Identification and Evaluation of Shortages, Human and Technical Factors in Quality Assurance in Airborne Software in Brazil

Authors

DOI:

https://doi.org/10.5753/isys.2022.2375

Keywords:

Software, Certification, Airborne, Quality

Abstract

Context: recent aeronautical products strongly use Embedded Aeronautical Software, where quality assurance is essential. Research problem: this research involves discovering which human and technical needs and factors are involved in the Aeronautical Embedded Software Quality Assurance (GQSEA) activity in the Brazilian aeronautical industry. Solution: the solution involved identifying and evaluating the shortcomings, human and technical factors of GQSEA in Brazil, applying a Survey with 25 participants, and later an interview with 8 participants. Justification and motivation: in regulated environments, such as aviation, human and technical factors are essential for quality assurance. However, the authors did not find similar work addressing this issue. Additionally, identifying these factors and shortcomings can help structure actions such as training in RTCA DO-178C and defining GQSEA metrics. Conclusion: this work identified shortcomings, technical and human factors from the execution of a Survey raised by the community involved in the execution of the Survey involving the target audience. An interview with 8 GQSEA professionals also analyzed these shortcomings and factors.

Downloads

Download data is not yet available.

References

Andres-Jimenez, J., Medina-Merodio, J.-A., Fernandez-Sanz, L., Martinez-Herraiz, J.-J., and Gonzalez-De-Lope, J. (2020). A framework for evaluating the standards for the production of airborne and ground traffic management software. IEEE Access, 8.

Barros, L., Hirata, C., Marques, J., and Ambrosio, A. M. (2020). Generating test cases to evaluate and improve processes of safety-critical systems development. In 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).

Boscarioli, C., Araujo, R. M., and Maciel, R. S. (2017). ´ Grand Research Challenges in Information Systems in Brazil 2016-2026. Sociedade Brasileira de Computação.

Chrissis, M. B., Konrad, M., and Shrum, S. (2011). CMMI for Development. Guidelines for Process Integration and Product Improvement. Pearson.

Georges, M. R. R. and Passarella, F. (2020). Sustentabilidade na Indústria Aeronáutica Brasileira. Appris.

Helgeson, J. W. (2009). The Software Audit Guide. ASQ Quality Press.

Imamura, M., Costa, L. A., Pereira, B., Ferreira, F. H., Fontão, A., and dos Santos, R. (2020). Fatores de governança em sistemas-de-sistemas: Análise de uma instituição pública brasileira. In Anais do V Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software, pages 31–40, Porto Alegre, RS, Brasil. SBC.

Kasunic, M. (2005). Designing an Effective Survey. Software Engineering Institute.

Lemes, M. J. R., Altoé, F. O., Domiciano, A. J., and Carbonari, A. (2003). Software certification in airborne systems: process and challenges. In 2003 Latin American on Dependable Computing (LADC).

Marcil, L. (2012). Realizing do-178c’s value by using new technology: Oot, mbdv, tqc, fm. In 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC).

Marques, J. and Cunha, A. (2017). Verification scenarios of onboard databases under the rtca do-178c and the rtca do-200b. In 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC).

Marques, J. and Cunha, A. (2018). Tailoring traditional software life cycles to ensure compliance of rtca do-178c and do-331 with model-driven design. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC).

Marques, J., Hayashi, S., and Barros, L. (2019). Caracterização de cenários e garantias de segurança em carregamentos de software aeronáutico. In Anais do V Workshop de Regulação, Avaliação da Conformidade e Certificação de Segurança, pages 1–10, Porto Alegre, RS, Brasil. SBC.

Marques, J., Yelisetty, S., and Barros, L. (2021). A framework for loadable airborne systems. IEEE Aerospace and Electronic Systems Magazine, 36(5):38–47.

Marsden, J., Windisch, A., Mayo, R., Grossi, J., Villermin, J., Fabre, L., and Aventini, C. (2019). Ed-12c/do-178c vs. agile manifesto – a solution to agile development of certifiable avionics systems. In 9th European Congress of Embedded Real-Time Software and Systems.

Monteiro, E. L. and Maciel, R. S. P. (2020). Maturity models architecture: A large systematic mapping. iSys - Brazilian Journal of Information Systems, 13(2):110–140.

Moy, Y., Ledinot, E., Delseny, H., Wiels, V., and Monate, B. (2013). Testing, or formal verification: Do-178c alternatives and industrial experience. IEEE Software, 30(3):50–57.

Paz, A. and Bousaidi, G. (2016). On the exploration of model-based support for do- 178c-compliant avionics software development and certification. In IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW).

Pernstal, J., Feldt, R., Gorschek, T., and Florén, D. (2019). Communication problems in software development - a model and its industrial application. International Journal of Software Engineering and Knowledge Engineering, 29(10).

Ribeiro, S. A., Schmitz, E. A., Alencar, A. J. S. M. d., and Silva, M. F. d. (2017). A síndrome do deadline: Origem, causas e implicações no processo de desenvolvimento de software. iSys - Brazilian Journal of Information Systems, 10(2):30–47.

Rierson, L. (2013). Developing Safety-Critical Software: A Practical Guide for Aviation Software and DO-178C Compliance. CRC Press.

RTCA (1992). Do-178b software considerations in airborne systems and equipment certification.

RTCA (2011a). Do-178c software considerations in airborne systems and equipment certification.

RTCA (2011b). Do-331 model-based development and verification supplement to do- 178c and do-278a.

RTCA (2011c). Do-332 object-oriented technology and related techniques supplement to do-178c and do-278a.

RTCA (2011d). Do-333 formal methods supplement to do-178c and do-278a.

RTCA (2016). Do-200b standards for processing aeronautical data.

Sarkis, A., Marques, J., and Dias, L. A. V. (2020). Direcionadores para o desenvolvimento baseado em modelos de software embarcado aeronáutico. Cadernos do IME : Série Informática, 44(1).

Slavov, T. M. R., Martins, L. E. G., and Marques, J. (2020). A software audit model for safety-critical domains. In 39th International Conference on Computer Safety, Reliability and Security (SAFECOMP), Lisbon, Portugal.

VanderLeest, S. and Buter, A. (2009). Escape the waterfall: Agile for aerospace. In 2009 IEEE/AIAA 28th Digital Avionics Systems Conference.

Westfall, L. (2020). The Certified Software Quality Engineer Handbook. Quality Press.

Yelisetty, S., Barros, L., Slavov, T., and Marques, J. (2021). Um levantamento de fatores humanos e técnicos em garantia de qualidade de projeto de software embarcado aeronáutico no brasil. In Anais do VI Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software, pages 1–10, Porto Alegre, RS, Brasil. SBC.

Yelisetty, S. M., Marques, J., and Tasinaffo, P. M. (2015). A set of metrics to assess and monitor compliance with rtca do-178c. In 34th IEEE/AIAA Digital Avionics Systems Conference.

Youn, W., Hong, S., Oh, K., and Sung, O. (2015). Software certification of safety-critical avionic systems: Do-178c and its impacts. IEEE Aerospace and

Published

2022-10-18

How to Cite

Yelisetty, S., Barros, L., Slavov, T., & Marques, J. C. (2022). Identification and Evaluation of Shortages, Human and Technical Factors in Quality Assurance in Airborne Software in Brazil. ISys - Brazilian Journal of Information Systems, 15(1), 20:1–20:24. https://doi.org/10.5753/isys.2022.2375

Issue

Section

Extended versions of selected articles