior results than considering each output
separately. Among the evaluated MTR methods, SST with SVM would be the best choice
for being a simple yet effective solution. However, if more prominent gains are desired,
MTAS should be considered.

In our experiments, SVM and RF outperformed XGBoost when both techniques
were implemented without further adjustments. In this sense, to compose a final solution,
the regressors that are base learners of the MTR local methods might be tunned to achieve
even better results.

With enough training instances, a software to offer stock indexes estimates can
be created. Besides, as the time evolves and the real outcomes come to knowledge, the
prediction models can be updated. A further venue for research would be the comparison
of two model update strategies: the selection of training instances with a sliding window
of time or aggregating all new cases through in a single knowledge database.

Although MOTC was not the best regressor, for SVM and RF it had an average
performance. Since it provides graphs that shows the targets dependency during model
generation, we analysed them in order to improve the interpretation. The graphs are in
Figures 8 and 9.
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Figure 8. MOTC’s target graphs for RF.
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Figure 9. MOTC’s target graphs for SVM.

As observed, the structure for both regressors are very similar, but every period
assumes a particular structure, which follows the difference in the results for each period
and ratifies that the behaviour of the data changes over time. To exemplify this, consider
the relation of α and ARR. In the first, third and fourth periods, α and ARR explain each
other mutually. However, in the second period only ARR explains α directly, with a lower
weight when compared to the other periods.

α also explains and is explained by AWR in most of the periods, but in the fourth,
they are not correlated. TR and β also follow a mutual explanation, except for the first
period, when TR does not explain β. This change in relation over the years shows that
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the data pattern can change significantly with time, and thus it is necessary to update the
models after some time period.

However, some targets are connected or disconnected in a fixed way. RWR never
explains other targets, but is explained by others, specially β and ARR. Except for a weak
connection in the third period, AWR and RWR are never connected.

5. Conclusion
Different approaches have been used in stock market to predict economic metrics, in-
cluding the usage of computational intelligence and machine learning (ML) algorithms.
However, the benefits of Multi-Target Regression (MTR) were underexplored. In this pa-
per, we proposed the use of MTR for improving the prediction of stock market indicators.
Moreover, it plays like a kernel of a decision support tool to aid the investor’s decisions
with superior results when compared to traditional solutions based on ML.

Our contribution to stock target prediction outperformed the traditional single tar-
get methods in a real-life scenario using mainly Random Forest (RF), Extreme Gradient
Boosting (XGBoost) and Support Vector Machine (SVM) learn-based algorithms. In the
best cases, the MTR reached an improvement over Single Target Regression, considering
the average error of all targets in all periods, of 14.70% ( Multi-target Augmented Stack-
ing (MTAS) with RF), 7.01% (Stacked Single Target (SST) with RF), 6.49% (Ensemble
of Regressor Chains (ERC) with XGBoost) and 6.22% (SST with SVM). In this way, we
affirm that the use of Multi-target improves the capabilities of stock market predictions
taking advantage from their inter-correlations to built a predictor.

Some limitations of this work are the restricted amount of weights combinations in
the datasets and the not implementation of the methods in a system, which could be done
in future work. As a continuity of this work, we aim at dealing with online updating of
the model owing to check concept-drifts on a data stream scenario, focusing on standard
behaviour changing over the time.

6. Acknowledgement
We would like to thank the Brazilian agencies CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior), CNPQ (Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)
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