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Abstract. In data integration tasks, records from a single dataset or from different sources must often be compared
to identify records that represent the same real world entity. The cost of this search process for finding duplicate
records grows quadratically as the number of records available in the data sources increases and, for this reason, direct
approaches, such as comparing all record pairs, must be avoided. In this context, blocking methods are used to create
groups of records that are likely to correspond to the same real world entity, so that the deduplication can be applied to
these blocs only. In the recent literature, machine learning processes are used to find the best blocking function, based
on a combination of low cost rules, which define how to perform the record blocking. In this paper we present a new
blocking method based on machine learning. Different from other methods, our method is based on genetic programming,
allowing for the use of more flexible rules and a larger number of such rules for defining blocking functions, leading to
a more effective process for the identification of duplicate records. Experimental results with real and synthetic data
show that our method achieves over 95% of correctness when generating block of potential duplicate.
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1. INTRODUCTION

One of the main problems in data integration is to identify in the files to be integrated, records that
match the same entity in the real world. In this context, an entity may be a company, individual or
any other real world concept with well-defined meaning [Winkler 2006]. Once analyzed and compared,
the records identified can be organized so as to form pairs of records that are considered duplicates.
This process of comparison and identification of replicated records is known as Record Linkage (RL).

Through the RL process, records obtained from different data sources can be linked or duplicates
in a single source can be identified [Winkler 2006]. The goal is the same in both cases: by associating
records from different files or by identifying duplicated records from a same file are identified helps to
improve the quality of data and facilitates access to information. An example of the Record Linkage
process is shown in Figure 1.

As in the example illustrated, it can be observed that in practice, associating records that represent
the same entity is not a trivial task, since the records usually provided for this type of operation do
not have unique identifiers and therefore attribute values are used to determine duplicity in the midst
of such data. This is the case for the attributes Authors and Title shown in Figure 1.

As happens in Figure 1, we note that, in general, attribute values do not have any pattern of
representation (e.g., abbreviations, punctuation, etc.), hindering the identification of pairs of records
from the same entity by means of exact match between the string obtained from each record. For this
reason, approximately matching techniques for the identification of pairs are deployed. For example,

Copyright(©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 1, No. 2, June 2010, Pages 167—-181.



168 . Luiz O. Evangelista et al

Dataset #1
| Authors | Title | Year \
entity #1 | T li and 1. valiant. learning boolean formulas 1994
kearns, m. j., 1i, pitt recent results on boolean concept learning | 1987
lewis, schapire and papka | training algorithms for linear classifiers 1996
kearns, m. and vazirani, u. | computational learning theory 1994

’éﬁﬁty # Dataset #2

N\, "4 [Authors [Title |
\ kearns, li, pitt results on boolean concept learning
freund, schapire & warmuth | using and com-bining predictors that specialize.
S N @) learn ing boolean formulas
entity #3 ™| Learns and vazirani an introduction to computational learning theory

Fig. 1. Record Linkage using approximated matching.

techniques based on text similarity metrics, that consider similar terms instead of an exact match of
terms.

Other problems may occur, even when these similarity metrics are used. For example, files that
need to be processed often contain large amounts of records, and the number of pairs formed with
these records can require long processing [Michelson and Knoblock 2006]. As a practical example,
consider the case where two data files are composed of 10 thousand records each, and the number of
pairs found with the records of these two files is 100 million. If each pair is evaluated at 0.01 seconds, it
would require approximately 11 days to examine all pairs, which is considered to be a high processing
time to deal with only 10 thousand records of each data set.

In [Winkler 1994] an approach is presented based on an approximate algorithm to reduce the number
of candidate pairs. With this approach, the associations between records occur in a one-to-one manner,
where each record in a first set is bound to a record with the highest degree of similarity found in
a second set. The algorithm may not always produce good results, being more suitable in situations
where each set of records has a small number of duplicates.

To produce good results, regardless of the number of duplicates in each dataset, Blocking methods
can be used, as a rapid strategy to group records according to some criteria of low processing cost
at first, and then, after that, records that are likely to correspond to the same entity are further
processed by Record Linkage methods. As a consequence, it is expected that, instead of a very large
amount of pairs of records, only the most likely candidates are considered, thus, the Record Linkage
operations are performed in less time.

In general, the blocking process can be used as a preparatory stage for Record Linkage processes. In
this sense, blocking methods can also be viewed as information pruning techniques, discarding pairs
that are least likely to correspond to the same entity.

In this paper, we present a new blocking method, called BGP (Blocking based on Genetic Program-
ming), based on the learning of blocking expressions in the disjunctive normal form. The problem we
deal with is to find the best blocking schema, given a set of pairs of records for analysis in a process
of machine learning and a set of rules for findings with those pairs of records. It is noteworthy that
this is the same scenario addressed by other methods of machine learning.

The BGP method is based on the genetic programming technique (GP) [Koza 1998], which is able to
verify and match a greater number of rules, possibly larger than the amounts tested in other proposals
in the literature [Bilenko et al. 2006; Michelson and Knoblock 2006]. More complex rules can also be
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used in this case, increasing the chances that better results will be achieved. Without the restriction
on the number and complexity of rules, several possibilities can be tried, such as the use of rules based
on parameters.

The use of parameters can be considered a new aspect to the composition of blocking strategies.
While previous methods only combine rules and attributes to define the blocking schemas, the BGP
also chooses the best values of parameters that can be used in each rule, making the processes of
machine learning occur with greater flexibility. As a result of using this new aspect, the chances
of producing blocking schemas better adapted to the data is larger, increasing the blocking quality
results.

To evaluate the quality and scalability of our blocking method we conducted experiments using the
collections Cora, CiteSeer and Evolbase. The collections Cora and CiteSeer consist of real data and
the collection Evolbase consists of synthetic data. These collections were used as datasets of previous
studies. Collection Cora was used in [Bilenko et al. 2006] to evaluate the method DNF Blocking, and
collections CiteSeer and Fvolbase, in [Sarawagi and Bhamidipaty 2002| and [de Carvalho et al. 2006],
respectively. In addition, we present experiments comparing the proposed method, BGP with the
DNF Blocking method [Bilenko et al. 2006] and the BSL Blocking [Michelson and Knoblock 2006].

Preliminary results with our work on BGP were previously presented in [Evangelista et al. 2009,
and here we present a number of extensions to this work including a new set of experiments and
analyses of the proposed blocking method and further discussions comparing it with recent blocking
method proposals in the literature.

This paper is organized as follows. In Section 2 we review the existing blocking methods in the
current literature and the differences between the approaches used in these methods. In Section 3, BGP
is presented as an alternative blocking method, describing how it was developed using the capabilities
of genetic programming. Section 4 shows the results of experiments performed with the proposed
method, comparing it with state-of-art baseline methods. Finally, in Section 5 the conclusions of this
work are presented, as well as suggestions for future work.

2. RELATED WORK

Several studies on methods of blocking can be found in current literature. The first proposals were
based on the use of similarity metrics and therefore may fail in several situations, e.g., when files have
large amounts of duplicates [Bhattacharya and Getoor 2004|. Generally, methods of blocking can be
classified into two groups according to the approach used to organize records in blocks: (1) static
methods and (2) dynamic methods.

In the static methods of blocking, the process of grouping the records does not take into account
the characteristics found in the data, and is conducted in the same way in all situations. Examples of
methods with this feature are Canopy Blocking [McCallum et al. 2000] and Soft TF-IDF [McCallum
et al. 2000]

The main idea of the Canopy Blocking [McCallum et al. 2000] is to group records efficiently in a
two-step process: the first step is performed with a low processing cost and the second is intending to
refine the results of the first step. Notice, however, that this approach may not work in all cases. For
example, different entities may be present in similar records that may be wrongly associated to the
same block. As a result of blocking failures like this, a greater number of false pairs of records can be
formed and consequently the number of returned candidate pairs are increased unnecessarily.

Another approach for computing the similarity between records is the Soft TF-IDF [McCallum
et al. 2000] method. This method was initially proposed as a metric of text similarity, enabling one to
discover the degree of similarity between different records, considering one attribute at a time. This
method requires similarity functions to be selected beforehand by an user, together with the definition
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of likelihood parameters.

Latest blocking methods have been developed based on data features and for this reason rely on
dynamic approaches to the blocking of records. One of such dynamic methods was proposed in [Yan
et al. 2007]. The authors present the Sorted Neighborhood algorithm, which works by sliding an
imaginary window, which involves records ordered according to a predefined critera. The sorting
criteria is defined by a user, thus, records that potentially contain the same entity should become
neighbors in the list covered by the imaginary window. In a next step, once the sorting phase is
over, after every change of position of the imaginary window, records surrounded by the window are
considered to be the same entity and for this reason they compose a block. In this approach, the
window has a size that varies during the blocking process, according to the degree of relatedness
observed between adjacent records.

Other methods are based on Machine Learning [Mitchell 1997] and are therefore also considered
adaptive. Examples of such methods are DNF' Blocking [Bilenko et al. 2006] and BSL Blocking [Michel-
son and Knoblock 2006], which aim at finding the best blocking function for the grouping of records.
In these approaches, small clusters of records are used as samples in order to train the algorithms
that are executed. Based on this samples, the algorithms learn about specific features from the data,
producing results with higher quality than those observed in previous methods.

Instances of training for the learning process performed by DNF Blocking are pairs of records
classified as true, if the records contain the same entity, or false, if the records contain different
entities. These instances are used in training analysis for the rules choice that produce the best
groups of records in the blocking. These rules are selected and combined to form expressions in the
disjunctive normal form (DNF) called blocking schemas. These expressions define how records are
grouped.

DNF Blocking presents better results in cases where static methods fail, because the dynamic and
adaptive approaches capture the notion of duplication between records without necessarily considering
the similarity between the values of its attributes. However, as stated earlier, an increase in the number
of these rules may also imply on an increase on the time needed for the process of machine learning,
impairing the use of the DNF Blocking. As an alternative to reduce the processing time, the BSL
blocking method can be used.

BSL blocking is similar to DNF Blocking with respect to the use of blocking rules. The major
differences are in how the training samples are used and the method of combining predicates to
produce blocking strategies in the learning process.

In practice, BSL Blocking is usually used with samples containing small numbers of pairs of records
of training, considering only the true pairs of the training samples. For that reason, it may take less
time to execute, compared to the time of execution of the DNF' Blocking. This advantage can be used
in cases where short processing time is a critical requirement for the grouping of records.

3. BGP - BLOCKING BASED ON GENETIC PROGRAMMING

In this section we describe BGP (Blocking based on Genetic Programming), an adaptive blocking
method which uses genetic programming (GP) as a basis for solving the problem of adaptive blocking.
The BGP method, as well as the DNF Blocking and BSL Blocking, is based on blocking schemas
formed from boolean predicates for identifying pairs of records that correspond to the same entity in
the real world. BGP method also requires sample data to find good blocking schemas using machine
learning to achieve this goal.

BGP differs from BSL and DBLF mostly in the way the blocking predicates are combined in the
process of looking for the best blocking schema. To achieve this goal, those methods use iterative
algorithms that analyze combinations of blocking predicates, which are recorded on a given string. In
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BGP, an evolution process is deployed instead, which tries to maximize the quality of the resulting
blocking predicate.

Another important distinction is related to the kind of rules used in these predicates. The rules
used in previous methods were called standard rules and the rules of the second version of the BGP
method, called rules based on parameters. Thus, the version of our method using standard rules is
called BGP-SR and the version of rules based on parameters, is called BGP-PR.

3.1 Using Genetic Programming in Adaptive Blocking

The genetic programming approach can be used to solve adaptive blocking by considering that blocking
strategies are computer programs that go through the process of evolution. This idea is developed
below.

Representation of Blocking Schemas

In our approach, blocking schemas are represented as trees along the evolutionary process, and which
are modified using genetic operators. Originally, however, blocking schemas are modeled as sequences
of predicates' and boolean operators interleaved. An example of such an organization is presented in
the following blocking schema:

({address, bigramsInCommon} &&

{venue, termsInCommon} &&

{publisher, threeFirstCoincidentCharacters}) ||
({title, termsInCommon})

For this expression, two records are considered to be related to the same entity, if they present
at least a common term in the values of the title attribute, or, if this possibility does not arise, if
bigrams in common are found in address attribute values at the same time that any term in common
is found in the venue attribute and the publisher attribute present values with the three first coincident
characters. The blocking schema of the previous example can be illustrated in a tree form, as shown
in Figure 2.
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/70 1 {title, termsInCommon}

'/ && \' _ -~

\\ /,\// \\ )
__/ 7 ‘{address, bigramsInCommon}
{88 ) "
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Fig. 2. Representation of a Blocking Schema.

n the BGP method, the predicates are similar to those obtained with the DNF Blocking and BSL Blocking methods,
consisting of a combination of attributes and rules of affinity.
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In Figure 2, each terminal node corresponds to a blocking predicate and the other nodes are defined
by the boolean operator or (represented by “||”) or operator and (denoted by “&&”). Each edge
represents the relationship between predicates and boolean operators, defining the associations between
elements of these types for the representation of blocking schemas as trees. By using trees greater
flexibility can be achieved for the extraction of segments of blocking schemas expressions, facilitating
the use of genetic operators. Blocking schemas in disjunctive normal form are preferred. To identify
the schemas with higher chances of producing good results, an efficient fitness function is deployed.
In the following section, we describe the fitness function that we have used in the development of the
BGP method.

Fitness Function

Blocking schemas are considered good when they help in the efficient identification of all or most of
the pairs of duplicate records. In order to measure this quality, allowing comparisons between different
schemas and selecting the best option among them during the learning process, some criteria based on
coverage of pairs of records should be used, as in other adaptive blocking methods. Common criteria
are the genuine coverage of pairs (PC) and reduction ratio in the number of candidate pairs (RR).

In the BGP method, to measure the quality of blocking strategies, the criteria PC and RR are used
in a combined form, producing a single value to be used as a degree of fitness. Using this combination
of values, the best blocking schema is the one that present the best performance for both quality
criteria.

In information retrieval systems, the well-known F-measure [Ricardo Baeza-Yates 1999] is used to
combine values of recall and precision through their harmonic mean. We here follow the same idea,
but replace precision and recall by similar concepts PC and RR, respectively.

Let R = {ry,..rn} a set of records to deduplicate and Ry C R a set of training records. We
define a set of training pairs P = {P{,...P}.}, P/ = {(r;,7x) € RrxRy | j # k} and a set of labels
L ={l,..ln}, l; € {0,1} corresponding to each P/ € P. In this definition, a pair P; € P is called a
true pair if /; = 1 and a false pair if [; = 0.

Using the harmonic mean, the number of true and false pairs correctly identified is used for com-
puting the fitness, as defined in Equation 1.

2 (1)

fFIT = 1 1
pc t PF

By using fitness function presented in Equation 1, the blocking schemas considered as good are the
ones that present a high genuine coverage of pairs (PC) and that can also achieve a low number of
candidate pairs (RR).

However, the quality assessment of blocking schemas can be still be improved. As stated in Section 2,
it is noteworthy that blocking schemas with larger numbers of conjunctions of affinity rules can cover
larger numbers of true pairs of records. Thus, this idea can be incorporated into the fitness function,
by defining the function shown in Equation 2.

C
frrr = frir + [100] (2)

where C' represents the number of conjunctions found in the blocking schema evaluated and fpir
represents the function presented in Equation 1.

The fitness function represented in Equation 2 was used for evaluating the blocking schemas during
the steps of machine learning carried out in the experiments reported in this article.
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GP Algorithm and Parameters Setup

The generic algorithm of GP described in [Koza 1998] adapted to solve the problem of blocking can
be seen as the following sequence of steps:

—Randomly generate an initial set of blocking schemas (individuals);
—Evaluate the schemas, using the Fitness function;

—Create a new set of schemas (new generation):
—Copy the best schemas for a new set;
—Create new schemas by mutation;
—Create new schemas through crossover (reproduction);
—Evaluate the new schemas, associating them to values of Fitness.

—The best schema after a predetermined number of generations is the blocking solution.

When comparing the algorithm adapted to the generic algorithm of genetic programming, it can be
noticed that the adaptation was made manly by incorporating the concept of blocking schemas to the
structure of the generic algorithm, replacing the general concept of individual for the blocking schema
concept.

In the algorithm, some parameters implicit in the structure of genetic algorithm can be observed.
Among these parameters, the more important are the ones identified by: (1) number of generations,
(2) maximum depth of the tree representing individuals, (3) number of individuals in each generation,
(4) number of best individuals copied to the next generation (5) probability of mutation and (6)
maximum depth in segments of mutation.

3.2 BGP-SR and BGP-PR Blocking Methods

The BGP method was implemented in two versions: the BGP-SR, which is based on standard rules,
such as those used in DNF Blocking and BSL Blocking, and BGP-PR, which has been defined and
experimented with using rules based on parameters.

The complete blocking process, from the selection of rules to the generation of the candidate pairs
of record is illustrated in Figure 3. In this figure, we assumed that the choice of the type blocking
rules, i.e., with or without parameters, defines the version of the BGP method to be used. Then,
the blocking process has two-step. First, the genetic programming algorithm is used to produce the
blocking schema to be used. For this purpose, samples presenting true and false pairs of records are
used for training. In the second phase, the blocking itself is done in a single pass through the records
by associating each record to its respective block according to the blocking schema generated.

3.3 Adaptive Blocking using Standard Rules - BGP-SR

The standard rules used in BGP-SR are the following: (1) perfect match, (2) terms in common, (3)
bi-grams in common, (4) tetra-grams in common, (5) hexagrams in common, (6) first character in
common, (7) first three characters in common and (8) first five characters in common. These rules
are usual deployed in blocking schemas described in the literature [Bilenko et al. 2006; Michelson and
Knoblock 2006].

Taking advantage of the random process used for the generation of blocking schemas, a greater
number of rules can be used by genetic programming process. This increases the potential diversity
of rules available for the analysis of pairs of records, and allows for the generation of blocking schemas
that are better adapted to the data sets being processed. However, the use of larger sets of rules may
lead to a more time consuming deduplication processes.
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Fig. 3. Adaptive Blocking using the methods BGP-SR and BGP-PR.

3.4 Adaptive Blocking using rules based on parameters - BGP-PR

To achieve a wider variety of predicates, the BGP-PR method uses rules based on parameters. This
increases the number of duplicate records that can be predicted when good blocking schemas are
generated in each machine learning step.

In the experiments with the BGP-PR method, rules based on parameters were defined by gen-
eralizing the rules terms in common and n-grams in common, which are similar to the rules terms

in common and bigrams/trigrams/hexagrams in common from the set of standard rules used by the
BGP-SR method. This rules shown in Table I.

Rules \ Parameters

1. Terms in common Number of consecutive terms in common
2. N-grams in common | Length of substrings in common

Table I. Rules based on parameters for the analysis of pairs of records.

The rule terms in common can be used to identify pairs of records from the same entity that contain
a certain number of consecutive terms in common. In this case, the parameter set corresponds to the
minimum number of terms that can be used to identify cases of duplicate records, as can be seen in
the pair of records:

record#1: title:Models of Machines and Computation for Mapping in Multicomputers
and
record#2: title:Models of Machines for Mapping in Multicomputers,

where the terms found are Models, of and Machines in common and in that order. Besides these
three consecutive terms, there are four other consecutive terms in common, and these terms are
for, Mapping, in and Multicomputers. To cover these two cases, the rule terms in common can be
used with values three and four for the parameter set. Using these parameter values, the blocking
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predicates defined based on the attribute title can be represented as {title, termsIinCommon-3} and
{title, termsInCommon-4 }, respectively.

Using a greater variety of rules, it is expected that the blocking processes will occur with greater
flexibility, finding blocks most likely to produce duplicate records, since blocking schemas more suited
to the data processed under these conditions can be found.

The results of experiments using the standard rules and based on parameters can be seen in Section 4,
in which methods DNF Blocking, BSL Blocking and BGP are evaluated and compared based on the
number of record pairs correctly identified and with respect to the number of candidate pairs returned
as the result of the blocking processes.

4. EXPERIMENTS

We conducted experiments to evaluate the quality and the scalability of the blocking methods pro-
posed. For this, we used collections Cora, CiteSeer and Ewvolbase. Collections Cora and CiteSeer
consist of real data and collection Ewolbase is composed of synthetic data. These collections were
used as target datasets in previous studies. Cora was used in [Bilenko et al. 2006] to test the method
DNF Blocking, and collections CiteSeer and Evolbase where used in [Sarawagi and Bhamidipaty 2002]
and [de Carvalho et al. 2006] for deduplication experiments.

Setup

The metrics for measuring the coverage of pairs of duplicate records (PC) and the reduction ratio in
the number of candidate pairs (RR) are defined as follows:

Vel el
i BEET {IITII} ®)

where ||V¢|| is the number of pairs correctly identified as duplicate pairs, ||V]| is the total number of
duplicate pairs, ||C|| is the number of candidate pairs returned as the result of the blocking and |||
is the number of pairs generated with all available records.

PC =

In the experiments of scalability, in addition to PC and RR, we also measure the costs due to the
machine learning process, which serves as an indication of how efficient are the methods in generating
a good solution. In these experiments, we consider the most effective methods as those which verify
fewer combinations of predicates to return good blocking schemas as a result of processing at each
step. The costs of the machine learning process verified in the experiments of scalability are calculated
with the metric C AM, which is defined in Equation 4.

NCP
AM = —— 4
c NP (4)

In the metric CAM, NCP represents the number of combinations of predicates that occur during
the execution of the blocking methods until a blocking schema is returned as the result in each case,
and NP, the number of predicates available for the formation of blocking schemas.

While for the quality experiments we use collections Cora, CiteSeer and FEwvolbase, in scalability
experiments, we only used Fwvolbase collection, since this is a synthetic collection and can be recreated
with different numbers of records.

Collections

The main features of the collections used in the experiments of quality are presented in Table II.
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Total Number of Training Samples
Collection | number of | Percentage | Number of | Average number
records of records pairs of true pairs
Cora 1,295 5% 2,016 75
CiteSeer 154 30% 1,035 17
Evolbase 1,000 5% 1,225 5

Table II. Configuration of datasets used in the quality experiments with the collections Cora, CiteSeer e Evolbase.

In the data quality experiments, we used 5% of the total records to compose the machine learning
samples. All collections were processed in this way, except the collection CiteSeer, where we used
samples of 30% of the total amount of the records, since in samples of 5% a few pairs of duplicate
records were found, a situation that would undermine the method BSL Blocking, since it is based only
on examples of duplicate records.

In this data, samples present the averages of 75, 17 and 5 pairs of duplicate records from the
collections Cora, CliteSeer and FEwvolbase, respectively. For verification of scalability, we extracted
samples from 5% of total registrations, using data files with the number of records ranging from 1,000
to 8,000 records.

Genetic Programming Parameters

As stated in Section 3.1, the genetic programming algorithm uses a number of parameters that guide
its procesing. In Table III we present the configuration of the parameters used by our method for the
experiments here reported.

Parameter [ Value
Number of generations 5
Maximum depth of the tree representing individuals 4
Number of individuals in each generation 100
Number of best individuals copied to the next generation | 4
Probability of mutation 95%
Maximum depth in segments of mutation 3

Table III. Parameters values used with the methods BGP-SR/PR.

Quality Results

In Table IV, we present the results of experiments conducted to verify quality of the proposed methods
with collections Cora, CiteSeer and Evolbase.

Evaluated Cora CiteSeer Evolbase
Methods PC (%) [ RR (%) | PC (%) | RR (%) | PC (%) | RR (%)
BGP-SR 90.49 85.54 93.31 87.95 99.18 98.97
BGP-PR 94.72 93.54 91.02 93.02 98.47 98.46
DNF Blocking | 92.20 48.57 91.47 82.42 84.08 99.81
BSL Blocking 86.51 39.74 85.15 65.55 92.87 88.59

Table IV. Blocking quality results for the collections Cora, CiteSeer and Evolbase.

In Table IV, we verify the accuracy rate achieved in the detection of pairs of duplicate records. As
reported in this table, the lowest percentage of coverage of duplicate pairs (PC) were obtained with
the BSL Blocking method, possibly due to the limited use of examples of pairs of duplicate records
and, therefore, a low number of instances to be used by the machine learning process. Even in this
case, the percentage of pairs of duplicate records identified was around 85% to 92% in the experiments
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performed with the collection Evolbase. Methods BGP-SR, BGP-PR and DNF Blocking achieved the
best results. In particular, methods BGP-SR and BGP-PR showed the better performance when
evaluated by the reduction of candidate pairs. This is due to the greater efficiency of the genetic
programming algorithm when processing a combination of blocking predicates.

Escalability Results

In addition to the rates of correct answers observed in the experiments, we analyzed the costs of
machine learning, as well as the costs of grouping the records. We computed the cost of grouping
records by verifying the average number of conjunctions found in each blocking schema evaluated, since
large amounts of conjunctions can make long-time clustering. Similarly, large amounts of conjunctions
can produce larger quantities of blocks of records. Next, we examined the costs of the machine learning
processing using as a reference the number of blocking schemas assessed at each stage of the blocking
task. In this second form of assessment, we considered the better methods to be the ones that evaluated
smaller numbers of combinations of predicates to form blocking schemas during the steps of machine
learning. The results of this evaluation are presented in Table V.

Learning

cost Number of considered Cost

(average of predicates per
Collection Blocking combinations blocking
methods of evaluated Ru- | Attri- Para- Number of precicate

predicates in les butes | meters predicates
each execution) | (R) (A) (P) (R) x (A) x (P)

BGP-SR 500 8 12 — 96 5.2

Cora BGP-PR 500 2 12 10 240 2.1

DNF Blocking 3,520.8 8 12 — 96 36.7

BSL Blocking 1,276.8 8 12 - 96 13.3

BGP-SR 500 8 7 — 56 8.9

CiteSeer BGP-PR 500 2 7 10 140 3.6

DNF Blocking 675 8 7 — 56 12.1

BSL Blocking 441.8 8 7 - 56 7.9

BGP-SR 500 8 14 — 112 4.5

Foolbase BGP-PR 500 2 14 10 280 1.8

DNF Blocking 4,742.9 8 14 - 112 42.4

BSL Blocking 394.6 8 14 — 112 3.3

Table V. Machine learning costs for the collections Cora, CiteSeer and Evolbase.

In Table V, we consider the learning cost as represented by the average of the blocking schemas
evaluated in the steps of the experiments. These costs were fixed for methods BGP-SR BGP-PR,
once they evaluated 500 blocking schemas, in which 100 schemas were randomly created in each of
the 5 iterations of the genetic programming algorithm. The result for the costs of the methods DNF
Blocking and BSL blocking were obtained by averaging the schemas evaluated in each steps of the
performed experiment.

In these results, we also notice that the number of blocking rules was different in the case of the
BGP-PR method, once this had been tried with different blocking rules from those used in other
methods. These rules were parameters based on numerical values ranging from 1 to 10, as well as 10
times the number of predicates available for the formation of blocking schemas. The other methods
were evaluated with eight blocking rules, without the use of parameters, since these rules do not
require this feature.

The numbers of predicates used in the verification were calculated by multiplying the number of
attributes for each collection with the number of rules in each case and then multiplying this result by

Journal of Information and Data Management, Vol. 1, No. 2, June 2010.



178 . Luiz O. Evangelista et al

the number of parameters available when applicable. The number of available blocking predicates was
used in the final calculus, dividing the original learning cost to produce the cost of learning for each
predicate available for data processing. In this context, it can be considered that the best methods are
the ones that make the lower machine learning costs while assessing the greatest amount of predicates
for producing results.

As a result of these experiments, we note that the methods BGP-PR and BGP-SR had lower costs
or close to those of other methods, once they rated the lowest amounts of blocking schemas in almost
all stages of experiments, while they considered bigger sets of blocking predicates or ones with the
same size when compared to the sets used in other methods during the stages of the experiments.

In a similar analysis to verify the machine learning costs, we also tried to verify costs of grouping
the records. These results can be seen in Table VI.

Collection \ Method \ Number of conjunctions
BGP-SR 11.4
BGP-PR 10.6

Cora

DNF' Blocking | 3
BSL Blocking | 8.9

BGP-SR 11.9

‘ BGP-PR 13.6
CiteSeer DNF Blocking | 2.9
BSL Blocking | 5.9
BGP-SR 5.8
Fvolbase BGP-PR 5.7

DNF Blocking | 2.4
BSL Blocking | 1

Table VI. Average number of blocking schema conjunctions in the collections Cora, CiteSeer and Evolbase.

In Table VI, we can notice that the largest number of conjunctions were found in the experimental
results of the methods BGP-SR and BGP-PR, especially when the collections Cora and CiteSeer were
used, meaning that increased costs were observed in such cases.

We can justify these results, considering that the collections Cora and CiteSeer which present the
greatest difficulties in identifying duplicate records. This idea can be enhanced by what we can observe
in the results obtained from the collection Ewolbase, since the duplicate records can be found with
less effort in the midst of such data. In this condition, the methods BGP-SR and BGP-PR presented
schemas with smaller amounts of conjunctions.

However, we notice, that blocking schemas with large amounts of conjunctions do not always have
the higher cost of processing. We can verify this by taking as an example 5 blocking schemas verified
during the stages of the performed experiments, and the schemas formed by 3, 6, 9, 10 and 17
conjunctions. We measured the time of grouping the records using these schemas, as can be seen in
Figure 4.

In Figure 4, we observed that the quantities of predicates were increasing in the order that the
blocking schemas were verified. However, the measured times increased until the third assessed schema,
only, and declined when we checked the last two schemas, which have larger numbers of conjunctions.
After a detailed verification, we noticed that the of evaluation schemas times followed the average
variation in each conjunction of predicates, as can be seen in Table VII.
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CPU Time Measured while Evaluating Blocking Schemas

4 20000

S 15000 1+

£ 10000 + 3

£ 5000 +

5 0 | : : :

N 3 6 9 10 17

(Number of conjunctions found in blocking schemas)
Fig. 4. Evaluation time of blocking schemas.
Average of Time

Blocking Predicates number in predicates in
schemas each conjunction per conjunction | seconds
#1 (3 conjunctions) | {2,2,3} 2.3 3,285
#2 (6 conjunctions) | {1,3,1,3,3,3} 2.8 9,361
#3 (9 conjunctions) | {3,2,2,3,2,3,3,3,3} 3.0 | 14,527
#4 (10 conjunctions) | {3,1,1,2,3,3,3,3,3,3} 2.5 12,322
#5 (17 conjunctions) | {4,2,2,1,1,1,1,3,1,1,2/1,1,1,1,2,6} 1.8 | 10,743

Table VII. Average number of Predicates in blocking schema conjunctions.

We may note in Table VII that the average times increased until the third blocking schema was
evaluated, coinciding with the increase of the average of verified predicates in these three cases. Then
there was a decrease in the measured times for the last two schemas, which showed a lower average by
conjunction of predicates, suggesting that smaller times of grouping records than expected may occur
in a situations like this.

In Figures 5 (A) (B) (C) and (D), the results of experiments of scalability are presented. As we can
see in Figure 5(A), the methods BGP-SR and BGP-PR remained in good cover of duplicates pairs
of records during all steps. Under the same conditions, the DNF Blocking showed satisfactory results
only when 4,000 or more records were used in the experiments.

Iterative methods such as DNF Blocking may require too many samples to find good blocking
schemas. In the case of DNF Blocking, each iteration of the main algorithm, returned a conjunction
of blocking predicates. Therefore, the blocking schemas discovered with this method can be viewed
as sequences of conjunctions. If few records are used in the machine learning training set , schemas
showing few conjunctions can be formed, possibly failing to detect pairs of duplicate records at later
times.

In Figure 5(B), we can verify the reductions achieved in terms of number of candidate pairs of
records. As in previous checks, the BSL Blocking method was less stable, possibly due to the usage of
smaller quantities of samples compared to other tested methods. In the experiments we also measure
the machine learning costs, which are presented in Figure 5(C) as a way to identify the methods that
had the lowest implementation costs. In these reviews the methods of genetic programming were those
with the lowest cost, as the populations were kept small, with 500 blocking schemas tested at each
stage of machine learning.

In the inspection of processing cost, the DNF Blocking method showed a decrease in costs as the
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Pairs Completeness (PC) Reduction Ratio (RR)
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Fig. 5. Evaluating scalability aspects of Blocking Methods.

number of records were increased. We observed this decrease and noticed that it was due to predicates
that were discarded at the beginning of each stage of execution.

For the scalability experiments, we also measured the processing times in seconds of CPU when the
blocking schemas were used to group records. Those times had significant differences and therefore
we do not regard them as a reference for verifying the scalability of the methods of blocking.

We can observe these times in Figure IV(D), as finding time for the grouping of records in each
situation. We can note that the best methods were the DNF' Blocking, BGP-SR and BGP-PR up to the
step with 7000 records. In step with 8000 records, the method BGP-PR spent more time performing
the grouping of records because of blocking schemas formed by a larger number of predicates based on
rules of n-grams. These rules may delay the process, since a larger number of blocks can be produced
when the data is processed, generating many similar blocks and hence many pairs of duplicate records
are repeated. Situations like this can be justified in cases where the difficulty of detection of duplicate
records is a difficult goal to be reached.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented two the adaptive blocking techniques BGP-SR and BGP-PR, both based on
genetic programming. We experimentally compared these methods with state-of-art adaptive blocking
methods in the literature and concluded that our methods are efficient and scalable to deal with a
large number of blocking predicates. Using larger numbers of predicates is an advantage, since the
blocking processes can be performed with more flexibility and the identification of duplicate records
have greater chances of success. We have shown that by using genetic programming satisfactory
results can be achieved without analyzing a very large number of blocking combinations of predicates,
resulting in a significant reduction in machine learning costs. In future work, processing costs can still
be reduced through active learning, once we start to use smaller samples of data in machine learning
processes, and thus reducing the time required to check each combination of predicates.

Journal of Information and Data Management, Vol. 1, No. 2, June 2010.



Adaptive and Flexible Blocking for Record Linkage Tasks . 181

REFERENCES

BHATTACHARYA, I. AND GETOOR, L. Iterative record linkage for cleaning and integration. In Proceedings of the ACM
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery. Paris, France, pp. 11-18, 2004.

BiLEnko, M., KamaTH, B., AND MooNEY, R. J. Adaptive blocking: Learning to scale up record linkage. In Proceedings
of the IEEE International Conference on Data Mining. Hong Kong, China, pp. 87-96, 2006.

DE CArvaLHO, M. G., GoNgAaLVES, M. A., LAENDER, A. H. F., AND DA Sitva, A. S. Learning to deduplicate. In
Joint Conference on Digital Libraries. Chapel Hill, USA, pp. 41-50, 2006.

EvanceLista, L. O., CorrEz, E., DA Sitva, A. S., AND JrR., W. M. Blocagem adaptativa e flexivel para o pareamento
aproximado de registros. In Proceedings of the Brazilian Symposium on Databases. Fortaleza, Brazil, pp. 61-75, 2009.

Koza, J. R. On the Programming of Computers by Means of Natural Selection. The MIT Press, 1998.

McCarrLuMm, A. K., Nicgam, K., aND UncaRr, L. Efficient clustering of high-dimensional data sets with application
to reference matching. In Proceedings of the International Conference On Knowledge Discovery and Data Mining.
Boston, USA, pp. 169-178, 2000.

MicHELsON, M. AND KNoBLoOcCK, C. A. Learning blocking schemes for record linkage. In Proceedings of the National
Conference on Artificial Intelligence. Boston, USA, 2006.

MitcHELL, T. M. Machine Learning. McGraw-Hill, New York, 1997.

RicarDO BAEzA-YATES, B. Modern Information Retrieval. ACM Press, 1999.

SARAWAGI, S. AND BHamIDIPATY, A. Interactive deduplication using active learning. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, pp. 269-278,
2002.

WINKLER, W. Advanced methods for record linkage, 1994.

WIiINKLER, W. E. Overview of record linkage and current research directions. Tech. rep., Statistical Research Division,
U.S. Census Bureau, Washington, DC, 2006.

Yan, S., LEg, D., Kan, M.-Y., anD GiLEs, L. C. Adaptive sorted neighborhood methods for efficient record linkage.
In Proceedings of the ACM/IEEE joint conference on Digital libraries. Vancouver, BC, Canada, pp. 185-194, 2007.

Journal of Information and Data Management, Vol. 1, No. 2, June 2010.



