
Submission date: 08/10/2020
Resubmission date: 17/01/2021
Resubmission date: 21/03/2021
Camera ready submission date: 13/04/2021

Section: regular article

1st round notification: 07/12/2020
2nd round notification: 22/02/2021
3rd round notification: 05/04/2021

Available online: 14/05/2021
Publication date: 14/05/2021

Comparison and Choice of Computational Architectures
Based on Cost-Value Approach

Elivaldo Lozer Fracalossi Ribeiro1,2, Daniela Barreiro Claro2, Rita Suzana
Pitangueira Maciel3

1Centre for Environmental Science, Federal University of Southern Bahia, BR-367,
Km 10, 45.810-000, Porto Seguro, Bahia, Brazil

2FORMAS Research Group, Computer Science Department (DCC), IME, Federal
University of Bahia, s/n Adhemar de Barros Ave., Ondina, 40.170-110, Salvador, Bahia,

Brazil

3MATiSsE Research Group, Federal University of Bahia, s/n Adhemar de Barros Ave.,
Ondina, 40.170-110, Salvador, Bahia, Brazil

elivaldolozer@ufsb.edu.br, {dclaro, rita.suzana}@ufba.br

Abstract. Software engineers make use of several computational architectures
(CA) to host an application, such as desktop, web, and cloud computing ar-
chitectures. As the requirements vary according to the desired CA, developers
may face two problems: determining which requirement better fulfills a CA and
determining which CA fulfills a given set of requirements. This paper presents
a new approach based on the Cost-Value Approach (CVA). We have slightly
modified the CVA method (SCVA method) and also developed a new method for
choosing the most appropriate CA (MMACA method). Our results provide a set
of requirements ordered by priority for each CA. Finally, we discuss the current
and most appropriate CA for a real project solution.

Keywords. Requirements engineering; Requirements elicitation; Non-functional requirements;
Computational architectures; Cost-value approach

1. Introduction
Requirements describe information about features, services, functionalities, and restric-
tions of a software system [Bourque and Fairley 2014, van Lamsweerde 2009]. In the
software industry, a requirement is defined as a formal definition of a system function,
a high-level service description, or a system restriction [van Lamsweerde 2009]. How to
meet stakeholders’ needs and how to manage information during a software project are
fundamental issues in the area [Olsson et al. 2019]. In recent years, requirements have
become increasingly dynamic and heterogeneous due to the expansion of the web and
social media [Zampoglou et al. 2016].

Requirements can be classified into functional and non-functional. Functional re-
quirements are functions that a system might perform. For instance, in the academic

Cite as: Ribeiro, E. L. F., Claro, D. B. & Maciel, R. S. P. (2021). Comparison and Choice of Computational Architectures Based
on Cost-Value Approach. iSys: Revista Brasileira de Sistemas de Informação (Brazilian Journal of Information Systems),
14(1), 56-88. DOI: 10.5753/isys.2021.968



57

domain, a secretary can list all undergraduate students, and a lecturer can book a labo-
ratory. Non-functional requirements define behavioral conditions, constraints, or quality
attributes for software. For instance, non-functional requirements can be the availabil-
ity of a system, i.e., 99% available on the web, and database queries should take less
than three seconds to perform [Bourque and Fairley 2014, van Lamsweerde 2009]. A
successful information system is the one in which all software requirements are fulfilled
[Belout and Gauvreau 2004, Kaur and Aggrawal 2013]. However, this is not a trivial task.

Whereas software components fulfill almost all functional requirements, some
non-functional requirements are dependent on the computational architecture (CA) that
hosts the information system. CAs are models for organizing physical and logical re-
sources, providing a standard of development process [Patterson and Hennessy 2013].
Examples of CAs are desktop, web, cloud, fog, and mobile. Given this diver-
sity, the choice of the most appropriate CA may be complex because it depends on
a software requirement, such as availability, scalability, access mode, among others
[Bessa et al. 2016].

Although similar, computational architectures and software architectures are dif-
ferent concepts. Computational architectures refer to the infrastructure (e.g., operating
system, network platform, data storage, among others) in which the system or application
is hosted. Software architectures concern system design decisions, software elements,
and how these elements relate to each other [Taylor et al. 2010]. A computational archi-
tecture can host software with different software architectures because a computational
architecture may be more suitable for a given software architecture standard.

The requirements engineering (RE) process comprises a set of activities
to discover, analyze, validate, and manage a system requirement. Authors in
[van Lamsweerde 2009] report that there is no single RE process suitable for all orga-
nizations. Moreover, they state that a generic process consists of: deciding whether the
system is useful (feasibility study); discovering, ranking, and negotiating requirements
(elicitation and analysis step); organizing the requirements to be implemented (specifica-
tion step); and, checking whether the requirements fulfill the customer’s desires (valida-
tion step). RE is one of the most important activities in information system development
[Xu et al. 2012].

Requirements elicitation and analysis is a step which manages the requirements
from the discovery to the implementation. It includes classification, prioritization,
negotiation, and specification. Prioritization and negotiation activities are concerned
with prioritizing requirements and resolving requirements conflicts through negotiation
[van Lamsweerde 2009].

Considering the steps of requirements analysis and elicitation, the hi-
erarchy of characteristics is not an exclusive process of software engineering
[van Lamsweerde 2009]. For example, when buying a smartphone, a purchaser considers
the most important features before buying the desired model. As each model (of smart-
phone) has a set of characteristics, the purchaser (end-user) has to identify the product
that best meets his/her requirements. The choice is not trivial because it is based on a
set of features, not just one. If the decision were based solely on the camera’s resolution,

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



58

choosing the highest resolution model would be enough. However, the choice is made
more difficult when the price, camera resolution, screen size, internal storage, and battery
life all have to be taken into consideration.

Such problems frequently occur in modern information systems development
as the number of requirements is often high. The requirements prioritization step
solves conflicts among project stakeholders. The most important requirement for a cus-
tomer is usually the cost to implement immediately. Additionally, software is devel-
oped incrementally, and prioritization techniques follow such increments [Ruhe 2005,
Pegoraro and Paula 2017, dos Santos et al. 2016, Riegel and Doerr 2015].

Some techniques used to rank the requirements and to choose the most ap-
propriate CA for an information system include the cost-value approach (CVA)
[Karlsson and Ryan 1997], the analytic hierarchy process (AHP), numerical assign-
ment, the 100-dollar test, the top-ten requirements, binary search tree, and bubble
sort [van Lamsweerde 2009, Karlsson et al. 1998]. Among these techniques, AHP as-
sists in complex decision-making, and it has been developed to analyze variables that
are difficult to compare [Saaty 1980]. While AHP provides a hierarchical classifica-
tion of requirements (e.g., ranking the cost in descending order), CVA implements
a two-dimension approach to display the requirements’ value against their cost and
value[Karlsson and Ryan 1997]. The CVA process consists of applying the AHP method
twice: one from a cost perspective and the other from the value perspective. In this pa-
per, we state that ‘cost’ is the effort required to fulfill a requirement, and ‘value’ is the
relevance of a requirement for a project [Karlsson and Ryan 1997]. In other words, ‘cost’
represents the effort exerted by the developer in working time to develop a given require-
ment, and ‘value’ represents the ease offered by a CA to fulfill a given requirement.

Given a software development project, our goals are: (i) to determine which non-
functional requirements should receive more (or less) priority in each CA based on our
slightly modified CVA method (SCVA method), and (ii) to determine which CA better
fulfills a given set of requirements based on our method for choosing the most appropri-
ate CA (MMACA method). The most appropriate CA is determined by our MMACA
method based on a set of non-functional requirements. While several studies about
CA focus from the perspective of management [Kazman et al. 1996, Christensen 2009,
Huang et al. 2013], our focus is from the developer perspective.

Our approach compares desktop, web, and cloud architectures (i) to list the es-
sential requirements and (ii) to determine the most appropriate CA given a set of require-
ments. We choose these three architectures to compare consolidated CAs (desktop and
web) with a new CA (cloud). Briefly, a desktop CA runs software locally on a computer
device; a web CA runs software over the Internet from a remote server as though local
software; a cloud CA runs software as a service with rapid allocation/release and minimal
effort from the service provider [Beaty et al. 2009, Voda 2014, Mell and Grance 2011].

Our SCVA method is applied to determine which requirement is better fulfilled
by a CA, regardless of the project. Given a set of requirements as input, our method de-
termines which requirements are relevant for desktop, web, and cloud CAs. Our SCVA
method applies the CVA method, which, in turn, applies the AHP method twice (for cost

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



59

and value). We propose a generic set of requirements and therefore our method groups
these requirements into two ways: stacked column charts and cost-value diagrams. The
first analysis compares the aspects (cost and value) individually for each CA, and the
second analysis combines both aspects to describe each requirement’s priority based on
both cost and value aspects. We call our method slightly modified because we apply the
CVA method by development stages (planning, development, test, and operation), and
we present the results into two ways (stacked column charts and cost-value diagram).
In contrast, the CVA method [Karlsson and Ryan 1997] prioritizes requirements without
distinguishing the development stage, and it presents a single analysis: a cost-value dia-
gram.

Our MMACA method determines the most appropriate CA that best fulfills the
information system requirements. Given a set of requirements as input, the method deter-
mines which CA better fulfills the input. Our MMACA method applies the SCVA method,
calculates the ratio between cost and value for input requirements, and estimates the most
appropriate CA (desktop, web, or cloud). The MMACA method considers the generic set
of requirements built by the SCVA method.

Both methods require an initial set of requirements as input. Since there is
no consensus in the literature, we built a set of requirements to evaluate our methods.
We generated a set of 30 requirements based on bibliographical research, according to
[Kitchenham and Charters 2007]. As our study focuses on the developer’s viewpoint, our
initial set of requirements was validated by a group of developers, generating a set of 25
requirements. This set is the input of the SCVA method, and any subset of this set is
the input for the MMACA method. This subset may vary because it represents the most
important requirements for an information system.

We performed an exploratory study to verify the feasibility of SCVA and
MMACA. For the SCVA method, the developers evaluated the set requirements twice
(once for cost and the other for value) and the SCVA method hierarchized the require-
ments by each CA.

For the MMACA method, we performed two evaluations. In the first evaluation,
ten developers chose a subset of the requirements, and the method indicated the most
appropriate CA. In the second evaluation, four developers from a real project created a
single subset of the set of requirements, and the method indicated the most appropriate
CA for this real information system.

Our results show the effectiveness and efficiency of our methods. Both SCVA
and MMACA make potential contributions to the state of the art since they present novel
methods for prioritizing requirements and choosing a CA.

The remaining of this paper is organized as follows: Section 2 presents an
overview of CAs and requirements prioritization; Section 3 describes our related works;
Section 4 presents our set of requirements and our methods (SCVA and MMACA);
Section 5 describes validation our approach; Section 6 discusses our results; Section 7
presents some threats to validity; and finally, Section 8 presents our conclusions and fu-
ture works.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



60

2. Background
This section presents some background research on the topics supporting this work, start-
ing with the definitions and details comparing the three CAs. Next, we examine require-
ments prioritization, focusing on the two techniques used: Analytic Hierarchy Process
(AHP) and Cost-Value Approach (CVA).

2.1. Computational Architectures (CA)

Computational architectures (CA) are ways of structuring and organizing physical and
logical devices. Architectures may differ in terms of memory management, data storage,
processing capacity, and infrastructure [Patterson and Hennessy 2013].

In recent decades, application model sharing has evolved. Also known as a multi-
user model, desktop architecture is user-focused because it hosts applications on a partic-
ular computer for each user. In this architecture, applications are limited by local hard-
ware. Since applications are installed locally, the addition of non-functional requirements
may require upgrading local hardware [Beaty et al. 2009, Wang et al. 2009]. Although
not recent, the choice for desktop architecture is justified for some reasons. First, the cost
varies depending on the CA and requirements so there is no guarantee that applications
for one particular architecture will always be the cheapest [Khajeh-Hosseini et al. 2010].
Second, companies with desktop applications would incur a high cost to migrate
their applications to another architecture. For this reason, legacy systems collaborate
with the use of this architecture [Khajeh-Hosseini et al. 2010, Maenhaut et al. 2016].
Third, migrating desktop applications to another architecture can cause organizational
changes and make small business operations impossible [Khajeh-Hosseini et al. 2010,
Armbrust et al. 2009]. Fourth, some web and cloud computing challenges (e.g., se-
curity, elasticity, and privacy) can be resolved on desktop applications more quickly
[Khajeh-Hosseini et al. 2010, Armbrust et al. 2009].

With the Internet and the need to increase availability, web architecture has
emerged which focuses on applications. The model is no longer multi-user (one com-
puter for several users), but it becomes multi-application (one user starts to use several
applications) in a client-server framework. The user accesses the application through
client software (e.g., a browser) and part of the required storage and processing is made
available by the application server [Wang et al. 2009, Voda 2014].

More recently, cloud computing has enabled on-demand access to a set of re-
sources (e.g., networks, servers, storage, applications, and services), with rapid alloca-
tion/release, and with minimal effort from the service provider [Mell and Grance 2011].
This model can be understood as an advance of the web model [Erdogmus 2009,
Pallis 2010]. The main features of cloud computing are: (i) the user can access new
resources according to their needs; (ii) resources can be accessed from any device; (iii)
similar resources are grouped; (iv) resources can be allocated and released automatically;
and (v) payment is based on usage [Mell and Grance 2011].

Each CA implements a set of requirements to provide a structure to host applica-
tions. For example, while desktop architecture provides requirements for access to client
resources and integration with local hardware, web architecture provides portability and

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



61

hardware consumption. On the other hand, cloud computing architecture provides avail-
ability and scalability. Because the requirements vary according to each CA, hierarchizing
requirements considering multiple architectures is required.

2.2. Requirements Prioritization

Requirements can be prioritized according to one or more aspects. An aspect here is a
project property used as a focus for comparison (e.g., value, cost, time, and risk). Coming
back to the smartphone scenario, it would be like choosing a phone based on the best
camera resolution. However, considering the resolution of the camera and the size of the
screen, the resource that requires the most development effort (cost) may not be the most
important (value).

Briefly, a requirement prioritization technique ranks a set’s requirements accord-
ing to some criteria. This prioritization can be done on the (i) ordinal, (ii) ratio, or (iii)
absolute scale. Considering the cost aspect and the ordinal scale, requirements are an-
alyzed one by one, and they are classified by cost. In addition to classifying, the ratio
scale measures how expensive one requirement is compared to another (scale generally in
percentage). Finally, the absolute scale hierarchy is performed based on an absolute value
(number of hours to implement each requirement, for example) [Achimugu et al. 2014].
A complete list of techniques is available in [Achimugu et al. 2014]. Some prioritization
techniques are described as follows.

Numerical Assignment is a technique that classifies the requirements into differ-
ent groups (usually three or five). Each group represents a level in the analyzed scale,
e.g., “critical, standard, and optional”. A disadvantage of this technique is that prioriti-
zation considers only the group. Thus, requirements in a group have the same priority
[Garg and Singhal 2017].

In the 100-dollar Test technique, each participant receives a certain amount of
imaginary points (usually 100, considered as money or time) to allocate to the require-
ments. The result of each requirement will be between zero (0% important) and one
(100% important). The problem of ranking many requirements can be mitigated with
several points multiples of 100 [Santos et al. 2016, Ahuja et al. 2016].

In Top-ten requirements technique, given the set of all requirements, each stake-
holder chooses their top ten, without assigning an order of priority to the requirements
chosen. This technique is appropriate when there are several stakeholders involved, and
they have equal importance [Achimugu et al. 2014].

The Binary Search Tree technique employs the structure of a binary tree and con-
sists of the following: (i) initially, one of the requirements is positioned as the root node;
then, (ii) each of the rest of the requirements is allocated in a tree, comparing each new
requirement with the requirements already presented in the tree; finally, (iii) a tree with
prioritized and balanced requirements is obtained [Bhandari and Sehgal 2014].

Bubble Sort organizes the requirements in a hierarchical array, and they are com-
pared two-by-two. Thus the highest requirement (the most relevant, for example) is taken
to the top (or highest position) of the array [Bhandari and Sehgal 2014].

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



62

The following subsections explain in detail both the requirements prioritization
techniques used in our approach: AHP and CVA.

2.2.1. Analytic Hierarchy Process

AHP process can be explained in steps [Karlsson et al. 1998, Garg and Singhal 2017,
Bhandari and Sehgal 2014, Dorado et al. 2014, Chung et al. 2006, Agarwal et al. 2013,
Chaudhary et al. 2016, Saaty 1987]:

1. define the goal, variables, and comparison aspect
2. set up n requirements in an n x n matrix (each requirement will be one row and

one column)
3. compare all requirements two-by-two according to a quantitative specific scale

(presented in Table 1, detailed by [Saaty 1987])
4. calculate the eigenvalues of the matrix with the average of the columns based on

the calculated eigenvalues, each requirement receives a criterion value, and
5. finally, the consistency rate (CR) is calculated and, if inconsistent (this is, if CR >

10% [Saaty 1987]), then repeat steps 3 to 5.

Table 1. Quantitative specific scale for comparison of two requirements (i and j)
in AHP process

Comparison value Interpretation
1 i and j are of equal value
3 i has a moderately higher value than j
5 i has a strongly higher value than j
7 i has a very strongly higher value than j
9 i has an extremely higher value than j

2, 4, 6, and 8 Intermediates and optional

Concerning this kind of two-by-two comparisons (step 3), we can observe two
important issues. First, if a ratio r between requirement i and j has value x (that is, if
r(i, j) = x), then the same ratio r between j and i has value 1

x
(that is, then r(j, i) =

1
x
). Second, the ratio r between a requirement i with itself always has value 1 (that is,
r(i, i) = 1).

Step 6 aims to eliminate inconsistencies in evaluations. For instance, if r(i, j) = 3
(the ratio r between i and j is 3) and r(j, k) = 5 (the ratio r between j and k is 5), it
makes no sense to describe r(i, k) = 1

3
(the ratio r between i and k is 1

3
). For this, the

consistency index (CI) is given by equation:

CI =
λMAX − n
n− 1

(1)

where λMAX is the largest eigenvalue of the judgment matrix and n is the number of
evaluated criteria (requirements). Lastly, CR is given by equation:

CR =
CI

RI
(2)

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



63

where CI is the consistency index (Eq. 1) and RI is the ratio index. The value of RI is fixed
for each value of n (presented in Table 2, detailed by [Saaty 1987, Agarwal et al. 2013,
Karlsson and Ryan 1997]). Thus, the evaluation is consistent if CR ≤ 10% [Saaty 1987].

Table 2. Ratio Index (RI) for different values of n, where n is the quantity of vari-
ables and RI is the denominator of Eq. 2

n 3 4 5 6 7 8 9 10
RI 0.58 0.89 1.12 1.24 1.32 1.41 1.45 1.49

2.2.2. Cost-Value Approach

The AHP method must be applied twice to gather the CVA method, considering both
value and cost criteria. Then, a two-dimension graph is generated with the cost on the
x-axis and the value on the y-axis, both as percentages [Karlsson and Ryan 1997].

Once the graph is plotted, the requirements are classified with high, medium, or
low priority based on each requirement’s value and cost. The graph is divided equally into
three distinct areas: (i) requirements with a high priority, i.e., high ratio between value
and cost (a value/cost ratio greater than 2); (ii) requirements with a medium priority,
i.e., medium ratio between value and cost (a value/cost ratio between 0.5 and 2); and (iii)
requirements with a low priority, i.e., with a low ratio between value and cost (a value/cost
ratio lower 0.5) [Karlsson and Ryan 1997].

The strengths of the CVA technique are: (i) it considers two aspects (value and
cost), (ii) it groups the requirements by priority levels, (iii) it has a systematized process,
and (iv) it allows the comparison of criteria of different categories.

Among the alternatives for requirements prioritization, to the best of our knowl-
edge, CVA is a good option for our problem since the technique relates two distinct as-
pects in a single analysis, and it groups requirements by three priority levels.

3. Related Works
This section presents related research regarding our problem. We can divide these into
two categories: (i) AHP and CVA use experiences and (ii) a CA selection. We describe
some related works on both topics, emphasizing the similarities to and differences from
our approach.

In addition to the works discussed in the following sections, there are
some other related works in the literature. Cost-Benefit Analysis Method
(CBAM) [Kazman et al. 2002] and Economics-driven Software Architecture
[Thurimella and Padmaja 2014] are examples of approaches that analyze the eco-
nomic impact of architecture decisions. Value-based Software Engineering (VBSE)
[Boehm and Huang 2013] and VALUE framework [Mendes et al. 2018] address a
broader view of value in software-related decisions. Unlike our approach, all four works
consider one aspect only (cost or value). Value-based approaches (e.g., VBSE and
VALUE framework) consider value as personal attitudes and beliefs that may influence

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



64

requirements. In this paper, we consider value as the effort required to code a given
requirement.

3.1. Both AHP and CVA use experiences

Dorado et al. [Dorado et al. 2014] proposed a method to choose software for engineer-
ing simulations, considering educational criteria such as interface, learning effectiveness,
portability, help support, and cost. Chiam et al. [Chiam et al. 2013] developed an ap-
proach for selecting quality attributes in software. The authors present a method that
considers risk management and process integration with the AHP method. An indus-
try case study is performed to validate their method. Unlike our approach, authors in
[Dorado et al. 2014, Agarwal et al. 2013, Chaudhary et al. 2016, Chiam et al. 2013] ap-
ply the AHP method to a single value not relating two criteria: value and cost.

CVA was originally proposed by Karlsson and Ryan [Karlsson and Ryan 1997],
and they prioritized the requirements of two case studies: the radio access network
project (with 14 generic requirements), and the performance management traffic record-
ing project (with 11 generic requirements). The goal of the first case study was to iden-
tify and specify requirements for a mobile system. The second case study is a soft-
ware system for recording and analyzing traffic. Chung, Hough, and Ojoko-Adams
[Chung et al. 2006] prioritized software security requirements using the CVA method.
Authors in [Karlsson and Ryan 1997, Chung et al. 2006] apply CVA to relate the value
and cost of requirements in particular projects. However, they do not evaluate their re-
sults to compare different CA. Although the original purpose of the CVA method is to
compare requirements [Karlsson and Ryan 1997], to the best of our knowledge, this is
the first work to apply CVA to compare and select CAs.

The work most similar to ours is summarized by [Galster et al. 2010]. Galster,
Eberlein, and Moussavi [Galster et al. 2010] propose a method for systematic selection of
architecture styles (called SYSAS). SYSAS selects an architectural style (e.g., Pipe-and-
filter, Client-server) based on desired properties of the system and properties of architec-
tural elements (e.g., persistence, migratability, synchronicity, efficiency, scalability). This
work compares the results of SYSAS with case studies judged by experts. Unlike our
approach, which applies the CVA method with two aspects (cost and value), the authors
in [Galster et al. 2010] conducted their study on a single aspect of importance (through
the AHP method). Moreover, our work ranks the set of requirements by computational
architecture.

3.2. Selection of CA

Christensen [Christensen 2009] proposes an architecture for future mobile applications
based on cloud computing, web services, smart mobile devices, and context. In their
study, smart mobile devices use sensors to get the application context, making applica-
tions smarter. These applications can be enhanced with the advantages of cloud comput-
ing to exceed the traditional capabilities of mobile devices. In the same context, Huang,
Xing, and Wu [Huang et al. 2013] argue that mobile devices have become one of the ma-
jor service providers. The authors propose a new model of mobile cloud computing with
the focus on the user. In this approach, devices, clouds, and servers are highly interactive.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



65

In contrast to our paper, the authors in [Christensen 2009, Huang et al. 2013] propose
improvements to a particular architecture.

The software architecture analysis method (SAAM) is a method proposed by Kaz-
man, Abowd, and Clements [Kazman et al. 1996] that facilitates the choice of CA based
on scenarios, brief narratives of expected or anticipated system uses. SAAM creates
scenarios (brief narratives about system uses) to provide a view of how the analyzed sys-
tem satisfies quality attributes in various usage contexts. The method is composed of
five activities: (i) description of the candidate architecture, (ii) creation of scenarios, (iii)
evaluation of each scenario (in isolation), (iv) evaluation of the interaction between the
scenarios, and (v) determining the weight of each scenario and its interactions. These ac-
tivities follow a defined flow, and it can be applied for early problem detection and enable
a better understanding of the architecture. For example, in the case study presented in the
paper, the authors found limitations in obtaining specific requirements such as portability.
Although this work lists conflicts between requirements and architectures, the proposed
method is manual, and it does not classify requirements according to priority.

4. Our SCVA and MMACA methods for CA
The problem of choosing a CA is directly proportional to the number of requirements.
This means that increasing the number of requirements increases the complexity of mak-
ing a decision, and increases the complexity of determining the requirements with high
priority.

Based on a literature search for non-functional requirements, our approach
presents a set of requirements that guide the developers’ choice of a CA for a given appli-
cation. This approach comprises of (i) a set of requirements, grouped into four software
development stages, (ii) a slightly modified CVA method (SCVA) to analyze priority re-
quirements by CA, and (iii) a method for choosing the most appropriate CA (MMACA)
based on a subset of the requirements. Examples of users of the SCVA method are soft-
ware architects and senior developers, while examples of users of the MMACA method
are other developers.

Fig. 1 summarizes the design of our approach. We emphasize that SCVA (step 2)
has a set of requirements as input (step 1) and three subsets of this set of requirements
(subsets with the highest priority requirements in desktop, web, and cloud CA: one subset
for each CA) as output. The MMACA (step 4) has a set of requirements such as input
(step 3) and CAs most appropriate for these requirements (in order of suggestion: first,
second, and third) as output. Step 3 groups the requirements into low, medium, and high
priority by CA. This step is the SCVA method output and MMACA method input.

In this section, we present the set of requirements considered, and both the SCVA
and MMACA methods in detail.

4.1. The Set of Requirements
This section details the set of requirements necessary to perform both SCVA and MMASA
methods. Initially, we present the adopted strategy to search and select requirements.
Next, we evaluate the set of requirements. Finally, we present the final set of requirements
and the methodology overview.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



66

Web

Desktop

Cloud

MMACA 
method

SCVA 
method

1st

2nd

3rd

CAs:

Set of 
requirements

(1) (2)
(3)

(4)

- high priority
- medium priority
- low priority

Figure 1. Design of our approach: SCVA has a set of requirements as input
and the highest priority requirements by CA as outputs; MMACA has a set of
requirements such as input and CAs most appropriate for these requirements as
output.

4.1.1. Requirement search

The set of requirements was constructed based on the guideline proposed by
[Kitchenham and Charters 2007]. We conducted a literature search for papers that present
non-functional requirements. This literature search was conducted by two researchers
with moderate experience in requirements engineering. The search method was as fol-
lows:

1. a search string was constructed to cover the largest amount of related works. Af-
ter tuning, the field string was “software engineering” AND (requirements OR
features) AND architecture AND (desktop OR web OR cloud)

2. the string was applied in four databases: Science Direct, IEEE Xplore, ACM Dig-
ital Library, and Springer

3. finally, papers were evaluated, and three exclusion criteria were applied: (i) pa-
pers not written in English, (ii) papers not published in a journal, a conference,
or a workshop, and (iii) papers unrelated to CA, computational architecture, or
development.

The final set of papers was [Kazman et al. 1996, Huang et al. 2013,
Beaty et al. 2009, Garg and Singhal 2017, Chieu et al. 2009, Cunsolo et al. 2009,
Chien et al. 2003, Rewatkar and Lanjewar 2010]. Appendix A presents the titles, au-
thors, and references of the papers. For each paper, we identified the non-functional
requirements, a total of 30 items. We identified the requirements from the literature with
the help of two developers. Both developers have a master’s degree and more than 5
years of experience in the field.

4.1.2. Requirement evaluate and filter

Six developers evaluated the set of 30 requirements. The participating developers were
asked to answer the characterization questionnaire regarding the professional experience
time (in years), self-evaluation (in Likert scale), and experience in requirements engineer-
ing (in Likert scale). Four developers have considerable experience (in Likert scale) with
requirements engineering and two developers have moderate experience (in Likert scale).
Table 3 summarizes the other answers reported by each developer interviewed. Since
cloud computing is a recent paradigm, developers for this CA have less professional ex-
perience compared to other CAs.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



67

Table 3. Profile of the six developers who evaluated the 30 requirements
Desktop Web Cloud

Professional experience time (in years)
< 1 1 0 3
1−5 2 1 3
6−10 0 3 0
11−15 1 2 0
> 15 2 0 0

Self-evaluation (in Likert scale)
None (novice) 0 0 3
Little 2 0 1
Moderate 1 3 0
High 0 1 2
Very high (expert) 3 2 0

Each developer reported whether or not each requirement was significant for a
comparative study among CAs. Thus, each requirement received a binary evaluation y-n,
indicating that y developers answered ‘yes’ (yes, the requirement is relevant to the study),
and n developers answered ‘no’ (no, the requirement is not relevant to the study).

Given each developer’s opinion, we applied the Kappa Coefficient
[Fleiss et al. 1971] to determine the level of agreement between responses and then
to determine a set of relevant requirements.

Considering the analysis made by [Cyr and Francis 1992], our Kappa Coefficient
for the set of 30 requirements according to the developers’ opinions was k = 0.784. Re-
sults between 0.61 and 0.80 mean substantial agreement [Cyr and Francis 1992].

To increase the level of agreement, we removed the requirements with the high-
est degrees of discrepancy: 4-2 and 3-3 evaluations (remaining only 6-0 and 5-1). As a
consequence, five requirements were removed: Application integration with local hard-
ware (y-n evaluation: 3-3), Access to customer resources (y-n evaluation: 4-2), De-
velopment environment (y-n evaluation: 4-2), Debug (y-n evaluation: 4-2), and Cold
Backup (y-n evaluation: 3-3). Our Kappa Coefficient for the 25 remaining requirements
was k = 0.853. Kappa Coefficient greater than 0.81 indicates almost perfect agreement
[Cyr and Francis 1992].

4.1.3. The final set of requirements

With 25 requirements and high agreement, we generated a single set with the most sig-
nificant requirements. Although y-n evaluation was carried out regardless of CA, each
requirement has advantages and disadvantages depending on the architecture. For in-
stance, portability may have a higher cost in desktop rather than web architecture, or the
scalability test can be more appropriate in a cloud architecture. Table 4 presents the 25
requirements.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



68

Table 4. Requirements used in both methods and their respective stages of de-
velopment as well as the y-n type evaluation

id Requirement Development stage evaluation y-n
1 Security Planning 6-0
2 Hardware consumption Planning 5-1
3 Scalability Planning 6-0
4 Difficulties in architecture Planning 5-1
5 Session Planning 6-0
6 Availability Planning 6-0
7 Database Planning 6-0
8 Portability Development 6-0
9 User interface Development 6-0

10 Development productivity Development 5-1
11 Multiplatform development Development 6-0
12 Resource elasticity Development 6-0
13 Persistence Development 5-1
14 Collaborative development Development 5-1
15 Concurrency Development 6-0
16 Classic tests Test 6-0
17 End user test Test 5-1
18 Scalability test Test 6-0
19 Device sync test Test 5-1
20 Update and maintenance Operation 6-0
21 Deploy Operation 6-0
22 Backup Operation 5-1
23 Incompatibilities Operation 5-1
24 Scalability of processing Operation 5-1
25 Control of unexpected events Operation 5-1

The set of requirements was organized into four developments stages according
to lifecycle [van Lamsweerde 2009]: (i) planning consists of the first two steps (require-
ments analysis and definition, and software design) and it contains the requirements that
must be considered before coding; (ii) development is the stage of implementation (cod-
ification) of a software; (iii) test is responsible for verifying the correctness of a design
requirement; and (iv) operation involves the requirements derived from the use and main-
tenance of a system (Table 4). For each requirement in the set of requirements, we sum-
marize the development stage and binary evaluation y-n.

Both SCVA and MMACA methods employ the stable artifact present in Ta-
ble 4. While the SCVA method groups the requirements by CA and priority, the
MMACA method lets the stakeholders select the set of the most important requirements
for their projects and then the MMACA method determines the set of the most appro-
priate CA for those requirements. A description of each requirement is available at
https://github.com/FORMAS/detFSR.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys

https://github.com/FORMAS/detFSR


69

Requirements are grouped into four development steps to reduce the
number of comparisons. Since n requirements need (n∗(n−1))

2
comparisons

[Karlsson and Ryan 1997], 25 requirements need 300 comparisons. The division by
stages of development allows comparisons by each group (Table 4 shows the number
of requirements for each stage of development). Thus, the comparisons are reduced from
300 to 70: 21 for planning, 28 for development, 6 for testing, and 15 for the operation
stage.

Furthermore, the division emphasizes the development stage of requirements with
higher priority and allows the methods to focus on the current stage of the application.
For instance, developers of a given application may need to know the requirements with
high priority for the operation and test stages, but not the planning stage. On the other
hand, the operation stage may not be important for an application until the planning stage.

After that, we obtain the set of requirements: a set of 25 requirements, grouped
by development stage, and with a high degree of agreement among the developers inter-
viewed. The set of requirements is applied in different ways depending on the proposed
method.

4.1.4. Overview

Fig. 2 summarizes the design applied to obtain the set of requirements. Initially, we
conducted a literature review of papers about non-functional requirements for projects
in desktop, web or cloud architectures (step 1). We selected eight papers, and we ex-
tracted 30 different non-functional requirements (step 2). Next, we invited six devel-
opers to evaluate the set of 30 requirements (step 3) and the Kappa Coefficient result
was k = 0.784 (step 4). Results between 0.61 and 0.80 mean substantial agreement
[Cyr and Francis 1992]. Since almost perfect agreement requires values greater than 0.81,
we performed a new round. In the new round, five requirements evaluated as 4-2 and 3-3
were removed (step 5), and the new Kappa Coefficient result of k = 0.853 (step 6). These
steps resulted in a set of 25 requirements (step 7). The developers participated only in the
process of judging the requirements (step 3).

Extraction

Kappa
Coefficient

30	requirements

k	=	0.784

Relevant
requirements

Kappa
Coefficient

Set	of
requirements

k	=	0.853

25	requirements6	developers

Literature
review

8	papers

Exclusion
criteria

25	requirements

(1)

(2)

(3)

(4)
(5)

(6)

(7)

Figure 2. Overview of the steps performed to obtain the set of requirements. Six
developers participated in the evaluation (step 3).

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



70

4.2. A Slightly Modified CVA (SCVA) for CA selection

Our Slightly Modified CVA (SCVA) for CA selection is introduced in two parts: descrip-
tion and SCVA use example.

4.2.1. Description of SCVA

SCVA determines which requirements have the highest priority in desktop, web, and
cloud architectures. For this: (i) we separate the set of requirements according to the
development stage, (ii) we apply the CVA method for each development stage, and fi-
nally, (iii) we list the highest priority requirement for each CA. The SCVA method must
run once for each CA.

Fig. 3 illustrates the design of our SCVA method: CVA is applied individually
for each development stage (CVA1, CVA2, CVA3, and CVA4), and individual results are
presented in two analyses (R1 and R2). The first analysis (R1) compares the aspects in-
dividually for each CA, i.e., given one requirement and one aspect, we can emphasize in
which CA this requirement is more (or less) costly (or valuable). On the other hand, in R2

the requirements are grouped by CA, i.e., given one requirement and one CA, we can em-
phasize the priority of this requirement (high, medium, or low) and what its development
stage is. The cost and value of each requirement are available in Appendix B.

25
	re
qu
ire
m
en
ts

Planning	
(7	requirements)

Development	
(8	requirements)

Test
(4	requirements)

Operation
(6	requirements)

CVA4

CVA3

CVA2

CVA1

R1	
	(stacked

column	charts)

R2
(cost-value
diagram)

SCVA	Approach

Figure 3. Design of our SCVA method: requirements are grouped into develop-
ment stages, the CVA method (AHP twice) is applied for each step (CVA1, CVA2,
CVA3, and CVA4), and the results are grouped into two analyses (R1 and R2).

While our SCVA applies a particular set of requirements in this work, it can be
performed with any other set of requirements. For this, it is only necessary to follow the
steps described in the next section.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



71

4.2.2. SCVA use example

Considering that SCVA applies CVA, which in turn applies AHP twice, we show part of
the requirements hierarchy process below. The example considers requirements of the
operation stage (Table 4) of a project in cloud computing architecture. In this section we
present the analysis for the cost aspect, and then, we perform the analysis considering the
value aspect, as required by the CVA method.

Table 5 presents the n× n matrix after two-by-two comparison by developers for
the cost aspect, operation stage, and cloud architecture.

Table 5. An example of two-by-two evaluation for the cost of operating require-
ments (id 20 to 25) of cloud applications

id 20 id 21 id 22 id 23 id 24 id 25
Update and maintenance (id 20) 1 1 3 1/3 1 1/3
Deploy (id 21) 1 1 1 1/3 1/3 1/3
Backup (id 22) 1/3 1 1 1/5 1/5 1/5
Incompatibilities (id 23) 3 3 5 1 1 1/3
Scalability of processing (id 24) 1 3 5 1 1 1
Control of unexpected events (id 25) 3 3 5 3 1 1

Requirements are ranked according to the AHP method. Table 6 presents the
classification for the comparison in Table 5. The “rank” column indicates the degree
of the requirements, and the “order” column indicates the position of the requirements
in the set. In this case, the order is inversely proportional to the cost. For instance,
Control of unexpected events is the most costly requirement, while Backup is the cheapest
(considering the CA cloud).

Table 6. An example of hierarchical requirements based on cost
Requirement Rank Order (Cost)

Update and maintenance 11.7% 4
Deploy 7.9% 5
Backup 5.0% 6

Incompatibilities 21.8% 2
Scalability of processing 21.5% 3

Control of unexpected events 32.1% 1

As the consistency ratio (CR) in this example is 5.2% ≤ 10%, the evaluation is
consistent.

Steps (including the calculation of CR) were performed using the online tool
BPMSG AHP Online System1 and Excel worksheets.

1http://bpmsg.com/academic/ahp_calc.php

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys

http://bpmsg.com/academic/ahp_calc.php


72

4.3. Method for Choosing the Most Appropriate CA (MMACA)

Our Method for Choosing the Most Appropriate CA (MMACA) is introduced in two
parts: description and the MMACA use example.

4.3.1. Description of MMACA

Choosing the most appropriate CA is a task that involves many factors be-
cause the best CA depends on the business model and application features
[Patterson and Hennessy 2013, Bessa et al. 2016]. Generally, this choice is made infor-
mally according to business rules. The choice based on a set of requirements may be com-
plex or at least leaves room for discussion. Therefore, we present a method to assist in
choosing the most appropriate CA for a given set of requirements. The MMACA method
applies w requirements of the set of requirements present (Table 4), where 1 ≤ w ≤ 25.

Among the requirements in the set (Table 4), let us suppose that stakeholders
determine which requirements are the most important for a project, creating a subset with
w requirements. Based on the values of our comparisons, this subset can be used to
suggest the most appropriate CA (an example is described in Table 7). For this analysis,
our method for choosing the most appropriate CA (MMACA) follows these steps:

1. among the requirements in the set (Table 4), stakeholders determine the most im-
portant requirements, creating one subset with w requirements

2. for each requirement in the subset, the ratio between value (in %) and cost (in %) is
calculated considering CAs individually (according to [Karlsson and Ryan 1997])

3. after estimating value divided by cost, a geometric mean of ratios for each CA is
calculated

4. finally, CA with the highest geometric mean is the most appropriate.

Stakeholders may have different opinions about the same project. This means that
given the same project, if two stakeholders apply the MMACA method, both can use
different inputs.

4.3.2. MMACA use example

Since requirements value and cost are available for different CAs, the decision of which
one to use can be taken more securely. For instance, assume that requirements with ids 2,
9, 14, 21, and 22 (according to Table 4) are important for a project. In this case, the next
step is to calculate the relationship between value and cost of each important requirement
for each of the three CAs. Finally, we must calculate the geometric mean for each CA.
Thus, the mean of the highest value represents the most appropriate CA.

Based on the method presented and the data presented in Table 7, the best choice
for input above (2, 9, 14, 21, and 22) is web architecture, and cloud architecture as the
second option. In contrast, assuming input with 4, 6, 8, 12, 16, 18, 21, and 24, the best
choice is cloud architecture, and desktop the second choice.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



73

Table 7. Example of architecture choice based on an input with ids 2, 9, 14, 21,
and 22. Each row (except the last one) represents the ratio between value and
cost for a particular requirement. Columns group the ratios by each CA. The last
row presents the geometric mean of the ratios for each CA

id Requirement Ratio between value and cost for
Desktop Web Cloud

2 Hardware consumption 0.81 0.77 7.67
9 User interface 0.69 0.99 0.27

14 Collaborative development 0.69 1.67 1.97
21 Deploy 0.69 1.57 1.56
22 Backup 12.52 9.00 0.70

Geometric mean 1.27 1.78 1.35

Both methods can be applied jointly or independently: stakeholders may apply
SCVA only, MMACA only, or both SCVA and MMACA, depending on the current stage
of the project. For instance, the SCVA method may determine the most priority require-
ments of projects that are in the early planning stage. On the other hand, the MMACA
method may determine the most appropriate CA of projects that are in the final coding
stage (or implementation stage). When it is necessary to apply both SCVA and MMACA,
one possibility is to consider the output of the SCVA method as the input of the MMACA
method.

5. Validation of SCVA and MMACA approaches

We performed the SCVA method with the set of requirements (Table 4) and MMACA
method with some inputs to evaluate our approaches. To illustrate the SCVA and
MMACA methods, (i) we analyze the requirements and classify the requirements in low,
medium, and high priority, and (ii) we classify the most appropriate CA for ten generic
projects and one real project (middleware for DaaS and SaaS [Ribeiro et al. 2019]).

Before the two validation rounds, we collected professional data about desktop,
web, and cloud architectures. Initial steps were (i) the construction of the design of the
experiment and (ii) filling a form. Design is an essential artifact in software engineering
experiments, and the form aims to collect developers’ professional experience in years
and self-evaluation.

Stakeholders must follow the sequence of activities proposed by our methods.
These activities generate input and output artifacts during their execution. In order to
evaluate the effectiveness and efficiency of our methods, we are interested in two research
questions:

RQ1. Can developers apply our methods and get the outputs? This research question
explores the effectiveness of our approach by assessing whether developers can
apply our methods according to their expertise.

RQ2. Do the developers agree with the outputs? This research question explores the
efficiency of our approach by assessing whether developers agree with the results

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



74

obtained by our approach. In other words, we are interested in whether our results
match the requirements of the evaluated projects.

Both RQ1 and RQ2 are important because our method would be unfeasible if
stakeholders could not carry out the activities and generate the artifacts correctly. There-
fore, RQ1 and RQ2 are related because RQ1 assesses the feasibility of carrying out the
method and RQ2 assesses whether the results agree.

5.1. SCVA method validation

Fig. 4 illustrates the SCVA method validation. After two initial steps, the 30 requirements
initially collected were judged and evaluated by six developers. They judged the relevance
of each requirement generally, i.e., without considering a particular project. We created a
unique set with the most important requirements to apply AHP to the SCVA method with
the answers.

Set	of
requirements

6	developers

Characterization
questionnaire

Design

(30	requirements)

Unique	AHP
25	requirements

SCVA	use
example

Validation	Judgment

SCVA	Method	Validation

Figure 4. Details of the SCVA method validation. Six developers participated in
this validation.

After applying the SCVA method, the requirements grouped by aspect reveal the
CA in which the requirements have more (or less) value or cost. Stacked column charts
provide a macro view of data. In our design, shown in Fig. 3, we call this analysis of
R1. Fig. 5 describes the requirements considering the value aspect, and Fig. 6 illustrates
the cost view. For example, according to Fig. 5, requirement 16 is more relevant for
desktop architecture than for cloud architecture, and requirement 19 is more relevant for
web architecture than desktop architecture. In contrast, as Fig. 6 shows, requirement 1
has a higher cost in desktop than web architecture, and requirement 25 has a higher cost
in cloud architecture than desktop architecture.

Fig. 7, 8, and 9 present the cost-value diagram for each CA, showing the require-
ments with the highest priorities. Both diagrams are useful for the composition of the
requirements as they are grouped according to the ratio between value and cost values.
We present this analysis in our design of Fig. 3 as R2.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Desktop
Web
Cloud

Figure 5. Comparison of the value (y-axis) of requirements (x-axis) for desktop,
web, and cloud. This figure depicts value of each requirement in an architecture.
Requirements are represented by id, according to Table 4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15 16 17 18 19 20 21 22 23 24 25

Desktop
Web
Cloud

Figure 6. Comparison of the cost (y-axis) of requirements (x-axis) for desktop,
web, and cloud. This figure depicts cost of each requirement in an architecture.
Requirements are represented by id, according to Table 4.

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

1819

20

21

22

23

2425

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50 55 60
Cost (percent)

High priority

Medium priority

Low priority

Development Test OperationDevelopment stages: Planning

V
a
lu

e
 (

p
e
rc

e
n
t)

Figure 7. CVA with prioritized requirements in the desktop architecture (repre-
sented by id, according to Table 4).

Some open issues are important to discuss: (i) requirement 13 has high priority
in both CAs, (ii) Requirements 5, 13, and 22 have high priority in desktop and web ar-
chitectures, as well as 13 and 17 has high priority in web and cloud architectures, (iii)
requirements 3, 4, 6, 7, 8, 9, 11, 12, 16, 19, 21, 23, 24, and 25 are not present in the set of

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



76

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50 55 60
Cost (percent)

High priority

Medium priority

Low priority

Development Test OperationDevelopment stages: Planning

V
a
lu

e
 (

p
e
rc

e
n
t)

Figure 8. CVA with prioritized requirements in the web architecture (represented
by id, according to Table 4).

1

2

3

4

5

6

7

8 9

10
11

12

13

14

15
16

17

18

19

20

21

22

23

24
25

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50 55 60
Cost (percent)

High priority

Medium priority

Low priority

Development Test OperationDevelopment stages: Planning

V
a
lu

e
 (

p
e
rc

e
n
t)

Figure 9. CVA with prioritized requirements in the cloud architecture (represented
by id, according to Table 4).

high priority for no CA, (iv) only desktop architecture does not contain requirements of
the test step as a high priority, and (v) all CAs have at least one planning, development,
and operation requirement which is high priority.

Concerning the low priority requirements, (i) all CAs have requirement 8, (ii)
desktop architecture does not contain any planning and test step requirements, (iii) web
architecture does not contain any planning step requirements, and (iv) cloud architecture
does not contain any operation step requirements.

These steps enabled the evaluation of RQ1. The developers applied our SCVA
method to rank the requirements (Table 4) according to priority. This evaluation suggests
the effectiveness of SCVA method since the developers were able to apply our approach

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



77

based on their expertise. Given that evaluating the expertise is subjective, we assume that
the developers’ opinion for the SCVA method is optimal.

The output of the SCVA method is the input of the MMACA method. Although
running the SCVA method is laborious (i.e., AHP eight times), this method needs to be
performed only once for each set of requirements. On the other hand, the MMACA
method can be performed several times for each SCVA method’s output. We emphasize
that the benefits outweigh the cost of applying our approach.

5.2. MMACA method validation

We validate the MMACA method in two ways: 10 generic projects and one real project.
First, we judge projects from 10 developers. For this, each developer was invited to in-
dicate the relevant requirements of their respective projects. In this evaluation, we were
not interested in the type or context of the project. Our interest was only in the rele-
vant requirements of the projects, the suggested CA by MMACA method, and the ac-
tual CA. After performing the MMACA method for each project, we evaluated whether
CA suggested by the MMACA method corresponded to the actual CA of each project.
In the second evaluation, we evaluated a real project: Middleware for DaaS and SaaS
[Ribeiro et al. 2019]. In this evaluation, we invited four developers of this project to
nominate the middleware’ relevant requirements. After that, we performed the MMACA
method with the obtained requirements and evaluated whether the suggested CA corre-
sponds to the actual CA of the middleware. We choose all projects and developers based
on convenience sampling [Wohlin et al. 2012]. The following subsections describe both
evaluations.

5.2.1. Generic Projects

Fig. 10 illustrates the MMACA method validation in the first evaluation. After designing
construction and characterization questionnaire, we performed the MMACA method on
ten generic projects.

10 developers

Characteriza�on
ques�onnaireDesign MMACA use

example

MMACA Method Valida�on

Figure 10. Flowchart of MMACA method validation for generic projects. Ten
developers participated in this validation.

To evaluate the MMACA method, we executed the proposed algorithm with ten
developers. Each developer chose a subset with the most relevant requirements (among
the set of requirements) considering a generic project. In this case, this subset was

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



78

composed of requirements that developers considered essential for their project. Ta-
ble 8 presents the results obtained by the MMACA method for each of the ten evaluated
projects.

Table 8. Projects submitted to the MMACA method

Most relevant requirements Most Appropriate CA
First Second Third

1 1, 3, 5-11, 13, 14, 16-20, 22, 24, 25 Web Desktop Cloud
2 1, 3, 6, 8, 9, 15-17, 20, 24 Web Cloud Desktop
3 1, 2, 5-11, 13, 14, 16, 17, 20-22, 25 Web Cloud Desktop
4 1, 3, 6-12, 14-18, 20, 22, 24, 25 Web Cloud Desktop
5 1, 3, 6-10, 14, 16, 17, 19, 20, 23, 25 Cloud Web Desktop
6 1, 2, 3, 7, 9, 10-14, 16, 17, 20-25 Web Cloud Desktop
7 1, 3, 6, 7, 9, 11, 13, 15-18, 20-22 Web Cloud Desktop
8 1, 3, 6, 7, 9-11, 13, 16-21, 24 Web Cloud Desktop
9 1-3, 6-11, 13, 14, 16, 17, 20, 23, 25 Cloud Web Desktop

10 1, 6-9, 11, 13, 16-19, 24, 25 Web Desktop Cloud

After executing the MMACA method, each developer evaluated the result for their
project. In 80% of the simulations, the method indicated the project’s current architecture
as the first option. In 90% of the projects, the developer stated that the order determined
by the MMACA method conforms to the evaluated project’s requirements. These data
demonstrate the effectiveness of our method.

These steps enabled the evaluation of RQ1 and RQ2. The developers applied our
MMACA method to rank CA that best fulfills a set with the most relevant requirements,
and 90% of the developers agreed with the results. By doing this, we evaluated the effec-
tiveness and efficiency of our method.

5.2.2. Real Project

Middleware for DaaS and SaaS (MIDAS) provides interoperability between cloud ser-
vices such as Software as a Service (SaaS), Data as a Service (DaaS), and Database
as a Service (DBaaS) [Ribeiro et al. 2019]. MIDAS mediates communication between
SaaS and DaaS/DBaaS transparently. The current version of MIDAS is hosted on Heroku
(https://www.heroku.com), an open cloud that provides enough storage space and a com-
plete platform for the project. We select MIDAS to evaluate our MMASA method since
we have access to the middleware source code and developers, and this allows us to eval-
uate features using an existing framework. Fig. 11 illustrates the use example of the
MMACA method in the middleware MIDAS.

In step (1), each of the four developers pointed out the requirements of set (Table
4) that MIDAS should implement. At the end of this first step, each requirement was asso-
ciated with an evaluation y-n, indicating how many developers voted ‘yes’ (yes, MIDAS
must implement such a requirement) and ‘no’ (no, MIDAS should not implement such a

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



79

Set of 
requirements

Requirements 
selection

Kappa 
Coefficient

Exclusion 
criteria

Kappa 
Coefficient

Middleware' 
relevant 

requirements

k = 0.58
(1)

(2)

(4)

k = 0.65
(3)

14 requirements

25 requirements

4 developers

Figure 11. Flowchart of MMACA method validation in a real project: middleware
MIDAS. Four developers participated in this validation.

requirement). For instance, the requirement availability (id 6) was evaluated 3-1 (3 votes
‘yes’ and 1 vote ‘no’), while the requirement security (id 1) was evaluated 1-3 (1 vote
‘yes’ and 3 votes ‘no’). Table 9 displays the compiled evaluations of the four developers
for the current 25 requirements of the set of requirements.

Table 9. Evaluations (in the yes-no format) of 25 requirements of the set for MI-
DAS

id y-n
1 1-3
2 3-1
3 3-1
4 1-3
5 0-4

id y-n
6 3-1
7 3-1
8 2-2
9 1-3
10 3-1

id y-n
11 4-0
12 2-2
13 1-3
14 3-1
15 3-1

id y-n
16 3-1
17 2-2
18 4-0
19 2-2
20 4-0

id y-n
21 3-1
22 1-3
23 4-0
24 4-0
25 2-2

In step (2), the level of agreement among the four developers was estimated based
on the Kappa coefficient [Fleiss et al. 1971]. The result indicated a moderate agreement
(k = 0.58).

In step (3), to increase the level of agreement of the collected opinions, the eval-
uations without an absolute majority (that is, evaluations of type 2-2: 2 votes ‘yes’ and
2 votes ‘no’) were removed. The requirements Portability, Resource elasticity, End user
test, Device sync test, and Control of unexpected events (ids 8, 12, 17, 19, and 25, respec-
tively) were removed, and the level of agreement was again evaluated as strong (k = 0.65)
in step (4).

The four steps enabled the construction of a set of 14 requirements that MIDAS
should hypothetically implement (if not already implemented). This set contains require-
ments with 4-0 and 3-1 evaluations. We eliminated requirements with 0-4 and 1-3 evalua-
tions since most developers voted ‘no’, and the requirements with 2-2 evaluations (step 3).
The 14 requirements considered were the following: Hardware consumption, Scalability,
Availability, Database, Development productivity, Multiplatform development, Collabo-
rative development, Concurrency, Classic tests, Scalability test, Update and maintenance,
Deploy, Incompatibilities, and Scalability of processing (ids 2, 3, 6, 7, 10, 11, 14-16, 18,
20, 21, 23, and 24, respectively).

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



80

Finally, the MMACA method was performed based on 14 requirements important
for MIDAS and the cloud was suggested as the most appropriate CA for the middleware,
and web as the second option.

Since MIDAS is hosted in the Heroku cloud, this evaluation enabled the evaluation
of RQ1 and RQ2. Developers applied our MMACA method to rank CA that best fulfills
a real project (middleware MIDAS). Our result indicated cloud computing architecture
as the first option for MIDAS, exactly the current CA. In this way, we evaluated the
effectiveness and efficiency of our method.

6. Discussion

Information systems are increasingly complex, and this complexity is also directly pro-
portional to the number of stakeholders and functional and non-functional requirements
that should be fulfilled in a software project. While some requirements are codified into
the development stage, others will be provided by CA. Choosing the most appropriate CA
for a set of requirements is still a challenge because different architectures offer a distinct
set of requirements and ways for this fulfillment. This choice is usually direct assigned to
developers, not end-users.

Both SCVA and MMACA methods aim to systematize RE activities to choose
the most appropriate CA for a set of requirements. While our SCVA method supports
developers based on the literature (i.e., domain’s stable knowledge), our MMACA method
focuses on application-specific demands. Software engineers can also use our methods
to evolve its artifacts by adding new requirements and adapt to requirements previously
analyzed.

Our proposal intends to group consolidated (i.e., literature) and stakeholders’ spe-
cific knowledge to point out the most appropriate CA. Several works aim to present
and discuss different CA requirements fulfillment. Our proposal is related to the ex-
isting literature in two ways. First, requirements listed by our related works (e.g.,
[Kazman et al. 1996]) can compose our SCVA method. For this purpose, new require-
ments need to be compared with previous others (as shown in Fig. 3) from the three
architectures’ perspective, and so generating a new set of requirements, new stacked col-
umn charts (R1 in Fig. 3), and new cost-value diagrams (R2 in Fig. 3). Second, CA listed
by other works (e.g., [Christensen 2009] and [Huang et al. 2013]) can also be part of our
approach. In that case, new CAs need to be included in the requirements comparison
activity (CVA method step in Fig. 3), generating new new stacked column charts (R1 in
Fig. 3) and new cost-value diagrams (R2 in Fig. 3). The new requirements or CAs addition
implies the need to perform our methods in an incremental approach since the MMACA
method is performed based on the SCVA method results.

The approach generalization is related to replication our and new studies as the
generalization of one architecture’s knowledge depends on a generic set of requirements
to cover a CA’s characteristics in detail. We can gradually make the MMACA method
more accurate by applying the SCVA method several times based on a more refined set
of requirements. In summary, our methodology can be generalized by (i) expanding the
set of requirements used in both methods (Table 4) and (ii) reproducing the methods

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



81

until stabilizing the knowledge about the applicability of a given CA for the same set
of requirements. Our experiments are available at FORMAS Research Group website2

and may be replicated in other studies. We hope that sharing this methodology version
provides future contributions and improvements.

7. Threats of Validity
Our approach is subject to limitations. According to [Wohlin et al. 2012], threats to the
validity of a study contribute to the trustworthiness of the results. In this section, we
present the threats identified during this research.

Conclusion validity addresses the ability to obtain a correct conclusion
from the relationship between the treatment and the outcome of the experiment
[Wohlin et al. 2012]. In this paper, so that developers’ experience did not influence the re-
sults, we consulted developers with varied and random experience, without any grouping.
Furthermore, the number of developers interviewed could be considered low.

Internal validity addresses any factor that may affect the study’s independent vari-
ables without the researchers’ knowledge [Wohlin et al. 2012]. In this paper: (i) as differ-
ent developers could interpret the same requirement differently, we give a brief description
of each requirement, (ii) since there is an initial complexity to the AHP method, the com-
parisons were collected through interviews, (iii) in order to homogenize the selection of
the developers, all the interviews were conducted on a voluntary basis, and (iv) in order
for a developer’s response not to influence another developer’s response, the interviews
were carried out individually.

Construct validity addresses factors (e.g., design or social) which make it difficult
to generalize the results [Wohlin et al. 2012]. In this paper, to avoid social threats, de-
velopers were not evaluated based on performance. Additionally, the MMACA method
assumes that stakeholders are aware of the non-functional requirements of their projects.

External validity addresses conditions that limit the generalization of the results of
our experiment to industrial practice [Wohlin et al. 2012]. In this paper, in order to facili-
tate generalization, only developers with some experience participated in the experiment.

8. Conclusion
This paper analyzes a set of requirements to compare desktop, web, and cloud architec-
tures. Moreover, we investigate the effects of choosing the architecture that best fulfills a
set of requirements. First, requirements were classified based on the AHP method. These
requirements were then grouped into priority levels based on the CVA method. High pri-
ority requirements simplify the comparison of CAs. Similarly, the most appropriate CA
analysis helps decisions where requirements are particularly important for an information
system.

Based on the questions RQ1 and RQ2, our results suggest the effectiveness and
efficiency of the approach. Our research found that the CVA method is useful for prioritiz-
ing requirements, choosing a CA according to an information system’s requirements. As

2http://formas.ufba.br/page/downloads

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys

http://formas.ufba.br/page/downloads


82

contributions, we compare different CAs based on a set of non-functional requirements
(according to the SCVA method), and we present a strategy to facilitate the choice of a
CA based on the potential requirements of a project (according to the MMACA method).
As expected, we emphasize that the most appropriate CA depends on the requirements,
available resources, and stakeholders’ priorities.

The major limitation of this study is that the CVA method does not consider the
dependencies among requirements. For instance, a low priority requirement may be re-
quired for the implementation of a high priority requirement.

Although we are aware of the limitations, validation answered the research ques-
tions positively. We intend to refine our strategy to provide better results. Additionally, we
are working on (i) adding fog computing architecture [Bonomi et al. 2012] to the analysis
of a new paradigm that emerges as an extension of cloud computing, and (ii) applying our
MMACA method in more projects to generalize our results.

Acknowledgement

Elivaldo Lozer Fracalossi Ribeiro would like to thank FAPESB (Foundation for Research
Support of the State of Bahia) for financial support (BOL0631/2016).

References

[Achimugu et al. 2014] Achimugu, P., Selamat, A., Ibrahim, R., and Mahrin, M. N. (2014).
A systematic literature review of software requirements prioritization research. Infor-
mation and Software Technology, 56(6):568–585.

[Agarwal et al. 2013] Agarwal, E., Aharwal, R., Garg, R. D., and Garg, P. K. (2013). De-
lineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth
System Science, 122(3):887–898.

[Ahuja et al. 2016] Ahuja, H., Sujata, and Purohit, G. N. (2016). Understanding require-
ment prioritization techniques. In 5th International Conference on Computing, Com-
munication and Automation (ICCCA), pages 257–262, Greater Noida, India. IEEE.

[Armbrust et al. 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Kon-
winski, A., Lee, G., Patterson, D. A., Rabkin, A., and Zaharia, M. (2009). Above the
clouds: A berkeley view of cloud computing. Technical report.

[Beaty et al. 2009] Beaty, K., Kochut, A., and Shaikh, H. (2009). Desktop to cloud trans-
formation planning. In 23rd IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–8, Rome, Italy. IEEE.

[Belout and Gauvreau 2004] Belout, A. and Gauvreau, C. (2004). Factors influencing
project success: the impact of human resource management. International Journal
of Project Management, 22(1):1 – 11.

[Bessa et al. 2016] Bessa, S., Valente, M. T., and Terra, R. (2016). Modular Specification
of Architectural Constraints. In 10th Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS), pages 31–40, Maringá, PR, BR. SBC.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



83

[Bhandari and Sehgal 2014] Bhandari, P. and Sehgal, R. (2014). An evaluation of methods
to prioritize requirements. International Journal of Computer Science and Mobile
Computing, 3(4):1336–1341.

[Boehm and Huang 2013] Boehm, B. and Huang, L. (2013). Value-Based Software Engi-
neering: Reinventing “Earned Value” Monitoring and Control . ACM Software Engi-
neering Notes, 28(2):1–7.

[Bonomi et al. 2012] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog Comput-
ing and Its Role in the Internet of Things. In 1st Workshop on Mobile Cloud Computing
(MCC), pages 13–16, New York, NY, USA. ACM.

[Bourque and Fairley 2014] Bourque, P. and Fairley, R. E. (2014). SWEBOK: Guide to the
Software Engineering Body of Knowledge. IEEE Computer Society.

[Chaudhary et al. 2016] Chaudhary, P., Chhetri, S. K., Joshi, K. M., Shrestha, B. M., and
Kayastha, P. (2016). Application of an Analytic Hierarchy Process (AHP) in the GIS
interface for suitable fire site selection: A case study from Kathmandu Metropolitan
City, Nepal. Socio-Economic Planning Sciences, 53(1):60–71.

[Chiam et al. 2013] Chiam, Y. K., Staples, M., Ye, X., and Zhu, L. (2013). Applying a Selec-
tion Method to Choose Quality Attribute Techniques. Inf. Softw. Technol., 55(8):1419–
1436.

[Chien et al. 2003] Chien, A., Calder, B., Elbert, S., and Bhatia, K. (2003). Entropia: archi-
tecture and performance of an enterprise desktop grid system. Journal of Parallel and
Distributed Computing, 63(5):597–610.

[Chieu et al. 2009] Chieu, T. C., Mohindra, A., Karve, A. A., and Segal, A. (2009). Dy-
namic scaling of web applications in a virtualized cloud computing environment. In
6th International Conference on E-Business Engineering (ICEBE), pages 281–286,
Macau, China. IEEE.

[Christensen 2009] Christensen, J. H. (2009). Using RESTful web-services and cloud com-
puting to create next generation mobile applications. In 24th International Conference
Companion on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 627–634, Portland, Oregon, USA. ACM.

[Chung et al. 2006] Chung, L., Hung, F., Hough, E., and Ojoko-Adams, D. (2006). Secu-
rity Quality Requirements Engineering (SQUARE): Case Study Phase III (CMU/SE-
2006-SR-003). Technical report, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh.

[Cunsolo et al. 2009] Cunsolo, V. D., Distefano, S., Puliafito, A., and Scarpa, M. (2009).
Volunteer computing and desktop cloud: The Cloud@Home paradigm. In 8th Inter-
national Symposium on Network Computing and Applications (NCA), pages 134–139,
Cambridge, MA, USA. IEEE.

[Cyr and Francis 1992] Cyr, L. and Francis, K. (1992). Measures of clinical agreement
for nominal and categorical data: The kappa coefficient. Computers in Biology and
Medicine, 22(4):239 – 246.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



84

[Dorado et al. 2014] Dorado, R., Gómez-Moreno, A., Torres-Jiménez, E., and López-Alba,
E. (2014). An AHP application to select software for engineering education. Computer
Applications in Engineering Education, 22(2):200–208.

[dos Santos et al. 2016] dos Santos, J. R. F., Albuquerque, A. B., and Pinheiro, P. R. (2016).
Requirements Prioritization in Market-Driven Software: A Survey Based on Large
Numbers of Stakeholders and Requirements. In 10th International Conference on
the Quality of Information and Communications Technology (QUATIC), pages 67–72,
Lisbon, PT. IEEE.

[Erdogmus 2009] Erdogmus, H. (2009). Cloud computing: Does nirvana hide behind the
nebula? IEEE Software, 26(2):4–6.

[Fleiss et al. 1971] Fleiss, J. et al. (1971). Measuring nominal scale agreement among many
raters. Psychological Bulletin, 76(5):378–382.

[Galster et al. 2010] Galster, M., Eberlein, A., and Moussavi, M. (2010). Systematic selec-
tion of software architecture styles. IET Software, 4(5):349–360.

[Garg and Singhal 2017] Garg, U. and Singhal, A. (2017). Software requirement prioritiza-
tion based on non-functional requirements. In 7th International Conference on Cloud
Computing, Data Science Engineering (Confluence), pages 793–797, Noida, India.
IEEE.

[Huang et al. 2013] Huang, D., Xing, T., and Wu, H. (2013). Mobile cloud computing ser-
vice models: A user-centric approach. IEEE Network, 27(5):6–11.

[Karlsson and Ryan 1997] Karlsson, J. and Ryan, K. (1997). A cost-value approach for
prioritizing requirements. IEEE Software, 14(5):67–74.

[Karlsson et al. 1998] Karlsson, J., Wohlin, C., and Regnell, B. (1998). An evaluation of
methods for prioritizing software requirements. Information and Software Technology,
39(14):939–947.

[Kaur and Aggrawal 2013] Kaur, B. P. and Aggrawal, H. (2013). Exploration of Success
Factors of Information System. International Journal of Computer Science Issues,
10(2):226–235.

[Kazman et al. 1996] Kazman, R., Abowd, G., Bass, L., and Clements, P. (1996). Scenario-
based analysis of software architecture. IEEE software, 13(6):47–55.

[Kazman et al. 2002] Kazman, R., Asundi, J., and Klein, M. (2002). Making architecture
design decisions: An economic approach. Technical Report CMU/SEI-2002-TR-035,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Khajeh-Hosseini et al. 2010] Khajeh-Hosseini, A., Sommerville, I., and Sriram, I. (2010).
Research challenges for enterprise cloud computing. CoRR, 1(18):1–11.

[Kitchenham and Charters 2007] Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software Engineering. Technical report,
Keele University and Durham University Joint Report.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



85

[Maenhaut et al. 2016] Maenhaut, P.-J., Moens, H., Ongenae, V., and Turck, F. D. (2016).
Migrating legacy software to the cloud: Approach and verification by means of two
medical software use cases. Softw. Pract. Exper., 46(1):31–54.

[Mell and Grance 2011] Mell, P. M. and Grance, T. (2011). SP 800-145. The NIST Defini-
tion of Cloud Computing. Technical report, MISSING.

[Mendes et al. 2018] Mendes, E., Marı́n, P. R., Freitas, V., Baker, S., and Atoui, M. A.
(2018). Towards improving decision making and estimating the value of decisions in
value-based software engineering: the VALUE framework. Softw. Qual. J., 26(2):607–
656.

[Olsson et al. 2019] Olsson, T., Wnuk, K., and Gorschek, T. (2019). An empirical study
on decision making for quality requirements. Journal of Systems and Software,
149(1):217 – 233.

[Pallis 2010] Pallis, G. (2010). Cloud computing: The new frontier of internet computing.
IEEE Internet Computing, 14(5):70–73.

[Patterson and Hennessy 2013] Patterson, D. A. and Hennessy, J. L. (2013). Computer Or-
ganization and Design: The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers Inc., 3 edition.

[Pegoraro and Paula 2017] Pegoraro, C. and Paula, I. C. A.-s. d. (2017). Requirements
processing for building design: a systematic review . Production, 27(1):1–18.

[Rewatkar and Lanjewar 2010] Rewatkar, L. R. and Lanjewar, U. L. (2010). Implemen-
tation of cloud computing on web application. International Journal of Computer
Applications, 2(8):28–32.

[Ribeiro et al. 2019] Ribeiro, E. L. F., Vieira, M. A., Claro, D. B., and Silva, N. (2019).
Interoperability between saas and data layers: Enhancing the midas middleware. In
Muñoz, V., Ferguson, D., Helfert, M., and Pahl, C., editors, Cloud Computing and
Services Science (CLOSER 2018), chapter 6, pages 102–125. Springer.

[Riegel and Doerr 2015] Riegel, N. and Doerr, J. (2015). A Systematic Literature Review of
Requirements Prioritization Criteria. In 21st Requirements Engineering: Foundation
for Software Quality (REFSQ), pages 300–317, Cham. Springer International Publish-
ing.

[Ruhe 2005] Ruhe, G. (2005). Software Release Planning, chapter 13, pages 365–393.

[Saaty 1987] Saaty, R. W. (1987). The analytic hierarchy process: what it is and how it is
used. Mathematical Modelling, 9(3):161–176.

[Saaty 1980] Saaty, T. L. (1980). The Analytic Hierarchy Process, Planning, Piority Setting,
Resource Allocation. McGraw-Hill.

[Santos et al. 2016] Santos, R., Albuquerque, A., and Pinheiro, P. R. (2016). Towards the
Applied Hybrid Model in Requirements Prioritization. Procedia Computer Science,
91(1):909–918.

[Taylor et al. 2010] Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2010). Software
Architecture - Foundations, Theory, and Practice. Wiley.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



86

[Thurimella and Padmaja 2014] Thurimella, A. K. and Padmaja, T. M. (2014). Economic
models and value-based approaches for product line architectures. In Mistrik, I., Bah-
soon, R., Kazman, R., and Zhang, Y., editors, Economics-Driven Software Architec-
ture, pages 11–36. Morgan Kaufmann, Boston.

[van Lamsweerde 2009] van Lamsweerde, A. (2009). Requirements Engineering: From
System Goals to UML Models to Software Specifications. Wiley Publishing.

[Voda 2014] Voda, I. (2014). Migrating Existing PHP Web Applications to the Cloud. In-
formatica Economica, 18(4):62–72.

[Wang et al. 2009] Wang, H. J., Moshchuk, A., and Bush, A. (2009). Convergence of Desk-
top and Web Applications on a Multi-service OS. In 4th Conference on Hot Topics in
Security (USENIX), pages 1–6, Berkeley, CA, USA. USENIX Association.

[Wohlin et al. 2012] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and
Wessln, A. (2012). Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[Xu et al. 2012] Xu, X., Zhang, B., and Lin, J. (2012). Management information system
requirements analysis model based on the agile development. In 1st International
Conference on Control Engineering and Communication Technology (ICCECT), pages
986–990, Liaoning, China. IEEE.

[Zampoglou et al. 2016] Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.,
Bouwmeester, R., and Spangenberg, J. (2016). Web and social media image
forensics for news professionals. In Heravi, B. R. and Zubiaga, A., editors, Social
Media in the Newsroom, Papers from the 2016 ICWSM Workshop, volume WS-16-19
of AAAI Workshops, Cologne, Germany. AAAI Press.

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



87

Appendix A Papers retrieved

Table 10. Papers retrieved from the literature review

Title Authors Reference
Scenario-based analysis of software
architecture

Kazman, R., Abowd, G.,
Bass, L., and Clements, P.

[Kazman et al.
1996]

Mobile cloud computing service
models: A user-centric approach

Huang, D., Xing, T., and Wu,
H.

[Huang et al.
2013]

Desktop to cloud transformation
planning

Beaty, K., Kochut, A., and
Shaikh, H.

[Beaty et al.
2009]

Software requirement prioritization
based on non-functional require-
ments

Garg, U. and Singhal, A. [Garg and Sing-
hal 2017]

Dynamic scaling of web applica-
tions in a virtualized cloud comput-
ing environment

Chieu, T. C., Mohindra, A.,
Karve, A. A., and Segal, A.

[Chieu et al.
2009]

Volunteer computing and desk-
top cloud: The Cloud@Home
paradigm

Cunsolo, V. D., Distefano, S.,
Puliafito, A., and Scarpa, M.

[Cunsolo et al.
2009]

Entropia: architecture and perfor-
mance of an enterprise desktop grid
system

Chien, A., Calder, B., Elbert,
S., and Bhatia, K.

[Chien et al.
2003]

Implementation of cloud comput-
ing on web application

Rewatkar, L. R. and Lanje-
war, U. L.

[Rewatkar and
Lanjewar 2010]

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys



88

Appendix B Requirements cost and value

Table 11. Cost (%), value (%) and ratio (cost/value) of each requirement by CA.

Desktop Web Cloud
id cost value ratio cost value ratio cost value ratio
1 19.6 29.4 0.66 24.5 7.9 3.10 18.0 22.8 0.78
2 3.5 4.3 0.81 6.2 8.1 0.76 35.3 4.6 7.67
3 16.5 18.9 0.87 14.8 22.7 0.65 10.3 17.8 0.57
4 3.5 4.4 0.79 3.1 4.3 0.72 3.6 3.6 1.00
5 9.4 2.7 3.48 12.0 3.7 3.24 6.1 7.2 0.84
6 15.2 13.1 1.16 21.3 26.1 0.81 17.4 18.8 0.92
7 32.3 27.2 1.18 18.1 27.2 0.66 9.4 25.2 0.37
8 8.4 26.0 0.32 4.5 19.9 0.22 5.1 11.3 0.45
9 13.7 19.9 0.68 14.1 14.3 0.98 5.7 21.0 0.27

10 13.2 12.3 1.07 11.5 7.0 1.64 9.5 3.8 2.50
11 4.6 10.3 0.44 5.2 7.1 0.73 6.5 5.6 1.16
12 10.2 14.3 0.71 10.2 25.8 0.39 15.8 33.7 0.46
13 38.1 3.2 11.90 28.6 3.3 8.66 38.0 15.7 2.42
14 2.7 3.9 0.69 9.0 5.4 1.66 5.9 3.0 1.96
15 9.2 10.0 0.92 16.9 17.3 0.97 13.6 5.9 2.30
16 62.9 55.5 1.13 30.3 24.1 1.25 11.6 57.7 0.20
17 22.6 27.5 0.82 38.9 18.8 2.06 23.4 5.0 4.68
18 10.2 13.5 0.75 13.0 33.1 0.39 57.9 19.6 2.95
19 4.2 3.4 1.23 17.8 24.1 0.73 7.2 17.7 0.40
20 4.2 43.8 0.09 14.8 15.2 0.97 22.3 11.7 1.90
21 8.7 12.6 0.69 8.0 5.1 1.56 12.3 7.9 1.55
22 55.1 4.4 12.52 43.2 4.8 9.00 3.5 5.0 0.70
23 15.4 10.9 1.41 4.0 21.9 0.18 17.8 21.8 0.81
24 9.3 19.4 0.47 17.2 28.3 0.60 22.9 21.5 1.06
25 7.3 8.9 0.82 12.8 24.7 0.51 21.2 32.1 0.66

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
https://sol.sbc.org.br/journals/index.php/isys


	Introduction
	Background
	Computational Architectures (CA)
	Requirements Prioritization
	Analytic Hierarchy Process
	Cost-Value Approach


	Related Works
	Both AHP and CVA use experiences
	Selection of CA

	Our SCVA and MMACA methods for CA
	The Set of Requirements
	Requirement search
	Requirement evaluate and filter
	The final set of requirements
	Overview

	A Slightly Modified CVA (SCVA) for CA selection
	Description of SCVA
	SCVA use example

	Method for Choosing the Most Appropriate CA (MMACA)
	Description of MMACA
	MMACA use example


	Validation of SCVA and MMACA approaches
	SCVA method validation
	MMACA method validation
	Generic Projects
	Real Project


	Discussion
	Threats of Validity
	Conclusion
	Papers retrieved
	Requirements cost and value

