
Journal of the Brazilian Computer Society, 2022, 28:1, doi: 10.5753/jbcs.2022.2744
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Model for evaluation of multiple abilities programming
problems in online massive environments
Fabiana Zaffalon Ferreira [Federal University of Rio Grande | fabinhazaffalon@gmail.com]
Ricardo Lemos de Souza [Federal University of Rio Grande | rcrdsou@hotmail.com]
Andre Prisco Vargas [Federal University of Rio Grande | prisco.c3@gmail.com]
Davi de Lemos Teixeira [Federal University of Rio Grande | daviltcomp@gmail.com]
Michel Neves dos Santos [Federal University of Rio Grande | nevess.michel@gmail.com]
Wanderson de Oliveira Paes [Federal University of Rio Grande | wandersonpaeswop3@gmail.com]
Rafael Augusto Penna dos Santos [Federal University of Rio Grande | rapennas@gmail.com]
Neilor Tonin [Integrated Regional University of Alto Uruguai and Missões | neilor@uricer.edu.br]
Paulo Jefferson Dias de Oliveira Evald [Federal University of Rio Grande | paulo.evald@gmail.com]
Silvia Silva da Costa Botelho [Federal University of Rio Grande | silviacb.botelho@gmail.com]

 Center for Computational Sciences (C3), Federal University of Rio Grande, Rodovia RS-734, s/n, Rio Grande, RS,
96203-900, Brazil.

Received: 21 June 2022 • Accepted: 06 December 2022 • Published: 30 December 2022

AbstractResearch indicates human being is endowed with multiple intelligences, skills, and abilities. In the context
of education, many exercises demand multiple skills from students to successfully solve them in different areas of
knowledge. In computer science, computer programming is one of the skills that involves the use of multiple
skills for problem-solving, where problems can be solved in more than one way (paths). On massive environments
for teaching programming, it is common for automatic assessment systems to observe only the final result of the
student’s interaction with the learning object, not identifying the individual interaction of multiple skills needed
to solve the problem nor identifying a solution path adopted by the student. Many models were proposed based
on Elo models, which use performance expectation, and Item Response Theory, but these models do not consider
the various paths to solve problems. The objective of this work is to propose a model also based on performance
expectation, which individually estimates multiple abilities of students in the context of massive online education,
assuming problems have more than one solution, and there is access only to the final result (right or wrong). An
experimental setup is proposed to validate the model, involving the use and analysis of the proposed model through
an experiment in a database, named beecrowd, and a case study with programming students. Model results are
satisfactory, since: i) it is possible to treat the student’s abilities individually, as well as to follow the evolution of
each ability over time; ii) it is possible to predict the paths adopted by them according to the student’s abilities;
iii) the model also shows positive results when integrated with a recommendation system, recommending problems
compatible with the student’s abilities.

Keywords: Model, Abilities, Problems, Programming

1 Introduction

With an increasing number of massive online environments
for education, there are several challenges associated with
these new teaching and learning processes. Among them, it
is emphasized the assessment methods, where it is sought af-
ter to infer and represent the construction of skills and abili-
ties acquired by students, not through a punctual assessment;
but through assessments that follow the student’s progress
over time.
There are systems named Online Judge, which are mas-

sive systems that evaluate the algorithm source codes, com-
monly utilized on programming competitions and known for
the large repository of problems that can be used to teach
programming skills [Wasik et al., 2018]. These systems are
characterized as automatic assessment systems, whose veri-
fication is centered in the output of submitted the script, ac-
cording to the input data [Giordano et al., 2021]. Both, the in-
put and output data, are standard problem information; there-

fore, if the algorithm is correct, the output data is correctly
generated, considering a known input [Galasso and Moreira,
2014]. After the assessment process, the students receive an
automatic feedback, notifying them if the submitted script
returned a correct or wrong output.
It is very important to assess student progress and provide

them a meaningful feedback to support their learning pro-
cess, which is traditionally done by a professor [Gerdes et al.,
2010]. However, in very large classes, to provide a relevant
feedback in a short time is hard, and error-prone, as it is diffi-
cult to maintain consistent and fair judgments for all students
[Gerdes et al., 2010]. Therefore, the programming exercises
are generally assessed by the resulting program, and the as-
sessment criteria vary from professor to professor, as well as
among universities. Some professors adopt holistic assess-
ment and others detail analytical assessment criteria [Ala-
Mutka, 2005]. In the holistic assessment, an algorithm or
program can receive a grade or concept, which can consider
the student approval even if its code did not work well due

https://doi.org/10.5753/jbcs.2022.2744
https://orcid.org/0000-0001-8777-9560
mailto:fabinhazaffalon@gmail.com
https://orcid.org/0000-0003-0864-1147
mailto:rcrdsou@hotmail.com
https://orcid.org/0000-0001-6873-3700
mailto:prisco.c3@gmail.com
https://orcid.org/0000-0002-1064-9634
mailto:daviltcomp@gmail.com
https://orcid.org/0000-0002-9613-9650
mailto:nevess.michel@gmail.com
https://orcid.org/0000-0002-4324-6866
mailto:wandersonpaeswop3@gmail.com
https://orcid.org/0000-0001-6775-7241
mailto:rapennas@gmail.com
https://orcid.org/0000-0002-4993-9532
mailto:neilor@uricer.edu.br
https://orcid.org/0000-0002-5383-053X
mailto:paulo.evald@gmail.com
https://orcid.org/0000-0002-8857-0221
mailto:silviacb.botelho@gmail.com

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

to compilation errors, because the professor observes and as-
sesses the solution development. The same algorithm would
be reproved in the analytical criteria, because it would not be
compiled [Ala-Mutka, 2005].
There are studies that analyze the use of Online Judge sys-

tems as a pedagogical strategy for teaching programming and
discuss their characteristics [Giordano et al., 2021]. The ad-
vantage is the immediate feedback of these systems, allowing
the students to update their programs and submit them again
to the system [Giordano et al., 2021; Francisco et al., 2018].
Pedagogically, Online Judge systems can be a stimulus their
to the traditional programming teaching methods, due to in-
stantaneous feedback provided to the students, exactly when
they need, allowing them to proceed at own pace and promot-
ing self-learning [Francisco et al., 2018].
On the other hand, the system’s feedback does not indicate

the correct use of programming techniques and resources,
nor does it indicate where and why the compilation error oc-
curred [Giordano et al., 2021]. It is important highlight that
due to adoption of this automatic assessment, the students
can create the habit of solving problems by trial and error,
based only in the system test, missing the learning inherent
in developing your own tests [Francisco et al., 2018]. Al-
though automatic assessment systems have evolved, they are
still limited in assessing whether educational goals have in-
deed been achieved. Thus, the main challenge of automatic
evaluation systems is to evaluate programming exercises as
close as possible to a professor’s assessment, since human
evaluation allows a complex perception of different nuances
involved in the design of a solution [de Oliveira and Oliveira,
2015].
The use of Online Judge systems to support programming

teaching has been extensively explored. In this sense, some
interesting works were developed, such as: BOCA [de Cam-
pos and Ferreira, 2004], Codeforces 1, Timus Online Judge 2,
CodeBench 3, SPOJ Brasil 4, Indian CodeChef 5, beecrowd
6, among others. In this kind of system, one of the challenges
is to estimate the multiple abilities of students, because these
online platforms did not allow monitor the student’s interac-
tion with the learning object, returning as feedback only a
message about correctness of the submitted program.
The beecrowd7 [Bez et al., 2021], is widely used in compe-

titions. However, it also provides exercises aimed at learning
programming, being used as a didactic tool for worldwide
professors. In this virtual environment, users select the prob-
lems to solve; submit their solution through a source code,
one or more times until success or withdrawal, and receive
automatic feedback.
Research shows that humans are endowed with various

intellectual skills, indicating that intelligence is something
broader [Smole, 1999a]. Besides, competence can be de-
fined as the global or practical domain of an everyday sit-
uation, and skill as domain of a specific operation or ac-

1Link: https://codeforces.com
2Link: https://acm.timus.ru
3Link: http://codebench.icomp.ufam.edu.br/
4Link: https://br.spoj.com/
5https://www.codechef.com/
6Link: https://www.beecrowd.com.br/judge/
7Until 2021, the beecrowd identity was URI Online Judge.

tions that meet one or more competences [Perrenoud, 1999].
Therefore, in the educational area, skill is a practical appli-
cation of a certain competence to solve a complex situation
[França, 2020]. In the present work, competence is consid-
ered as the ability to elaborate a problem solution and skills
are the specific knowledge applied to solve it. Furthermore,
competence can be compounded of several skills; however,
a skill does not belong only to a competency, since it can
contribute to diverse competencies [Brasil, 2005].
It is highlighted that many practical exercises, in the dif-

ferent areas of knowledge, require more than one skill to be
solved. Students in the computing area, in addition to the
programming skill itself, referring to the particularities of
the programming language, also need mathematical skills,
logical reasoning, text interpretation, among others [Mor-
eira et al., 2018; Robins, 2010]. There are several studies
that point out the different skills involved in programming
problems. The role of Computational Thinking as an im-
portant contribution to problem-solving has often been dis-
cussed nowadays, not only in the computing area; but also in
general and propaedeutic disciplines. Naturally, in comput-
ing, some skills of Computational Thinking can be identified
in solving algorithms [Barr and Stephenson, 2011]. In many
cases, the same problem can be solved in several ways [Falck-
embach and Araujo, 2013], and each way to solve a problem
is composed of a set of skills. In fact, the students have dis-
tinct abilities [Falckembach andAraujo, 2013], consequently
finding out different solutions.
To estimate the student’s abilities, there are models based

on performance expectations, whose basic principle is to up-
date the abilities according to the expected result after the
subject’s interaction with the object. If a student with high
ability solves correctly an easy problem, the results will not
be surprising and the skill update will be small; otherwise,
the update will be bigger [Pelánek, 2016]. Among the mod-
els based on performance expectation, stands out: the Item
Response Theory (IRT) [Baker, 2001] and the Elo System
Classification [Elo, 1978].
The IRT is a set of mathematical models that seeks to rep-

resent the probability of an individual answering correctly an
item, depending on the item’s parameters, such as: difficulty,
discrimination and hit by chance, as well as the student’s abil-
ity [Baker, 2001; de Andrade et al., 2000]. The probability
of an individual giving a correct answer to an item can be
expressed as follows: the greater the individual’s ability, the
greater the probability of being correct [de Andrade et al.,
2000]. There are IRT models that depend on the item nature,
number of population involved, and amount of skills to be
estimated [Baker, 2001; de Andrade et al., 2000]. There are
also Multidimensional IRT (MIRT) models, which include
items that require more than one skill from student [Baker,
2001; de Andrade et al., 2000]. MIRT models can be com-
pensatory or non-compensatory. In a compensatory model,
it is assumed that a low skill can be compensated by a higher
skill. On the other hand, non-compensatoryMIRTmodels as-
sume that the student must have each of the skills at relevant
levels to answer correctly an item [Park et al., 2019].
The Elo classification system [Elo, 1978], originally used

in international chess ranking evaluations, classify players
through their game history, using a statistical classification

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

that calculates the competitor abilities. In education, Elo sys-
tem establishes that a student is considered a player and the
problem is considered his opponent [Pelánek, 2016; Prisco
et al., 2018]. Both, the Elo model and the IRT system, es-
timate a student’s abilities, using different estimation proce-
dures. Generally speaking, IRT assumes that student’s skills
are constants, while Elo system has been implemented to al-
low changes in their skills over time, considering a single
skill [Pelánek, 2016].
From Elo model and IRT system, some interesting models

for student skill ability estimation were proposed. Themodel
M-ERS (Multidimensional extension of the Elo Rating Sys-
tem) [Park et al., 2019], which is the Multidimensional Ex-
tension of the Elo Rating System, uses the MIRT model to
track the history of student’s abilities and item difficulty, in
a continuous way. This model assumes that a single item
may involve more than one skill. In this way, the authors
extended the standard Elo model, which updates only a sin-
gle skill, to allow a simultaneous update of several skills
based on a compensatory MIRT model. Other interesting
approach is the Mixed Compensation Multidimensional IRT
[Moissinac and Vempaty, 2020], which incorporates the two
MIRT models, compensatory and non-compensatory. This
model assumes that the item can have multiple compensat-
ing and non-compensating abilities simultaneously, and can
only rely on a subset of abilities, rather than all of them.
In the context of massive online education, the adoption of

skills assessment techniques, based on expectations and per-
formancemethods, may not be successful in the case of learn-
ing objects that have different solutions, and that involve dif-
ferent sets of skills. The fact of partially observing the sub-
ject’s interaction with the object in relation to each required
skill, depending on the way in which the student solved the
problem, makes it difficult to analyze the effective perfor-
mance in relation to the expectation predicted by the model.
Therefore, in this sense, the objective of this work is to pro-
pose a model, based on performance expectation, that indi-
vidually estimates themultiple abilities of students in the con-
text of massive online education, where there are not access
to the source code nor other characteristics of the solution,
such as compilation time, execution time, memory occupa-
tion, source code size are observed. Thereby, considering
that the problems can be solved in different ways, the model
estimates the probability of success in each way, according
to the student’s abilities.
The remainder of this work is given as follows: Section 2

discusses the online judges, challenges of teaching and learn-
ing algorithms, as well as competencies and abilities. Next,
in Section 3, the proposed model is presented, followed by
model validation in Section 4. The results are presented in
Section 5, and the conclusion is given is Section 6.

2 Online Judge
Massive environments are online platforms where thousands
of students interact with thousands of learning objects [Var-
gas et al., 2019]. Therefore, they cannot be compared with
traditional courses. For computing area, there are platforms
aimed at evaluating source codes of algorithms in the most

diverse programming languages. These platforms are called
Online Judges. Their goal is to provide a secure, reliable and
continuous assessment based on algorithms that are submit-
ted by users distributed all over the world. Many universi-
ties offer these systems to help their students in their prepa-
ration for competitive programming championships [Wasik
et al., 2018]. They are also used by professors, for creation of
virtual classrooms, or simply by students who want to train
and/or solve the programming problems available on these
platforms [Bez et al., 2014]. As was previously discussed,
Online Judge systems provide automatic feedback, which is
immediate, allowing students to redo and correct their mis-
takes and resubmit their solutions for reassessment. [Gior-
dano et al., 2021; Francisco et al., 2018].
The platform beecrowd [Bez et al., 2014], fromBrazil, cur-

rently has students from more than 240 countries registered.
It contains a base of programming problems classified into
categories and levels of difficulty. Furthermore, it allows the
students to choose the problem they want to solve first. In ad-
dition, this system has an automatic rating system. There is
a template for each problem that is compared to the user pro-
gram’s output data, informing if the program is completely
correct or if there is any error percentage. The user receives
feedback and can rewrite the code and resubmit it. If there
is an error in the code, this process can be repeated until the
code is accepted.
The platform beecrowd has seven feedback types [Bez

et al., 2014], which are:

• Accepted: the problemwas accepted without any errors;
• Closed: there was a problem connecting to the server
and the submission was not received;

• Compilation error: some code structure was written
wrong;

• Presentation error: the output data is not formatted as
described in the problem statement;

• Runtime error: error in the program execution flow;
• Time limit exceeded: execution time exceeded that stip-
ulated in the problem statement.

• Wrong answer: program executed normally; however,
it presented incorrect outputs.

The beecrowd integrates a tool, called Academic, intended
for teachers to follow the practice, through the history of sub-
missions, and the evolution of students. It allows teachers to
have control over exercises, by creating lists with exercises
into the platform Selivon et al. [2015]. Besides, teachers
have access to the source codes of each submission, in ad-
dition to the percentage of errors when the student receives
feedback, Presentation error or Wrong answer.

2.1 Challenges of teaching and learning algo-
rithms

The mental process for learning algorithms often represents
an obstacle for students beginning in the computing area [Fal-
ckembach and Araujo, 2013]. For many students, the chal-
lenge begins in the initial phase of learning, when it is nec-
essary to understand and apply some abstract programming
concepts [Gomes and Mendes, 2007; Gomes et al., 2008].
The challenges encountered in learning algorithms have been

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

studied for a long time. Such studies point out that the study
methods adopted are not considered appropriate for learning,
as programming requires practical and intensive study, and
it involves a lot of understanding, reflection, and problem
solving. Therefore, just attending classes and studying the
content in books is not enough [Gomes and Mendes, 2007;
Gomes et al., 2008]. One factor that can cause resistance to
learning is the methodology adopted in teaching algorithms,
which often ends up being the same for all students, as it is
very difficult for the professor to provide personalized teach-
ing to each student [Falckembach and Araujo, 2013].
One of the causes for the difficulties of many beginning

programming students is the lack of generic problem-solving
skills [Gomes and Mendes, 2007]. Students do not know
how to create algorithms, mainly because they do not know
how to solve problems. Problem solving requires multiple
skills that students often lack [Gomes and Mendes, 2007].
Thereby, the evaluation of the student’s progress associated
with the feedback, usually provided by the professor, are
pointed out as support for learning programming [Gerdes
et al., 2010]. This would be the ideal scenario, but it is not al-
ways possible to do so, since in large classes, it is difficult to
provide quick feedback. Furthermore, due to the short term
and large classes, it is possible that there is a failure in the
human evaluation [Gerdes et al., 2010].
Some professors adopt automatic assessment systems as

support and assistance in their tasks [Gerdes et al., 2010].
The time required for the assessment is shorter and the profes-
sor can focus on the quality of the exercises and the teaching
process [Wasik et al., 2018]. Other professors adopt holis-
tic assessment, where an algorithm or program can receive
a grade or concept considered good or approved, even if it
fails in some analytical categories, such as compilation error,
because the professor observes and evaluates the solution de-
velopment [Ala-Mutka, 2005]. On the other hand, in an ana-
lytical observation, the same algorithm will reprove, because
the program would not compile [Ala-Mutka, 2005].

2.2 Competencies and Abilities
The concept of competence began to be discussed in edu-
cation in the 1990s. Due to the changes that have taken
place in the educational environment, there is a dynamic
based on the concepts of competence and ability [Cardoso
and Hora, 2013]. Therefore, the National Curriculum Guide-
lines (NCG) and the National Curriculum Parameters (NCP)
highlight the importance and need to no longer focus teach-
ing and learning only on content; but on the development of
skills and abilities, allowing the student to elaborate new con-
cepts from the ones that have been [Cardoso and Hora, 2013].
It is highlighted that competence is problem solving ability
itself; while skills are the use of resources to solve certain
problems. A competency is made up of several skills, but a
skill does not belong to a particular competency, since the
same skill can contribute to different competencies [Brasil,
2005].
Believing there is no single and equal intelligence for ev-

eryone, Howard Gardner proposed in the 80s the theory of
multiple intelligence based on the idea that people have dif-
ferent abilities to perform different activities and such activi-

ties require some kind of intelligence, but not necessarily the
same [Gardner, 2011; Smole, 1999b]. In this sense, such con-
cepts of skills and competences addressed in this work can
be used worldwide.

2.2.1 Skills used in the computer programs develop-
ment

Teaching programming aims to enable students to develop
computerized systems capable of solving real-world prob-
lems [Pimentel et al., 2003; Gomes et al., 2008]. Therefore,
computer programming competency is complex and context
dependent, which requires multiple skills [Pea and Kurland,
1984].
There is a skill set involved that goes beyond just master-

ing the syntax of the programming language [Gomes et al.,
2008]. Other factors are often mentioned as a pre-requisite
for learning programming [Pea and Kurland, 1984], such as:

• Mathematical ability;
• Logical reasoning skills (a student may have basic
knowledge and skills relevant to programming and not
connect them to the programming domain, nor transfer
knowledge acquired in programming to other domains);

• Conditional reasoning skills (working with conditional
statements is an important part of programming, be-
cause they guide an operation of loops, tests, input
checking, logical connectives, negation, conjunction
and disjunction predicates, and other programming
functions);

• Procedural reasoning skill (it involves the ability to con-
struct a series of logically ordered instructions);

• Temporal reasoning skills (it involves the ability to ex-
ecute subroutines or procedures, and understand when
each should be executed, ensuring that a counter does
not exceed a certain value until another operation is per-
formed).

Gomes and Mendes (2007) assume that students do not
know how to solve problems and understand that one of the
causes is the multiple skills required to solve them. In In the
work, the authors point out:

• Understanding the problem: students often try to solve
a problem without fully understanding it;

• Relate knowledge: establish analogies with problems
already solved, and transfer knowledge to new prob-
lems. Many students base their solutions on unrelated
problems, leading to incorrect solutions;

• Lack of persistence: Students tend to give up on solving
problems if they do not solve it quickly;

• Mathematical and logical knowledge: many students
have difficulties or little mathematical knowledge, in ad-
dition to difficulties in transforming a textual problem
into a mathematical problem, not identifying the formu-
las that solve it.

To develop an algorithm, it is necessary to interpret the in-
formation contained in the problem statement and have spe-
cific knowledge to plan the solution strategy. Naturally, the
same problem can be solved in several ways that involve one

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

or more strategies. Strategies involve skills such as reason-
ing and deductive logical thinking; besides, allowing them to
exercise their reasoning gradually [Falckembach and Araujo,
2013].

2.2.2 Computational Thinking

The role of Computational Thinking (CT) has been discussed
and applied in all disciplines, signaling how computer sci-
ence can contribute to solving problems [Wing, 2006]. Com-
putational Thinking is the process of formulating and solving
a problem using the fundamental concepts of computer sci-
ence and can help in solving problems in the most diverse
areas [Wing, 2006]. The CT proposal is to apply the skills
used in the development of computer programs as a method-
ology for solving general problems. There is no consensus
in the literature on CT skills; however, there are 3 pillars that
underlie the CT [Wing, 2006], they are: abstraction (problem
formulation), automation (solution expression) and analysis
(solution execution and evaluation).

According to these pillars, the concepts of CT were or-
ganized in a structured model, with the purpose of identify-
ing the main CT concepts and providing examples of how
they can be incorporated into activities in various disciplines.
From this study, CT elements related to computer science
were identified, and it can be also identified in the source
codes [Barr and Stephenson, 2011; de Souza et al., 2020]. In
this study, the following skills were selected:

• Data Analysis: write a program to solve basic statistical
calculations;

• Data Representation: use data structures in vectors,
lists, queues, tables, and so on;

• Abstraction: use repetition structures, conditionals, re-
cursion, and others. In addition to using procedures to
encapsulate a set of data that will be repeated for the
same purpose.

These skills are easier to identify even when you do not
have access to the source code, which is why they were se-
lected. The Problem Decomposition skill is difficult to iden-
tify because a problem can be solved with or without the use
of functions.

2.3 Item Response Theory
The IRT is an approach that has gradually been inserted into
education, because it is considered an important instrument
in the evaluation process. This model allows the measure-
ment of individual characteristics, which are difficult to mea-
sure directly [Baker, 2001; de Andrade et al., 2000]. For
skill estimation, θ, the IRT is based on statistical methods
and mathematical models that consider individual responses
and items properties [Baker, 2001; de Andrade et al., 2000].
Therefore, the greater the student’s skill, the greater will be
the probability of item success [Baker, 2001].
There are several IRT models, which depend on various

factors [Baker, 2001; de Andrade et al., 2000]. For dichoto-
mous items, there are 3 models that differ from each other
by the nature of the parameters observed to describe the item
[Baker, 2001; de Andrade et al., 2000]. Are they:

• 1-Parameter Logistic Model or Rasch Model (only ob-
serves item difficulty);

• 2-Parameter Logistic Model (observes difficulty and
item discrimination);

• 3-Parameter Logistic Model (observes the difficulty,
item discrimination, and the probability of a random
hit).

These models consider the test to be a one-dimensional in-
strument that implies the existence or predominance of only
one skill, which does not apply in many practical situations
in which many exercises, in different areas of knowledge,
require more than one skill to be solved. As an example,
we can cite a mathematical test that requires text interpre-
tation before requiring mathematical development, and, in
this case, it is a two-dimensional test, because it requires
two skills [Nojosa, 2002]. Research has shown that MIRT
is better adapted to real assessment situations than the one-
dimensional models, because in the teaching-learning pro-
cess, subject’s responses are determined by more than one
skill [Pasquali, 2018].
As aforementioned, MIRT models can be separated into

two classes: compensatory and non-compensatory. The
non-compensatory MIRT model assumes that dimensions of
knowledge are independent of each other, and compensation
is not possible. Thus, it is assumed that the student must
have each of the relevant skills to correctly answer an item.
In this model, each dimension’s logistic function is treated as
an independent probability [Reckase, 2006], as follows,

Pij = P (Yij = 1) =
M∏

m=1

e(αjm(θim−βj))

1 + e(αjm(θim−βj))′ , (1)

where Yij is the individual’s response i to the item j;
P (Yij = 1) is the correct answer probability; αjm is the
item discrimination parameter j in the dimension m; θim is
the individual’s ability i in the dimensionm and βj is a scalar
that indicates the difficulty of the item j.
A model is said to be compensatory when the probabil-

ity of item success is maintained or increased even if one
of the skills is low, being this one compensated by another,
higher skill [Nojosa, 2002]. The compensatory model [Reck-
ase, 2006] is represented by

Pij = P (Yij = 1) = e(
∑M

m=1
αjm(θim−βj))

1 + e(
∑M

m=1
αjm(θim−βj))′

. (2)

2.4 Elo Rating System
Initially, the Elo classification system was proposed to ana-
lyze and rank the performance of chess players [Elo, 1978].
Elo is a real scalar value that represents a player’s skill level.
Through statistical methods, each player receives an initial
Elo θi and, as you participate in the games, Elo is updated
according to the results.
Elo model is based on expectation and outcome; the ex-

pected probability that the player will win the match is given
by the logistic function with respect to the difference in the

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

estimated ratings [Pelánek, 2016]. It can be formulated as
follows,

P (Rij = 1) = 1

1 + 10
θj − θi

400

(3)

where R = {0,1} is the result set of a game: 1 (win) and 0
(lose). Given a match between the players i and j, with Elo
θi and θj , respectively. After the game ends, new Elos are
calculated according to the results expectations, the previous
Elos and a constant k. The higher the k, the greater the Elo
change [Pelánek, 2016]. This relation is given by

θi = θi + k(Rij − P (Rij = 1)) (4)

When applied in education, Elo establishes that a student
is considered a player and the problem is considered his op-
ponent [Pelánek, 2016]. Thereby, updates of student skills
and problem difficulties happen on a continuous basis, at the
end of each resolution [Pelánek, 2016]. The difference be-
tween Elo applications when used in education, if compared
to its employment in games, lies in the asymmetry between
students and education items. For most problems (or learn-
ing objects), the difficulty is expected to be approximately
constant. On the other hand, changes in student skills are
expected, which is the goal of educational systems [Pelánek,
2016].
In educational applications, there is also a discrepancy be-

tween correct and incorrect answers. The response to an item
is not only evidence of the student’s knowledge, but also an
opportunity for learning. Therefore, it is necessary to run
different updates for correct and incorrect answers [Pelánek,
2016]. It can be performed using different constants for cor-
rect and incorrect answers, instead of using a single constant
K.
The use of the Elo model offers relevant advantages, such

as: simplicity for using it in the online environments and im-
plementation in educational systems, in addition to present-
ing a low number of parameters to adjust [Pelánek, 2016].
However, as a restriction, it is intended to track only a single
skill [Park et al., 2019].

2.4.1 Multidimensional Elo

In the classical model, Elo is a scalar value for each student
and for each learning object (item/problem). The extended
model of the Elometric, in order tomake it multidimensional,
considers that each dimension is a skill that the student must
have at some level [Prisco et al., 2018]. The student’s skills
are represented by

−→
θs = (S1, S2, ..., SN) (5)

where Si is the Elo in the skill i.
Each L learning object has its demand level represented

by −→σl and by relevancy −→ml. The set of learning objects can
be described by

L = {(−→σ1, −→m1), (−→σ2, −→m2), ..., (−→σn, −→mn)} (6)

where n is the total number of learning objects; σl is the de-
mand level, relevance m is a real number, between 0 and 1,

that indicates how important a skill is for interaction with a
learning object. Considering student interaction i with learn-
ing object j, the adaptation to the model, for each skill s, is
given by

θis
= θis

+ mjs
k(Rij − P (Rij = 1))

σjs
= σjs

+ mjs
k(Rji − P (Rji = 1)).

(7)

Each interaction is a tuple I = (S, L, R), where R =
{0, 1}, with 1 indicating that the student got the problem right
or 0 indicating that the student got it wrong.

2.5 Model M-ERS
ThemodelM-ERS presents an approach that incorporates the
compensatory MIRT model into the Elo model, to track esti-
mates of ability parameters [Park et al., 2019]. Rather than
assuming a one-dimensional trace of item responses, the ap-
proach assumes that a single item may involve more than
one skill. In this way, the authors extended the standard Elo,
which updates, in an evolutionary way, a single skill, allow-
ing a simultaneous update of m distinct skills.
The difference between the observed performance Yij and

the expected performance Pij , based on the compensatory
MIRT model, shown in (8), is used on (9) to update skill
parameters after each item response.

Pij = P (Yij = 1) = e

(∑M

m=1
αjmθim−βj

)
1 + e

(∑M

m=1
αjmθim−βj

)′ , (8)

θ̂im(t) = θ̂im(t−1) + Dm(t)K{Yij(t) − Pij(t)}

β̂j(t) = β̂j(t−1) − Dm(t)K{Yij(t) − Pij(t)}
(9)

where being Dm(t) is a weight to specify whether the skill m
is indicated by the item given in the t-th step. For the skill
present in the item, Dm(t) assumes a value equal to 1. Other-
wise, the weight assumes values between 0 and 1. Moreover,
K decreases linearly, between 0.4 and 0.1, as a function of
the total number of items answered.

2.6 Mixed Compensation Multidimensional
Item Response Theory

Mixed Compensation Multidimensional IRT (MCMIRT) in-
corporates the two MIRT models, the compensatory and the
non-compensatory [Moissinac and Vempaty, 2020]. The au-
thors understand that adopting only one of the MIRT models
ends up restricting its use, as the items can have compen-
satory and non-compensatory dimensions, simultaneously.
Also, items may depend on only a subset of dimensions,
rather than all.
MCMIRT depends on a graph representing the compen-

satory and non-compensatory dimensions of knowledge and
their relationships. Each graph node is a knowledge dimen-
sion, and each undirected edge represents the relationship
between the two knowledge dimensions. Therefore, given
an item i, a subgraph is formed when several dimensions of

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

knowledge are covered and compensated for each other. Fig-
ure 1 shows an item i that covers the dimensions B, C, D,
and E. Dimensions D and E are compensatory, and consti-
tute the subgraph S3. In addition, dimensions B and C are
not compensatory to each other. Therefore, they constitute
two subgraphs S1 and S2 [Moissinac and Vempaty, 2020].

Figure 1. An example of a knowledge graph

This model, assumes that there is compensation within the
subgraph, and a non-compensation between the subgraphs.
Thus, the probability of success is estimated as

P (ui = 1|θ, ∆i) =

ci + (1 − ci)

∏
sm∈Si

e
∑

k
ai,k(θk−bi,k)Ik

i,sm

1 + e
∑

k
ai,k(θk−bi,k)Ik

i,sm︸ ︷︷ ︸
compensatory︸ ︷︷ ︸

no − compensatory

(10)

where θ is the skill vector; ∆i = {ai, bi, ci}, ai and bi are
vectors of discrimination and difficulty of item i for each di-
mension, ci is the random hit; Si = {s1, ..., sm} is the set
of subgraphs created by coverage of item i; Ii,sm

is a vec-
tor indicating the dimension number k (if the knowledge di-
mension does not belong to the subgraph, the indicator is 1;
otherwise it is 0).
Although the literature presents relevant reviews in the

evaluation of algorithms and skills involved in computer pro-
gramming, skills assessment models still face challenges in
the computing area. Such models do not consider that pro-
gramming problems can be solved in more than one way. As
each student has their skills that can be developed more than
another student; therefore, each one can solve a problem ac-
cording to their skills, achieving the correct response in dis-
tinct forms.

3 The proposed model
For the proposedmodel, SMAS (Student’sMultiple Abilities
and Skills), the following assumption is assumed: program-
ming problems have more than one way to be solved, called
paths, and each of the paths has a set of skills necessary to
solve it correctly.

3.1 Representation of problem solving paths
The skills belonging to each set are not compensatory among
themselves; that is, it is necessary for the student to have
all the skills according to the problem relevance. The paths
are mutually compensatory, since the student will choose a

certain path to solve the problem, according to their abilities.
Thus, even if the student has some lower skills, if the path
chosen does not require such skills, it is possible to succeed
in the solution.
The paths and skill relationships of SMAS, are represented

by graphs, as shown in Figure 2. Each graph node is a skill,
and each undirected edge represents the skill relationship.
Given a problem j, a subgraph represents a path (sn) of so-
lution in which the skills are not compensatory; that is, they
are all necessary for that path. Model SMAS, assumes there
is compensation between subgraphs and no compensation
within the subgraph.

Figure 2 presents an example of a problem j which can
be solved using 3 skills, A, B and C. To solve the problem
there are 2 possible paths (s1 and s2): for path s1 are required
abilitiesA andB, and for path s2 are required abilitiesB and
C. The student will solve the problem using either the path
s1 or s2, according to abilities which has. The D skill is not
needed to solve this problem.

Figure 2. Example problem with two paths to solution

Thereby, each problem j has a set of paths to the so-
lution, j = {s1, s2, .., sn}, each set s is composed by
n skills that have difficulty β and relevance α, s =
{(β1, α1), (β2, α2), ..., (βn, αn)}. Relevance is how impor-
tant a given skill is for the correct resolution of the problem,
given by a real value between 0 and 1. Naturally, a relevance
with a value equal to 0 means that the skill is not needed to
solve that specific problem.
As all skills are needed on each path s, for each path, it

is calculated the probability of success, through the adapted
non-compensatory MIRT, as follows,

Pis =
N∏

n∈s

e(αns(θin−βns))

1 + e(αns(θin−βns))′ , (11)

where Pis is the probability of student i to be successful on
problem solving with path s; αns is the relevance of skill n
in path s; βns is the difficulty of skill n on path s and θin is
the n skill of student i .

3.2 Path taken to the solution
With the probability of each path, it is assumed that the stu-
dent will choose that path that has the highest probability of
being correct. According to Rossler [Rossler, 2004], the task
solution by individuals, based on spontaneity, tends to follow
the law of least effort, which requires less consumption of en-
ergy, time and thought. Moreover, according to Azevedo and
Formiga [Azevedo and Formiga, 2013], doing the most with
the least effort is the basic law of nature that permeates the

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

universe. Thus, the probability of the question being correct
assumes the highest probability among the paths (Pij = Pis),
as well as problem parameters: difficulties and relevance of
path skills most likely.

3.3 Model update
Updates of student skills and problem difficulties occur si-
multaneously according to the solution result: correct or in-
correct answers Pelánek [2016]. It is known that in massive
systems there can be many interactions of students until they
succeed in solving the problem. In addition, problems with
many incorrect submissions can lead to a significant increase
in the difficulty of the problems, which may not match the
real difficulty level of such problem.
The difference between the observed performance Yij and

the expected performance Pij is used to update skill parame-
ters after each item response [Prisco et al., 2018]. Therefore,
n-th skill of individual i and problem j are updated according
to

θin(t) = θin(t−1) + αjnK{(Rij = 1) − Pij}
βjn(t) = βjn(t−1) + αjnKp{(Rji = 0) − Pji}

(12)

where βjn and αjn are the difficulty and relevance of the
skill n of the problem j, both of the path with the highest
probability of success, respectively; K is a constant equal to
328, which defines howmuch the estimate can be affected by
the difference between the current and the expected response;
Yij is student i’s answer to the problem j: 1 for correct or 0
for error.
When updating the problem’s difficulties, the variable K

is replaced by Kp (a proportional K) [Prisco et al., 2018],
described as

Kp = 32
10

αjn. (13)

This replacement avoids excessively high updates in the
problem parameters. According to Pelánek [2016], it is not
expectedmany variations in the difficulty of learning objects;
on contrary to student skills. Figure 3 shows an overview of
the methodology for applying the model SMAS.

4 Model Validation
An experiment and a case study were performed to validate
the proposed SMAS model. The experiment was carried out
using the database provided by the platform beecrowd. In
this database, the SMAS and Elo models were applied, and,
for each model, a simulation of problem recommendations
was made based on the students abilities. The purpose of
this test was to analyze the evolution of the student’s skills
in each model, and to observe the recommendations made
by the models. The comparison of the SMAS model could
be made with any model studied in this work. However, we
chose to compare with Elo, as it is a consolidated model in
the literature.

8empirically adopted value as presented in [Pelánek, 2016]

Figure 3. Application of model

Subsequently, a case study was carried out in Computer
Science area classes, where students solved problems of the
beecrowd platform in virtual rooms, created by the professor.
The objective of this case study was to verify if the paths
chosen by the students to solve the problems were the same
paths indicated by the SMAS model.

4.1 Repository Problem Analysis
An expert analyzed a set of 200 problems from the beecrowd
platform [Paes, 2022]. Each problem was analyzed in order
to identify all possible paths to solve it. In each path, the
skills involved were associated and each skill received a dif-
ficulty value and a relevance value, which varies between 0
and 1. Information about adopted methodology for problem
analysis can be found in [Paes, 2022].

4.2 Experiment using the database
The objective was to observe the skill performance of each
user who submitted solutions to the platform’s problems.
The proposed model was applied to estimate the multiple
abilities of users. Moreover, a recommendation system was
simulated in the base, where, at each submission, a set of
problems compatible with the user’s abilities was generated.
The data provided by beecrowd platform are: submission

date and time, user id, problem id and answer (1 - correct
or 0 - wrong). The base consisted of 1.162 programming
problems, 62.976 users, and 1.048.576 submissions. In this
database, a filter was applied, selecting only the submissions
made to the problems that were analyzed by the specialist. In
this way, the databasewas composed of 753.113 submissions,
200 problems, and 61.240 users.

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

Figure 4 shows the procedure to perform the experiment.
Data from students, problems and submissions were col-
lected and stored in a database, in chronological order of sub-
mission, in which each rowwas considered a user interaction
with the problem.

For each problem, the paths for solution were defined and,
for each path, the skills were identified, as well as its diffi-
culty and relevance values. Besides, initial values of 1100
were assigned to each student skill. It was necessary due to
cold start problem, which occurs because the system does
not know the skill level of a new student, on their first in-
teraction (submission). It is highlighted that this value can
be randomly defined, as it will be adapted by the model as
students submit their solutions [Vargas et al., 2019].
The SMAS model estimates the success probabilities of

each identified path, through the equation (11), and identi-
fies the pathwith the highest chance of success. Next, it sim-
ulates each submission made in chronological order through
the response of each submission. After the estimates, the new
values of the user’s skill and the problem difficulties, through
in the equation (12), are stored in the database. In this way,
there is a history of the skills of each user and the difficulty
of each problem.
A simulation of a recommendation system was made, to

observe the user’s self-recommendation, since the database
provided is of users who chose themselves the problems to
solve. In this simulation, the recommendation zone was cre-
ated, where all problems compatible with the user’s abilities
were inserted. Problems into this zone cannot be too diffi-
cult (low probability of success), nor too easy (high proba-
bility of success) [Vargas et al., 2019]. Therefore, problems
with a probability between 40% and 60% of success chance
were included in the recommendation zone. Due to the cold
start, simulations of the recommendations were made from
the 31th submission of each user, to calibrate the student’s
skill values and problem difficulties.

Figure 4. Methodology of the experiment

A second experiment was carried out using the same
database, applying the Elo model, where the objective of
it was to compare the results generated by the two mod-
els, through the students abilities. In this experiment, there
was also a simulation of a recommendation system, starting
from the 31th submission of each user, where the problems
compatible with the user’s Elo were inserted. The param-
eters were the same in both experiments: User Elos were

initialised at 1100, and problems with success probability be-
tween 40% and 60% were included in the recommendation
zone.

4.3 Case Study: Validation of Paths

The objective of the case study is to validate the SMAS
model in relation to the paths of solving the problems. On
the beecrowd platform, virtual classrooms were created for
students enrolled in programming courses. In total, 54 stu-
dents participated in the case study, including 10 students
from higher education and 44 technical education students.
The classe’s Professors selected 42 problems made avail-

able by the beecrowd platform. Of these problems, in 36
there were two possible paths of solution; and in 6 problems
there were three paths of solution. Most problems are cate-
gorized as Beginner, as most students are at the beginning of
the course. Even so, some problems considered more com-
plex were included, which involve knowledge of arrays and
data structures.
Students registered on the platform and submitted solu-

tions to the proposed problems within 30 days. There were
2,613 submissions made in 42 problems. After the deadline,
the data of the submissions of the classes were tabulated in
chronological order of submission. The data are: date and
time of submission, problem id, answer (hit or miss). With
this information, the SMAS model was applied.
Each source code was analyzed by an expert who identi-

fied the path adopted to solve the problems. After this analy-
sis, a comparison was made between the paths chosen by the
students and the paths indicated by the SMAS model, with
the purpose of verifying whether through the model it is pos-
sible to predict the paths adopted by the students.

5 Results

5.1 Experiment using the database

After applying the SMAS and Elo models in the same
database, the performance and choices of the users who
showed the greatest abilities were observed. These users
were taken as a reference for the analysis of problem choices
versus problems contained in the recommendation zones, as
it is understood that users with better performance (higher
success rate in solving the chosen problems) have a greater
understanding of their abilities, which enables them to
choose challenging problems that develop their skills, which
is why they are considered good self-recommenders.
The experimental validation of the model was carried out

by comparing the problems solved by users with greater
skills versus the recommended problems, according to the
skills estimated by the SMAS and Elo models. In both mod-
els, the same heuristic was applied: recommend problems
with a probability between 40% and 60% of the student be-
ing successful in their solution.
From 19,866 submissions using the SMAS model, 33%

(6,479) of the problems solved by students were in the rec-
ommendation zone. Considering the Elo model, only 20%

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

(3,962) of the submissions were related to problems in the
recommendation zone.
In the submissions made by users, there are many solu-

tions without success, which are the cases in which users
submit their solutions and the platform gives an error feed-
back; then, users continue resubmitting solutions until they
receive a positive feedback from the platform. Disregarding
these unsuccessful attempts, in 46% of the recommendations
simulated by SMAS, users solved problems that would be
recommended, and were successful in the solution. In the
simulation with the Elo model, only 26% of success was ob-
tained in the responses.
Among users who gained skills, the average percentage of

correct answers for problems in the recommendation zone
was: 71.40% for the SMAS model, and 50.15% for the Elo
model. Comparing the recommendations simulated by the
models, the SMAS achieved a better representation of the
user’s abilities, as it came closer to the self-recommendations
made by the users.
The skill evolution graphs of the two groups of users were

analyzed. The first group presented better performances and
greater abilities in both models. On the other hand, the sec-
ond group showed lower performance in the evolution of
skills. Due to the large number of users in the database, we
selected 3 users in each group, to analyze their evolution in
detail.
First group: in the SMAS model, these users had values

above 1300 in the 3 skills (Data Analysis, Data Representa-
tion and Abstraction), and Elo values varied between 1264
and 1300, according to Table 1. This table presents the val-
ues of the Data Analysis (Analysis column), Data Represen-
tation (Representation column) and Abstraction (Abstraction
column) skills, while the Elo column presents the user’s Elo
value.

Table 1. Abilities and Elo of the users of the first group
User Analysis Representation Abstraction Elo
1 1477 1316 1439 1264
2 1424 1414 1456 1494
3 1408 1392 1442 1300

In addition, Table 2 presents the submission data from stu-
dents of the first group. In the column Submissions, the valid
number of submissions from each user are shown. However,
the first 30 submissions were used to calibrate user’s skill
and Elo values; therefore, they were disregarded to simulate
recommendations. Besides, the Success and Errors columns
refer to the number of successful and unsuccessful submis-
sions, respectively.

Table 2. Data from user submissions in the first group
User Submissions Success Errors
1 178 146 32
2 77 75 2
3 116 95 21

Complementary, Table 3 shows information about prob-
lems recommended by models. In the columns SMAS and
Elo, there are the number of problems in the recommendation
zone that the user solved. Furthermore, the SMAS Success

and Elo Success columns contain the number of problems
that were present in the model’s recommendation zone and
that were successfully solved by users.

Table 3. Data from simulated recommendations to users in the first
group

User SMAS SMAS Success Elo Elo Success
1 40 36 1 1
2 23 22 0 0
3 43 35 1 1

From data analysis, it was observed that, for these users,
the SMAS model was closer to their choices than the Elo
model, since the number of problems contained in the SMAS
recommendation zone that were solved by the platform users
is higher than the Elo model. Also, users solved more
than 80% of problems in the recommendation zone correctly.
Moreover, users who presented the reduced performance
(second group) were also analyzed; that is, those who were
unsuccessful in their choices and, consequently, decreased
their skills and Elo, as shown in Table 4.

Table 4. Abilities of the users of the second group
User Analysis Representation Abstraction Elo
4 562 596 596 823
5 568 681 733 782
6 648 728 749 895

Table 5 shows information regarding the submissions of
the users of the second group; and Table 6 presents the rec-
ommendations simulated by themodels. As in the first group,
the first 30 submissions were used for skills calibration.

Table 5. Submissions data from users in the second group
User Submissions Success Errors
4 132 18 114
5 122 9 113
6 188 39 149

Table 6. Submissions data and simulated recommendations to users
of second group

User SMAS SMAS Success Elo Elo Success
4 5 2 68 10
5 5 2 6 2
6 3 2 105 22

The behavior of the second group users was to choose
problems that, in most submissions, were not present in
the recommendation zone of the SMAS model, where they
achieved success in more than 40%. In the Elo model, there
were more problems solved that were present in the recom-
mendation zone, but with a low hit rate, on average 22%. Al-
though both models are based on performance expectations,
the SMAS model estimates each subject’s ability according
to the skills required to solve the problems, considering sev-
eral paths to solve them, while the Elo model considers only
one skill. It is believed that this difference between the mod-
els is responsible for the discrepancy in relation to the ob-
served results.

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

Figure 5 shows the skill evolution of the user 1, accord-
ing to the SMAS model; and the Figure 6 presents the skill
evolution considering the Elo model.

1000

1100

1200

1300

1400

1500

1600

1700

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209

Sk
ill

s

Submissions

Data Analysis Data Representation Abstraction

Figure 5. Skill evolution of the user 1 by the SMAS Model

1000

1100

1200

1300

1400

1500

1600

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209

El
o

Submissions

Figure 6. Skill evolution of the user 1 by the ELO Model

According to Figure 5, it is possible to observe the evolu-
tion of student 1’s individual skills; and thus, identify which
skills require more attention, as well as the most developed
abilities. Note that all skills have increased their values, but
it can be said that the lowest skill is Data Representation. In
the Elo model, shown in Figure 6, only the evolution of the
single skill is visualized. Thus, in the Elo model, it is pos-
sible to know how the student’s overall learning progress is;
but, it is not possible to infer whether any skill is lower than
another, given the limitations of the model.
Individual skills information is important to help teachers

recognize students abilities; then, they can guide them in pro-
viding study materials tailored to each student’s needs. This
information is also important for educational systems that
recommend learning objects, or that perform automatic as-
sessment of multi-skill exercises.

5.2 Case Study

Students submitted 2,613 solutions to 42 programming prob-
lems registered in a virtual room on the beecrowd platform,
where 569 submissions were correct.

Among all student solutions, in 1,700 submissions, the
SMAS model predicted the path chosen by the students. In
other words, the approximate success rate was 65.05%. Con-
sidering only successful submissions, among the 569 correct
solutions, the model had an accuracy rate of approximately
69.42%. The graphics of the Figures 7 and 8 present these
data.

Figure 7. SMAS model success and error rates

Figure 8. SMAS model success and error rates with success

Although the numbers are not considered very high, the
SMASmodel modeled the student’s abilities in order to iden-
tify, in most submissions, the path that the students chose to
solve the problems. The model does not set a path indication,
since at each submission the values of the student’s abilities
and problem difficulties vary according to the submitted so-
lution. Therefore, at each submission, new estimations are
performed by the model. It was noticed, through the analy-
sis of the source codes, that most students, when adopting a
certain path, follow the same strategy until they get the solu-
tion right.
There were 393 cases in which students submitted more

than one solution to the same problem, until they were suc-
cessful in the solution, or giving up the problem. Further-
more, in 320 cases, the students adopted the same solution
path; that is, they did not try to change their strategy to solve
the problem. For model indicating adequately the problems,
it is important that the problems are carefully analyzed by
specialists during the attribution of the relevance and diffi-
culties of each problem, because the model is based on these
data.

6 Conclusion
This paper presented a model that estimates the multiple abil-
ities of students who solve programming exercises. This
model assumes that: programming problems have more than
one way (paths) to be solved; each path involves multiple
skills, and students solve the problems whose path is most
likely to be correct. The proposed model was applied to a
database provided by the beecrowd platform, and compared
with the Elo model, where was simulated the recommenda-
tion of programming problems, registered on the platform,
according to the estimated skills. The objective of this com-
parison was to observe the evolution of the student’s skills, as
well as to verify the behavior of bothmodels when faced with

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

the recommendation of learning objects. Between the mod-
els, the SMAS simulated the recommendation of a greater
number of problems that students chose on the platform.
Among the problems solved by users, the SMAS model rec-
ommender suggested more problems chosen by users in the
recommendation zone. It is believed that the SMAS model
came closer to the choices made by users, because the model
estimated the possible way to solve the problems taking into
account the individual skills of each user involved in the prob-
lem solution.
Regarding ability evolution, the proposed SMAS model

allows to identify the progress of the three abilities of the stu-
dent: analysis, representation and abstraction. Such identifi-
cation supports teachers and education systems in improving
material suggestions that reinforce student weak skills. In the
Elo model, this detailed analysis is not possible, because it
considers only one progress marker, related to overall abili-
ties. Furthermore, the SMAS model considers the different
ways to solve programming problems, and identifies the one
most likely for each user, according to their abilities. With
the case study carried out, it was possible to observe that the
model pointed out, in most submissions, the paths chosen to
solve the problems. The success rate obtained was satisfac-
tory.
The following contributions of the proposed model stand

out:

• Identification and modeling of multiple student’s abili-
ties;

• Monitoring the evolution of student’s abilities;
• Considering different ways (paths) to solve program-
ming problems;

• Identification of the abilities involved in each problem-
solving path;

• Prediction of the paths adopted by students in light of
their abilities.

Results shown that among users who gained skills, the av-
erage percentage of correct answers for problems in the rec-
ommendation zone was: 71.40% for the SMAS model, and
50.15% for the Elo model. Therefore, the multiple skills
model, proposed in this work, contributes positively to the
personalization of programming teaching, since it provides a
possibility of observing the evolution of each student skill
and, thus, indicating more favorable exercises to develop
their weaker skills.
However, it is important to pay special attention to prob-

lem annotations (identification of paths and skills, attribution
of difficulty, and relevance) for the model achieving better re-
sults, since SMASmodel uses this information, given the stu-
dent’s abilities to indicate the most likely path and estimate
abilities. If these data are not accurately identified, skill esti-
mation and suggestion of the pathsmay not give satisfactory
results.

Declarations

Acknowledgements
The authors would like to thank the beecrowd plataform for pro-
viding access to its repository, as well as the Graduate Program in

Science Education from Federal University of Rio Grande (FURG)
and Instituto Federal de Educação Ciência e Tecnologia Sul-rio-
grandense (IFSUL).

Authors’ Contributions
All authors contributed to the final manuscript.

Competing interests
The authors declare that they have no competing interests.

References
Ala-Mutka, K. M. (2005). A survey of automated as-
sessment approaches for programming assignments.
Computer Science Education, 15(2):83–102. DOI:
10.1080/08993400500150747.

Azevedo, D. T. C. d. and Formiga, V. R. A. (2013). As com-
petências da pedagogia: um estudo de caso na escola mu-
nicipal de ensino fundamental Centenário Presidente João
Pessoa. Undergraduate Project (Pedagogy), Centro de Ed-
ucação, Universidade Federal da Paraíba. Paraíba. p. 48.

Baker, F. (2001). The basics of Item Response Theory. ERIC,
Washington, USA.

Barr, V. and Stephenson, C. (2011). Bringing Computational
Thinking to K-12: What is Involved and What is the Role
of the Computer Science Education Community? Acm
Inroads, 2(1):48–54. DOI: 10.1145/1929887.1929905.

Bez, J. L., Tonin, N., and Rodegheri, P. (2014). URI
Online Judge Academic: A tool for algorithms and pro-
gramming classes. In 2014 9th International Conference
on Computer Science Education, pages 149–152. DOI:
10.1109/ICCSE.2014.6926445.

Bez, J. L., Tonin, N., and Rodegheri, P. (2021). beecrowd
Judge. Available in: https://www.beecrowd.com.br/judge.
Access date: 22/03/2022.

Brasil (2005). Exame Nacional do Ensino Médio (ENEM):
Fundamentação Teórico Metodológica. Ministério da Ed-
ucação. Instituto Nacional de Estudos e Pesquisas Educa-
cionais Anísio Teixeira. Brasília/DF.

Cardoso, M. and Hora, D. M. (2013). Competências e ha-
bilidades: alguns desafios para a formação de professores.
Jornada do HISTEDBR, v. 11.

de Andrade, D. F., Tavares, H. R., and da Cunha Valle, R.
(2000). Teoria da Resposta ao Item: conceitos e apli-
cações. ABE - Associação Brasileira de Estatística, São
Paulo.

de Campos, C. P. and Ferreira, C. E. (2004). Boca: um
sistema de apoio a competiçãões de programaçãõ. In
Workshop de Educação em Computação, pages 1–11. So-
ciedade Brasileira de Computação.

de Oliveira, M. and Oliveira, E. (2015). Abordagens, práti-
cas e desafios da avaliação automática de exercícios de
programação. In Anais do IV Workshop de Desafios da
Computação aplicada à Educação, pages 131–140. SBC.
DOI: 10.5753/desafie.2015.10048.

de Souza, R. L., Ferreira, F. Z., and da Costa Botelho,
S. S. (2020). Proposta para avaliação de códigos fonte

Model for evaluation of multiple abilities programming problems in online massive environments Ferreira et al. 2022

com TF-IDF. In Anais do XXXI Simpósio Brasileiro
de Informática na Educação, pages 112–121. SBC. DOI:
10.5753/cbie.sbie.2020.112.

Elo, A. E. (1978). The rating of chessplayers, past and
present. Arco Pub., New York, USA.

Falckembach, G. and Araujo, F. (2013). Aprendizagem de al-
goritmos: dificuldades na resolução de problemas. Anais
do Congresso Sul Brasileiro de Computação, 2:1–7.

Francisco, R. E., Ambrósio, A. P. L., Junior, C. X. P., and
Fernandes, M. A. (2018). Juiz online no ensino de cs1-
lições aprendidas e proposta de uma ferramenta. Revista
Brasileira de Informática na Educação, 26(3):163–179.
DOI: 10.5753/rbie.2018.26.03.163.

França, L. (2020). Competências e habilidades no ensino: o
que são e como aplicá-las? Plataforma Educacional. Avail-
able in: https://www.somospar.com.br/competencias-e-
habilidades. Access date: 20/11/2020.

Galasso, R. H. and Moreira, B. G. (2014). Integração do
ambiente boca com o ambiente moodle para avaliação au-
tomática de algoritmos. In Anais de Computer on the
Beach, pages 22–31. DOI: 10.14210/cotb.v0n0.pp.22-31.

Gardner, H. (2011). Frames of mind: The theory of multiple
intelligences. Hachette Uk, New York, USA.

Gerdes, A., Jeuring, J. T., and Heeren, B. J. (2010). Us-
ing strategies for assessment of programming exercises.
In Proceedings of the 41st ACM technical symposium
on Computer science education, pages 441–445. DOI:
10.1145/1734263.1734412.

Giordano, C. V., de Lira, L. N., Langhi, C., and Feitosa, M. D.
(2021). Tecnologia de apoio ao ensino e aprendizagem
de programação em graduações tecnológicas profissionais:
Juiz on-line. Boletim Técnico do Senac, 47(2):127–140.
DOI: 10.26849/bts.v47i2.886.

Gomes, A., Areias, C., Henriques, J., and Mendes, A. J.
(2008). Aprendizagem de programação de computadores:
dificuldades e ferramentas de suporte. Revista Portuguesa
de Pedagogia, pages 161–179. DOI: 10.14195/1647-
8614_42-2_9.

Gomes, A. and Mendes, A. J. (2007). Learning to program-
difficulties and solutions. In International Conference on
Engineering Education, pages 1–5.

Moissinac, B. and Vempaty, A. (2020). Mixed compensa-
tion multidimensional item response theory. In Interna-
tional Conference on Intelligent Tutoring Systems, pages
132–141, Cham. Springer International Publishing. DOI:
10.1007/978-3-030-49663-0_17.

Moreira, G., Holanda, W., Coutinho, J., and Chagas, F.
(2018). Desafios na aprendizagem de programação intro-
dutória em cursos de TI da UFERSA, campus Pau dos Fer-
ros: um estudo exploratório. InAnais do Encontro deCom-
putação do Oeste Potiguar ECOP/UFERSA, pages 90–96.

Nojosa, R. T. (2002). Teoria da Resposta ao Item (TRI):
modelosmultidimensionais. Estudos emAvaliação Educa-
cional, 1(25):123–166. DOI: 10.18222/eae02520022193.

Paes, W. d. O. (2022). Habilidades necessárias para res-
olução de problemas de programação aplicados em sis-
temas de recomendação. Undergraduate Project (Com-
puter Engineering), Universidade Federal do Rio Grande.
Rio Grande. p.45.

Park, J. Y., Cornillie, F., Maas, H. L. v. d., and Noortgate, W.
V. D. (2019). A multidimensional irt approach for dynam-
ically monitoring ability growth in computerized practice
environments. Frontiers in Psychology, 10:1–10. DOI:
10.3389/fpsyg.2019.00620.

Pasquali, L. (2018). TRI–Teoria de resposta ao item: Teoria,
procedimentos e aplicações. Editora Appris.

Pea, R. D. and Kurland, D. M. (1984). On the cogni-
tive effects of learning computer programming. New
ideas in psychology, 2(2):137–168. DOI: 10.1016/0732-
118X(84)90018-7.

Pelánek, R. (2016). Applications of the Elo rating system
in adaptive educational systems. Computers & Education,
98:169–179. DOI: 10.1016/j.compedu.2016.03.017.

Perrenoud, P. (1999). Construir as competências desde a
escola. Artmed, Porto Alegre.

Pimentel, E. P., de França, V. F., Noronha, R. V., and Omar,
N. (2003). Avaliação contínua da aprendizagem, das com-
petências e habilidades em programação de computadores.
In Anais do Workshop de Informática na Escola, pages
533–544, Campinas. DOI: 10.5753/cbie.wie.2003.533-
544.

Prisco, A., Penna, R., Botelho, S., Tonin, N., and Bez, J. L.
(2018). A multidimensional elo model for matching learn-
ing objects. In 2018 IEEE Frontiers in Education Confer-
ence (FIE), pages 1–9. DOI: 10.1109/FIE.2018.8658847.

Reckase, M. D. (2006). Multidimensional item response
theory. Handbook of statistics, 26:607–642. DOI:
10.1016/S0169-7161(06)26018-8.

Robins, A. (2010). Learning edge momentum: A new ac-
count of outcomes in cs1. Computer Science Education,
20(1):37–71. DOI: 10.1080/08993401003612167.

Rossler, J. H. (2004). O desenvolvimento do psiquismo
na vida cotidiana: aproximações entre a psicologia
de alexis n. leontiev e a teoria da vida cotidiana de
agnes heller. Cadernos Cedes, 24:100–116. DOI:
10.1590/S0101-32622004000100007.

Selivon, M., Bezerra, J., and Tonin, N. (2015). Uri online
judge academic: integração e consolidação da ferramenta
no processo de ensino/aprendizagem. In Anais do XXIII
Workshop sobre Educação em Computação, pages 188–
195. SBC. DOI: 10.5753/wei.2015.10235.

Smole, K. (1999a). Múltiplas Inteligências na Prática Es-
colar. Ministério da Educação, Secretaria de Educação a
Distância, Brasília.

Smole, K. C. S. (1999b). Múltiplas inteligências na prática
escolar. Brasília: Ministério da Educação, Secretaria de
Educação a Distância, page 80.

Vargas, A. P., dos Santos, R. A. P., Bez, J., Tonin, N., and
da Costa Botelho, S. S. (2019). Um modelo de mediação
pedagógica para ambientesmassivos. RENOTE, 17(1):93–
102. DOI: 10.22456/1679-1916.95711.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., and Ster-
nal, T. (2018). A survey on online judge systems and their
applications. ACM Computing Surveys (CSUR), 51(1):1–
34. DOI: 10.1145/3143560.

Wing, J. (2006). Computational thinking. Com-
munications of the ACM, 49(3):33–35. DOI:
10.1145/1118178.1118215.

	Introduction
	Online Judge
	Challenges of teaching and learning algorithms
	Competencies and Abilities
	Skills used in the computer programs development
	Computational Thinking

	Item Response Theory
	Elo Rating System
	Multidimensional Elo

	Model M-ERS
	Mixed Compensation Multidimensional Item Response Theory

	The proposed model
	Representation of problem solving paths
	Path taken to the solution
	Model update

	Model Validation
	Repository Problem Analysis
	Experiment using the database
	Case Study: Validation of Paths

	Results
	Experiment using the database
	Case Study

	Conclusion

