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Abstract. Recently, machine learning techniques have been used to solve the record deduplication problem. However,
these techniques require examples, manually generated in most cases, for training purposes. This uneases the use of
such techniques because of the cost required to create the set of examples. In this article, we propose an approach based
on a deterministic technique to automatically suggest training examples for a deduplication method based on genetic
programming. Our experiments with synthetic datasets show that, by using only 15% of the examples suggested by
our approach, it is possible to achieve results in terms of F1 that are equivalent to those obtained when using all the
examples, leading to savings in training time of up to 85%.

Categories and Subject Descriptors: H. Information Systems [H.3. Information Storage and Retrieval]: Digital
Libraries; I. Computing Methodologies [I.2. Artificial Intelligence]: Problem Solving, Control Methods, and Search

Keywords: Replica Identification, Artificial Intelligence, Genetic Programming

1. INTRODUCTION

The volume of data generated and stored by companies and organizations has been increasing sig-
nificantly. According to a report released by Enterprise Strategy Group1, a known market analysis
company, 13% of the media companies analysed in 2004 stored and used more than 10 terabytes of
data. In 2008, this number had increased to 42%, i.e., more than three times in a time period shorter
than four years [Geer 2008].

Thus, due to this increasing in the volume of stored data, administrators of large data repositories,
such as digital libraries and large corporate databases, have been facing constant problems to maintain
the quality of the available data in their repositories. Since many of these repositories are built and
complemented by integrating several data sources, it is possible that several inconsistencies exist,
allowing the generation of duplicated data, thus resulting in repositories with "dirty data".

Currently, it is possible to establish a relationship between the quality of the data available in
the repositories of an organization and its capability of delivering high quality services to its clients.
The decision of keeping repositories with "dirty data" goes beyond technical issues, affecting the

1http://www.enterprisestrategygroup.com/
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performance and quality of the systems that use these data. Besides technical efforts, cultural and
management changes are also necessary to help with such problems [Bell and Dravis 2006].

The maintenance of repositories with "dirty data" can cause several problems. For example, the
performance of a database management system can be seriously affected since useless data demand
additional processing, requiring more time to answer even simple queries. The quality of the in-
formation that can be extracted from the repositories is also jeopardized given that duplicates and
inconsistencies may generate distortions in reports, causing the making of wrong decisions. Besides,
an increase in operational costs is also expected since an (unnecessary) elevation in the data volume
may incur in higher investments in storage and computational processing capacity with the goal of
maintaining response time in acceptable levels.

The problem of detecting and removing duplicates in data repositories is known as record dedu-
plication [Koudas et al. 2006], but it is also denominated in the literature data cleaning [Chaudhuri
et al. 2003], record linkage [Bhattacharya and Getoor 2004; Fellegi and Sunter 1969], and record match-
ing [Verykios et al. 2003]. More specifically, record deduplication consists of identifying and removing,
from data repositories, records referring to the same object or entity in the real world, even if writing
styles, data types or schemas are differemt.

Lately, there has been a lot of investment by companies and governmental institutions in the
development of effective methods for removing duplicates in large data repositories [Bell and Dravis
2006; Wheatley 2004]. However, record deduplication is a complex task whose treatment requires
a lot of time and processing power due to the large amount of record comparisons necessary. Thus
methods proposed to deal with record deduplication should try to achieve their goal as efficiently as
possible.

Recently, de Carvalho et al. [2008] have proposed an innovative method for record deduplication that
is based on a machine learning technique known as Genetic Programming (GP) [Banzhaf et al. 1998;
Koza 1992]. Through this method, records are deduplicated using evidence extracted from the data
content to create similarity functions, generically called deduplication functions, capable of pointing
out which records of a repository are replicas. However, despite superior results when compared to
other approaches found in the literature, machine learning techniques generally rely on a training
phase in which examples for learning duplication patterns are usually generated manually. As such,
the cost and time necessary for creating the training sets make it difficult to use such techniques in
practice.

In this article, we propose an approach based on a deterministic technique that automatically
suggests examples for the training phase of de Carvalho et al.’s GP-based record deduplication method.
Initially, we verify the real need of using all the training examples generated for the training phase.
For this, we performed several experiments in which the examples of duplicated pairs of records were
gradually reduced in order to verify how each reduction affected the effectiveness and performance of
the process of generating deduplication functions. Next, a deterministic method was used to generate
training examples for the deduplication process using GP, allowing an analysis of the viability of
automatically selecting these examples. Our experimental results show that it is possible to use a
reduced set of training examples without affecting the quality of the obtained solutions in the end
of the process of generating deduplication functions, significantly reducing the time necessary for the
execution of the training phase.

This article is organized as follows. In Section 2, we discuss related work. In Section 3, we present a
general view of the GP-based record deduplication method. In Section 4, we describe how our approach
for the automatic selection of training examples works. In Section 5, we present our experiments and
discuss the obtained results. Finally, in Section 6 we have our final considerations and discuss possible
future work.
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2. RELATED WORK

Record deduplication is a research topic that has attracted a lot of attention in the database field
and related areas. As already mentioned, the existence of replicas in data repositories can lead to
inconsistencies that may severely affect several types of service, causing damage for companies and
governmental institutions.

In an attempt to solve these inconsistencies, some works have proposed the creation of similarity
functions capable of combining information contained in the data repositoryies in order to identify
when a pair of records constitutes or not a replica. Elmagarmid et al. [2007] classify these approaches
into two categories, exemplified next:

Ad-Hoc. These are methods that usually depend on some knowledge of a particular domain or on
specific distance metrics (for example, for strings characters)
Training-based. These are methods that depend on some type of training, supervised or semi-

supervised, for the identification of replicas, such as probabilistic and machine learning approaches.

In the following, we briefly describe some rellevant work that illustrates these two categories of
methods.

2.1 Ad-hoc Methods

Chaudhuri et al. [2003] have proposed a linkage algorithm that receives a record from an archive or
data repository as input and searches for another record in a reference archive that "matches" with the
former, according to some predefined similarity function. The matched records are selected according
to some user defined minimum similarity threshold, allowing that more than one candidate record be
returned as a possible answer. In this case, the user is responsible for choosing the duplicated record
most similar to the original one.

An information retrieval style method is used in WHIRL [Cohen 2000], a database management
system that supports similarity joins between relations that include textual attributes. In this system,
textual attributes are represented according to the vector space model [Salton 1989] and term weights
are calculated using the well-known TF-IDF scheme [Baeza-Yates and Ribeiro-Neto 1999] in order to
determine when tuples from two relations should be joined based on the similarity of their attribute
values.

Carvalho and da Silva [2003] also use the vector space model for computing similarity among fields
from diferrent data sources and evaluate four distinct strategies to assign weights and combine the
similarity scores of each field. As a result of their experiments, they found that using evidence
extracted from individual attributes improves the result of the replica identification task.

2.2 Training-based Methods

Since these are more related to the work presented in this article, we cover training-based methods in
more details in this section.

Newcombe et al. [1959] were the first ones to address the record deduplication problem as a Bayesian
inference problem and proposed the first method to automatically handle replicas. However, their
method was considered empirical [Elmagarmid et al. 2007] since it lacks a deeper statistical ground.

After Newcombe et al.’s work, Fellegi and Sunter [1969] have proposed an elaborated probabilistic
method to deal with the problem of evidence combination. Their proposed method requires the
definition of two thresholds for replica identification. If the similarity value between two records
is above the positive threshold, these records are considered as replicas; if it is below the negative
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threshold, the records are considered non-replicas; and if the similarity value is between these two
thresholds, the records are classified as "possible replicas", requiring a manual classification by a
specialist.

The Fellegi and Sunter’s method does not require explicit training examples but, on the other hand,
it does require that the data administrator explicitly defines the two aforementioned thresholds, a
non trivial task since this definition is repository-dependent. This method has dominated the field
for more than two decades until new deduplication methods were developed by the statistical and
machine learning communities. Febrl2 [Christen 2008] is one of the best known software packages that
implement this method.

On the other hand, pure machine learning based methods need some training examples, which
should present characteristics similar to those of the duplicated data, so that they can generalize their
solutions (deduplication functions) for the entire repository. The main problem with this type of
method is the cost of creating such training data, which in some cases may be infeasible.

Bilenko and colleagues [Bilenko et al. 2003; Bilenko and Mooney 2003] exploit a machine learning
technique to improve both the similarity functions that are used to compare record fields and the
way pieces of evidence are combined to identify replicas. In their work, extracted evidence is encoded
as feature vectors, which are then used to train an SVM (Support Vector Machines [Joachims 2002])
classifier to better combine them for the replica identification task that is performed by a system
called MARLIN (Multiply Adaptive Record Linkage with INduction). This system also uses several
blocking strategies to improve its effectiveness when clustering similar records.

Active Atlas [Tejada et al. 2001] is an object identification system that aims at learning mapping
rules for identifying similar objects (records) from distinct data sources. The process involves two
steps. First, a candidate mapping generator proposes a set of possible mappings between the two
sets of objects by comparing their attribute values and computing similarity scores for the proposed
mappings. Then, a mapping rule learner determines which of the proposed mappings are correct
by learning the appropriate mapping rules for that specific application domain. This learning step
is exectued by using a decison tree. What mainly differs the method behind this system from other
machine learning based methods is that it tries to reduce the training effort by relying on user-provided
information for selecting the most relevant training examples.

In [de Carvalho et al. 2006], the authors follow a genetic programming approach to improve the
results of the Fellegi and Sunter’s method. They apply this machine learning technique to balance the
weight vectors produced by the Fellegi and Sunter’s method in order to generate a better evidence com-
bination than the simple linear summation used by that probabilistic model [Fellegi and Sunter 1969].

Following their previous work, de Carvalho et al. [2008] have proposed a new GP-based method
that finds the best evidence combination for generating a deduplication function within a generic
framework that is independent of any other technique. Since record deduplication is a very costly
task, even for small repositories, the proposed method tries to find the best evidence combination
that also maximizes performance, using for this only a subset of the repository as training data.

In this article, we present results of an experimental study that shows how the size of the training
set required by de Carvalho et al.’s GP-based method affects the quality of its obtained solutions
in the end of the evolutionary process. Moreover, a deterministic process is proposed for generating
training sets for the record deduplication process, allowing us to analyze the viability of automatically
generating training samples without manual intervention.

2Freely Extensible Biomedical Record Linkage – http://sourceforge.net/projects/febrl
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Fig. 1. Example of a Function mapped as a Tree.

3. OVERVIEW OF THE GP-BASED RECORD DEDUPLICATION METHOD

In this section we provide an overview of the GP-based record deduplication method used in this work
and first introduced in [de Carvalho et al. 2008]. We start by presenting a brief introduction to the
genetic programming technique followed by an explanation of how the record deduplication problem
was modeled using this technique. We conclude with a more detailed description of the main steps of
the method.

3.1 Genetic Programming Overview

Genetic Programming (GP) is one of the best known and mostly used techniques of evolutionary
computing and can be seen as an adaptive heuristics whose basic ideas are inspired in the natural
selection process. It is a direct evolution of programs or algorithms used for inductive (supervised)
learning, initially applied to optimization problems.

One of the main characteristics of evolutionary techniques is their capability to deal with problems
with multiple objectives, normally modeled as environmental constraints during the evolutionary
process [Banzhaf et al. 1998]. These techniques are also known for their capability of searching for
solutions in large, possibly unbounded, search spaces in which the optimal solution may be unknown,
thus producing solutions close to the optimum [Banzhaf et al. 1998; Koza 1992].

What mainly differentiates GP from other evolutionary techniques (such as genetic algorithms and
evolutionary systems) is the representation of concepts and the solution as a computer program, being
the data manipulated only by these programs. Computer programs have the flexibility needed to deal
with a multitude of problems. Moreover, the program structures being evolved do not have size
limitations and can dynamically vary during the process according to the requirements of the problem
[Koza 1992].

The most used GP representation for solutions of a specific problem (also known as an individual in
a population) are trees and graphs. An example of a function that represents a solution for a specific
problem that is represented as a tree is depicted in Fig. 1. Besides choosing a representation for the
solution of the problem, it is also necessary to define a set of terminals and functions to perform
the task of solving the problem. Terminals are inputs, constants, or nodes with no input, which
are the leaves of the trees, while the set of functions comprises operators, declarations, and basic or
user-defined functions used to manipulate the values of the terminals [Koza 1992]. The leaf nodes are
located at the end of the branch while functions are located in the internal nodes, as can be seen in
Fig. 1. The search space is the space built from all possible programs that can be contructed with the
functions and terminals defined for the problem domain.

A GP algorithm evolves a population of tree-represented individuals, i.e., a set of possible solutions
for the problem. In each generation of the evolutionary process, individuals are evaluated according
to a specific quality metric that measures how well they solve the problem, calculated by a fitness
function. The fitness value is used as a criterion to select the best individuals, which will transmit
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their characteristics to the future generations through operations like crossover and mutation. In this
work, we use the ranking method [Koza 1992] as a selection method. This method chooses the k best
individuals based on the fitness values to be included in the next generation and to participate in the
genetic operations.

While the number of new individuals is smaller than the desired population size n (a parameter to
be set), two individuals are picked among those selected as described above and have their "genetic
material" exchanged in the crossover operation with a certain probability (another parameter to
be set) to generate a new individual that combines the genetic material of their "parents". More
specifically, the crossover operation is implemented by randomly choosing one node of each of the
two trees (the two individuals) and exchanging the subtrees below them. The role of the crossover
operation is to combine good solutions towards the most promising solutions in the search space.

Finally, also with a certain probability (yet another parameter), the mutation operation is applied,
to introduce new individuals (i.e., solutions) in the population, increasing its diversity. This is useful,
for example, to avoid that the whole evolutionary process gets trapped in local minima during the
search process for a good solution. In this work, the mutation of an individual (i.e., a tree) is performed
by first randomly selecting one of its nodes. We then replace the node (and its corresponding subtree)
by a new randomly generated subtree, without exceeding a maximum tree depth d.

The whole process is repeated until a target fitness value f or a maximum number of generations
g is reached. In the end of the process, the best individual, i.e., the one with the best fitness value,
which usually belongs to the last generation in the evolutionary process, is chosen as the final solution
for the problem in hand.

3.2 GP Applied to the Record Deduplication Problem

In this work, as in [de Carvalho et al. 2008], we use a representation based on trees for the individuals of
the GP process which, in our case, represent possible record deduplication functions. More specifically,
to perform the record deduplication, we use evidence combination functions in which each evidence
E is a pair <attribute, similarity function> that represents the application of a specific similarity
function on the values of a given attribute of the data repository. For example, to deduplicate a table
from a relational database with attributes name, surname, age and address, using the Jaro-Winkler
(JW) [Winkler 1999] similarity function, we would have the following pieces of evidence: E1<name,
JW>, E2<surname, JW>, E3<age, JW> and E4<address, JW>.

For this example, a simple function (Fs) could be a linear combination such as

Fs(E1, E2, E3, E4) = E1 + E2 + E3 + E4, (1)

while a more complex function (Fc) could be

Fc(E1, E2, E3, E4) = E1 × (
E2

EE4
3

). (2)

To model functions as trees, each evidence is represented as a leaf, by real values normalized
between 0.0 and 1.0, while internal nodes represent arithmetic operations (e.g., +, −, ×, ÷, exp) that
manipulate the values in the leaves.

As explained in the previous section, during the evolutionary process, the individuals are manip-
ulated and modified through several genetic operations in a process that tries to generate the best
individuals (solutions) in each subsequent generation. All trees generated during this process are au-
tomatically evaluated, i.e., each possible solution for the problem is tested in a data repository – with
characteristics similar to the training set – where replicas have already been identified. This allows
for the automatic evaluation of the capability in identifying pairs of replicas that are true duplicates
in large scale problems.
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The input to the functions are instances of evidence extracted from the data repository. The output
consists of the result of the operation codified in each tree, a value that is compared with a replica
identification threshold as follows: if the value is greater than the threshold the records are identified
as replicas, otherwise the records are considered as different. This approach obeys the transitivity
property of replicas in the sense that, if record A is a replica of record B and B is a replica of C, then
A should be a replica of C.

Experiments performed in [de Carvalho et al. 2008] show that the GP-based record deduplication
method is able to adapt the suggested deduplication functions according to changes in the replica
identification thresholds necessary to classify pairs of records. Therefore, the user does not need to
worry about setting up the "best" values for this threshold according to the data repository, given
that the suggested deduplication functions can adapt automatically, maintaining the effectiveness of
the solutions, despite changes in this threshold.

After a comparison between all pairs of records, there is an assessment of the total number of
correctly and incorrectly identified pairs. This information is used a posteriori by the fitness function,
the component responsible for evaluating the generated individuals during the evolutionary process.
The F1 metric was chosen as fitness function for the experiments in this work. It combines the
traditional metrics of precision and recall used for evaluation of information retrieval systems [Baeza-
Yates and Ribeiro-Neto 1999] as follows:

Precision =
NumberOfCorrectlyIdentifiedDuplicatedPairs

NumberOfIdentifiedDuplicatedPairs
(3)

Recall =
NumberOfCorrectlyIdentifiedDuplicatedPairs

NumberOfTrueDuplicatedPairs
(4)

F1 =
2 × Precision × Recall
Precision + Recall

(5)

Precision is responsible for measuring the proportion of correctly classified replicas among all iden-
tifications, i.e., of all pairs classified as replicas how many really are. Recall calculates the proportion
of correctly identified pairs among all actual pairs existing in the sample, i.e., among all actual pairs
how many were identified. Since precision and recall are related metrics, capable of capturing differ-
ent aspects of the record deduplication process, we decided to use F1 as a single metric because it
combines precision and recall. Thus, F1 allows us to have a general view of how good a deduplication
function is through a single value (between 0 and 1). High values of F1 imply also in high values of
both, precision and recall.

3.3 Record Deduplication using the GP-based Method

The GP-based method for record deduplication proposed by de Carvalho et al. [2008] involves six
steps. A detailed description of these steps is given below.

Step 1. A portion of the data repository to be deduplicated is randomly selected for the training
phase. In the experiments run in [de Carvalho et al. 2008], the training set corresponded to 25% of
the original data repository, given that in the beginning of the deduplication process, the repository
was divided into four files, being one of them used for training and the others for evaluation (test) of
the generated individuals (solutions).
Step 2. The attributes of the data repository are analyzed and the inputs for the GP method are

defined, i.e., we verify the data type of each attribute in order to select a proper similarity function to
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each one of them. This is necessary for the creation of the set of evidence used in the representation
of the solution as described before. For the experiments performed in this work, the set of evidence
was created using the Jaro similarity function for textual attributes and the Edit Distance function
for numerical ones. According to experiments performed in [de Carvalho et al. 2008], these similarity
functions have been demonstrated to be the most adequate for the respective data types, besides
requiring less effort for evidence processing.
Step 3. In the evolutionary process of the proposed GP-based method, individuals (possible solu-

tions for the problem) are generated with the goal of identifying replicas in a given data repository.
Step 4. Within the record deduplication framework, the generated individuals are used to identify

replicas in the portion of the repository used for training, generating a report in the end of the
evolutionary process. In this report, we have a list of the best individuals in each generation and the
respective fitness values, in our case corresponding to the F1 measure.
Step 5. After an analysis of the report on the deduplication process, we select to the next step the

best obtained individual, i.e., the function that best performed the deduplication task in the training
set, which is usually found in the last generations of the evolutionary problem.
Step 6. The best obtained individual is then used to deduplicate the rest of the repository as well as

to deduplicate other repositories with similar characteristics. Notice that new additions of records to
the test repository do not prevent the use of the discovered functions as long as the patterns discovered
in the data repository do not change much, what is not expected in large repositories.

A clear disadvantage of the described process can be seen in the first step. According to [de Carvalho
et al. 2008], the training set is composed of 25% of the original data repository, which corresponds to an
unreasonable amount in some scenarios, due to both labeling and training costs. In the following, we
present an approach for the automatic selection of training examples. Through a series of experiments
we show that it is possible to automatically select a very reduced amount of examples for the training
phase while keeping satisfactory levels of effectiveness in the deduplication process.

4. AN APPROACH FOR THE AUTOMATIC SELECTION OF TRAINING EXAMPLES

In this section, we present our proposed approach for the automatic selection of training examples
for the GP-based record deduplication method that we consider in this work. Some relevant concepts
necessary for the understanding of the process are covered first, followed by a detailed explanation
about the functioning of the proposed approach.

4.1 Positive and Negative Pairs of Records

In the beginning of the record deduplication process with genetic programming, the records are
grouped in pairs, so they can be compared by pointing out which records in the repository are really
replicas. Thus, in order to talk about training examples, it is first necessary to introduce the concepts
of a positive pair of records and a negative pair of records.

A positive pair of records is formed by two records that make reference to the same real-world object
or entity, i.e., after comparing the two records against each other using a predefined deduplication
function, they are pointed out as replicas. On the other hand, a negative pair of records is constituted
of two records that do not make reference to the same real-world object, then being not pointed out
as replicas of each other. These two types of training example are then required to help the GP-based
record deduplication method to better "understand" what is and what is not a replica within the data
repository.

In order to identify replicas in a data repository, each record should be compared to all others.
Thus, if a repository contains n records, n×(n−1)

2 comparisons between records should be performed.
Notice that only half of the possible comparisons need to be performed, since two records do not need
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Fig. 2. Example of Positive and Negative Pairs of Records in a Data Repository with six Records (positive pairs are in
bold).

to be compared more than once. Most of the comparisons will correspond to non-replicas (negative
pairs of records) since the maximum number of duplicated records in a repository is usually much
smaller than the amount of records within it [Christen 2008]. Fig. 2 exemplifies positive and negative
pairs of records in a data repository composed of six records.

4.2 Automatic Selection of Examples

In [de Carvalho et al. 2008], the generation of deduplication functions requires that the user selects a
portion of the repository for the training phase and manually identifies each pair of records as positive
or negative. In small data repositories, such task may be realized without much problems depending
on the amount of noise and the level of knowledge of the user about the data. However, when large
and complex repositories are being deduplicated such manual labeling of training examples may be
too costly or even unfeasible.

Another problem regarding the manual generation of training examples is the size of the training
set. Defining the amount of pairs (positive and negative) that allows for the generation of good
deduplication functions, i.e., that are able to identify the majority of the existing replicas in the data
repository as fast as possible, is by no way a trivial task.

To avoid that the user may have to manually create the training set for the generation of the
deduplication functions, our proposed approach uses a deterministic technique to automatically select
a subset of these examples for the training phase. The steps involved to apply such an approach are
the following:

Step 1. The data repository to be deduplicated is divided equally in four files, being one of them
for training and the remainder for testing. The experiments presented in Section 5 show the relation
between the amount of pairs of records used for training and the results obtained in the end of the
process of generation of record deduplication functions with regard to the time spent in the training
phase and the quality (effectiveness) of the generated individuals.
Step 2. The deterministic method of Fellegi and Sunter [1969], mentioned in Section 2, deduplicates

the training set and generates two lists: one with all positive pairs of records and the other with the
negative ones. This deduplication is performed using the Febrl tool [Christen 2008]. Both thresholds
are defined always with the same values3. This simplification avoids the need to manually identify
pairs of records that would be placed between the two thresholds (pairs whose identification is more
difficult). To perform the experiments in this work, like in [de Carvalho et al. 2008], the set of

3Values defined after initial experiments.
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evidence was created using the Jaro similarity function [Koudas et al. 2006] for textual attributes and
the Edit Distance function [Koudas et al. 2006] for numerical ones, since these functions, as shown in
[de Carvalho et al. 2008], are the most adequate for these data types.
Step 3. Here we define the percentage values of positive and negative pairs of records that will be

used in the training phase. The defined amounts of pairs of records is then extracted from the two
lists of examples, generated in the previous step, resulting in a new set of training examples.
Step 4. In the end of each generation of the evolutionary process, we select individuals (possible

solutions for the problem) with the goal of identifying replicas in an (unseen) data repository.
Step 5. As soon as the evolutionary process ends, a report is generated with the indication of the

best individuals in each generation and their respective fitness values, measured by the F1 metric.
Step 6. After analyzing the report generated in the previous step, the user selects, for the next step,

the best obtained individual, i.e., the function that performed best in deduplicating the training set.
Step 7. Finally, the best obtained individual is then used to deduplicate the rest of the repository

or other repositories with similar characteristics.

As such, the creation of the training set becomes easier, making feasible the practical application
of the GP-based method to deal with the problem of record deduplication. This happens because
the proposed approach reduces the need of human intervention in the process of creating training
examples. It is important to stress that, despite we have used in Step 2 of the proposed approach the
method of Fellegi and Sunter [1969], it is possible to use other deterministic classification methods
such as k-means [Gu and Baxter 2006].

5. EXPERIMENTS

In this section, we present the results of the experiments performed to demonstrate how the pro-
posed approach for the automatic selection of training examples affects the quality (effectiveness)
of the generated solutions as well as the time spent in the training phase of the GP-based record
deduplication method.

In the first part of this experimental study, we performed three sets of experiments, gradually varying
the percentage of the number of pairs of records (positive and negative) used in the training phase.
First, we reduced the number of positive pairs while the number of negative pairs was kept unchanged.
Next, the same reduction was applied to the negative pairs, keeping the number of positive pairs in
its totality. Finally, we reduced both sets of pairs simultaneously. The values for the percentage of
reduction were empirically chosen after initial experiments.

The goal of this first set of experiment is to demonstrate how the choice of the number of examples
(positive and negative pairs of records) used in the training phase affects the performance of the GP-
based record deduplication method. Moreover, we also wanted to investigate if it is really necessary
to use all the generated training examples as was done in [de Carvalho et al. 2008]. The results of this
evaluation would allow the suggestion of configurations for the selection of training examples, making
it possible the identification of replicas in a more efficient way, without sacrificing the quality of the
generated solutions.

In the second part of the experimental study, we used the proposed approach for the selection of
training examples to perform a new set of experiments. In this case, we wanted to evaluate, using
the F1 metric, if the examples automatically selected by the deterministic method were in fact good
ones. This automatic selection makes any machine-learning based record deduplication process more
accessible and practical.

As the result of the experiments, we present the mean F1 values and the corresponding standard
deviations of the best individual in the test files, after ten executions. The configuration of the GP
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Table I. Configuration of the GP Parameters.
Parameter Value

Max number of generations 30
Max number of executions 10

Population 50
Max tree depth 5

Max mutation tree depth 4
Mutation rate 2%

Initial random population method Ramped Half-and-Half
Individual selection method Ranking
Individual pairing method Random

parameters is shown in Table I. The set of evidence (pairs <attribute, similarity function>) used in
this work are the same used in [de Carvalho et al. 2008].

All experiments were performed using workstations with the following configuration: 2 GHz Pen-
tium Core 2 Quad processor, with 4 GB RAM DDR2 of main memory, and HD SATA with 320 GB,
running with a FreeBSD4 7.1 64-Bits operational system and using version 2.5.1 of the Python5

programming language.

5.1 Experimental Dataset

For the creation of the datasets necessary to perform our experiments, we used SDG [Christen 2005], a
synthetic data generator available in the Ferbl tool [Christen 2008]. This generator allows the creation
of datasets containing names (based on frequency tables of names and surnames), addresses (based
on frequency tables of locations, postal codes, street numbers, etc.), telephone numbers and personal
identifier numbers (social security number). Since real data is not easily available for experimentation
mainly due to privacy and confidentiality constraints, the use of synthetic data was considered the
best option to test various scenarios. It allows a a better evaluation of the impact in the quality of
the final solutions as a result of changes in the number of positive and negative pairs of records used
in the training phase, since the characteristics of the existing errors and of the records are completely
known.

The data generated by SDG are similar to those commonly found in personal medical data records.
First, the tool creates a dataset containing only original records. Next, replicas are generated from
these original records by means of small modifications such as removal, insertion and modifications of
characters, as well as the removal, insertion and modifications of entire words, changes that are based
on characteristics of real errors. Replicas are then inserted in the original dataset to be used in the
record deduplication experiments. Each record has the following fields (attributes): name, surname,
street number, address1, address2, district, postal code, state, birthdate, age, telephone number and
social security number.

For experimentation, a synthetic data repository was created containing 2000 records, distributed
equally in four files, each one of them composed of 300 original records and 200 replicas. These replicas
were generated obeying the following constraints: at most one replica can be created from a single
original record (using a uniform distribution), at most one modification can be made in each attribute
of a record and at most one attribute can be modified in the whole record. Since this training file
contains 500 records, 124,750 pairs of records will be generated (see discussion in Section 4.1 about
this calculation), being 200 positive pairs of records and 124,550 negative pairs.

In the experiments presented in the next section, we used a larger proportion of replicated pairs
in the training and test sets than what is normally found in real scenarios, according to the USIIS

4http://www.freebsd.org/
5http://www.python.org
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Table II. Reduction in the Percentage of Positive Pairs of Records – Training Time and Standard Deviation of F1 Values.
Negative Positive Training (A) (A) Stand. (B) (B) Stand. (C) (C) Stand.
Pairs (%) Pairs (%) Time (hs) Average Deviation Average Deviation Average Deviation

100 37.97 0.994 0.009 0.997 0.008 0.995 0.011
95 41.00 0.996 0.004 1.000 0.000 0.997 0.003
90 43.37 0.997 0.003 1.000 0.000 0.997 0003
70 36.80 0.996 0.006 1.000 0.000 0.998 0.001
50 41.20 0.996 0.002 1.000 0.000 1.000 0.000

100 30 40.90 0.995 0.003 1.000 0.000 0.999 0.001
15 41.42 0.994 0.004 0.998 0.004 0.998 0.004
5 42.52 0.988 0.010 0.991 0.010 0.989 0.014
2.5 33.00 0.967 0.035 0.972 0.032 0.967 0.040
1 32.32 0.952 0.052 0.957 0.049 0.949 0.055
0 39.62 0.315 0.418 0.317 0.414 0.321 0.419

project6, that reports that the rate of replicated records is approximately 20%. Despite this, only
representative examples, i.e., those most useful for learning duplication patterns, are in fact used for
training.

5.2 The Experiments

As explained earlier, the goal of the experiments described in this section is to analyze how the quality
of the generated individuals in the deduplication process and the time spent on training are affected by
changes in the number of examples used in the training phase of the GP-based record deduplication
method. In all experiments, pairs of records were randomly chosen according to the proportions
defined in each experiment.

5.2.1 Experiments with Reduction in the Percentage of Positive Pairs of Records. In this set of
experiments, we gradually reduced the number of positive pairs of records used for training while
keeping unchanged the number of negative. Although minority, the positive pairs are determinant
for the quality of the generated individuals in the deduplication process. The results of this set of
experiments are presented in Table II.

The total time spent – in hours – in the training phase of each experiment of this set is also presented
in Table II being useful for comparison purposes. The results obtained in the test phase are presented
from the fourth column onwards, indicating the mean value of F1 and the standard deviation of the
best individual in each test file (A, B and C). The results of the other sets of experiments are presented
in a similar way.

The results show that the reduction in the number of positive pairs of records used in the training
phase affects the quality (as measured by the F1 metric) of the results obtained in the test phase.
However, when we used very reduced percentages of positive pairs (e.g., 5% and 2.5%) it is still possible
to obtain results close to those obtained when all positive pairs are used as examples with high values
of mean F1 and low standard deviations, showing that there is a low dispersion of the F1 values with
regard to the mean. Also when we use only 2.5% of the positive pairs of records, for example, there
is a saving of about 13% in training time. However, it was not possible to obtain a direct relation
between the percentage of positive pairs and the time spent for training.

When all positive pairs of records are completely discarded there is a drastic reduction in the F1
values and an increase in the standard deviations. In this situation, the generated individuals identify
basically all pairs as replicas, i.e., they are able to identify the most (or even all) positive pairs, but
make many mistakes by considering a lot of negative pairs as positive. As such, recall values are
close to 1.0 but precision are close to 0.0. Since F1 is a combination of both metrics, the mean F1

6Utah Statewide Immunization Information System – http://health.utah.gov/phi/brownbag/handouts/2008/USIIS_april.pdf
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Table III. Reduction in the Percentage of Negative Pairs of Records – Training Time and Standard Deviation of F1
Values.

Positive Negative Training (A) (A) Stand. (B) (B) Stand. (C) (C) Stand.
Pairs (%) Pairs (%) Time (hs) Average Deviation Average Deviation Average Deviation

100 37.97 0.994 0.009 0.997 0.008 0.995 0.011
95 44.13 0.998 0.002 0.999 0.003 0.999 0.001
90 35.92 0.998 0.003 1.000 0.000 0.998 0.003
70 26.83 0.998 0.002 0.999 0.003 0.998 0.003
50 21.08 0.997 0.007 0.999 0.002 0.998 0.001

100 30 12.02 0.993 0.009 0.999 0.003 0.994 0.011
15 5.88 0.995 0.009 0.996 0.007 0.996 0.006
5 2.33 0.926 0.138 0.925 0.132 0.905 0.185
2.5 1.35 0.846 0.154 0.851 0.137 0.826 0.183
1 0.60 0.677 0.242 0.649 0.260 0.654 0.266
0 0.33 0.163 0.213 0.163 0.221 0.143 0.286

of the best individuals will always be very small, given the high rate of false positives (negative pairs
erroneously classified).

5.2.2 Experiments with Reduction in the Percentage of Negative Pairs of Records. In this set of
experiments, we gradually reduced the number of the most frequent type of pair of records in the
training set. Because of that, it is important to analyze how this reduction influences the quality of
the individuals generated in the training, as well as the time spent in the execution of this phase.

The results, shown in Table III, demonstrate that the reduction in the number of negative pairs of
records influence the quality of the obtained results in a more significant way than the reduction of
positive pairs.

In Table II, for example, we observe that the mean values of F1 for the configuration defined with
1% of the positive pairs and the totality of the negative pairs are close to 0.950 while the configuration
with 5% of negative pairs and the totality of the positive pairs, see Table III, leads to inferior results
than the previous configuration. In any case, using certain percentages of reduced negative pairs (for
example, 15%) it is possible to obtain solutions close to those using all training examples. In this
case, the saving in training time achieves approximately 85%.

Moreover, we observe a direct relation between the number of negative pairs used for training and
the total time spent in this phase, i.e., the smaller the number of negative pairs used the faster is the
training phase and vice-versa. This reduction occurs in this set of experiments because the negative
pairs correspond to the vast majority of the examples used during training.

In this repository, when we reduce 85% of the negative pairs of records, for example, 105,868 pairs
are not considered for the training phase, while the same percentual reduction in the positive pairs
only removes 170 pairs of records. As such, we are able to obtain a significant saving in training time
since the number of pairs of records used in the training phase is much reduced.

5.2.3 Experiments with Reduction in the Percentage of Positive and Negative Pairs of Records.
Finally, in this set of experiments, we gradually reduced, at the same time and at the same proportion,
both, the number of positive and negative pairs of records. The results are presented in Table IV.

Again, we observe a direct relation between the number of used pairs (positive and negative) and
the time spent in the training phase. As can be seen, it is possible to significantly reduce the number
of used pairs and still obtain good results. Using only 10% of positive and negative pairs, for example,
the saving in training time is of approximately 88% with losses in the quality of the deduplication of
only 0.6%, 0.7% and 0.3%, in test files A, B, and C, respectively.

Journal of Information and Data Management, Vol. 1, No. 2, June 2010.



226 · Gabriel S. Gonçalves et al

Table IV. Reduction in the Percentage of Positive and Negative Pairs of Records – Training Time and Standard Deviation
of F1 Values.

Positive Negative Training (A) (A) Stand. (B) (B) Stand. (C) (C) Stand.
Pairs (%) Pairs (%) Time (hs) Average Deviation Average Deviation Average Deviation

100 100 37.97 0.994 0.009 0.997 0.008 0.995 0.011
50 50 22.03 0.995 0.002 1.000 0.000 0.999 0.001
25 25 10.85 0.994 0.004 0.996 0.006 0.998 0.002
10 10 4.62 0.988 0.012 0.990 0.011 0.992 0.010
5 5 2.38 0.936 0.142 0.942 0.132 0.924 0.189
2.5 2.5 1.10 0.941 0.051 0.948 0.051 0.952 0.042
1 1 0.67 0.869 0.110 0.875 0.118 0.852 0.150

Table V. Using the Fellegi and Sunter Method for the Generation of the Training Set – Training Time and Standard
Deviation of F1 Values.

Positive Negative Training (A) (A) Stand. (B) (B) Stand. (C) (C) Stand.
Pairs (%) Pairs (%) Time (hs) Average Deviation Average Deviation Average Deviation

10 10 2.20 0.985 0.011 0.980 0.021 0.974 0.024
5 5 1.41 0.979 0.017 0.975 0.020 0.974 0.025
2.5 2.5 1.07 0.986 0.014 0.982 0.023 0.978 0.022

5.3 Deterministic Record Deduplication

The goal of this last set of experiments was to validate our proposed process for the automatic
selection of training examples. In all performed experiments, the pairs of records suggested by the
deterministic method were randomly chosen using the proportions defined for each experiment. After
the experiments of the last sections, we learned that it is possible to satisfactorily use smaller sets of
training examples with positive and negative pairs. As such, in the experiments performed here we
only used configurations with small percentages of training examples. The results can been seen in
Table V.

In this set of experiments, using examples automatically suggested by the Fellegi and Sunter method
[1969], the individuals generated in the end of the deduplication process presented high values of mean
F1, basically eliminating the need for manual labeling of examples. It was possible to use only 2.5%
of positive and negative pairs of records in the training phase without incurring in considerable loss in
the quality of the generated individual by the end of the deduplication process. The values of mean
F1, when compared with the configuration that uses all the available training data, had a loss in
performance of only 0.8%, 1.5% and 1.7% for the test files A, B, and C, respectively. The reduction
in training time, on the other hand, was of about 97%.

In sum, we can say that it is possible to satisfactorily exploit the proposed approach for the au-
tomatic selection of training examples for the GP-based record deduplication method, at least when
working with data repositories with similar characteristics as the ones we used in this work.

6. CONCLUSIONS AND FUTURE WORK

The identification and removal of duplicates is very important for maintaining the quality of the
information available in current data repositories. Systems that depend on data integrity in order
to offer high quality services, such as digital libraries and e-commerce brokers, may be very affected
by the existence of replicas or near-replicas in their repositories. As such, great efforts have been
applied in the development of effective and efficient methods for the removal of duplicates in large
data repositories [Bell and Dravis 2006; Geer 2008].

Since this is a complex task, whose treatment requires a lot of time and processing power due to the
need of comparing large amount of records, machine learning techniques have been used with success
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in the resolution of the deduplication problem. However, such techniques require a training phase
in which manually labeled examples are used to learn deduplication patterns. This manual process
makes difficult the application of these techniques in several real situations due to the cost and time
necessary to cretate the set of training examples. In this article, we propose an approach based on a
deterministic technique to suggest, in an automatic fashion, training examples for a GP-based record
deduplication method, making viable the use of this method in large real-world applications.

The results of an experimental study presented in Section 5 show that it is possible to use a
(very) reduced amount of training examples without affecting much the effectiveness of the individuals
(deduplication functions) generated in the end of the evolutionary process. For the data repositories
used in this work, the utilization of 10% of positive and negative pairs of records is already enough
for obtaining satisfactory results, significantly reducing the time needed for training. Moreover, a
deterministic method was successfully applied for the automatic selection of training examples for the
process of record deduplication using a GP-based method, helping to validate the approach proposed
in this article.

Several extensions of our work can be envisioned. An experimental study using real data repositories
of different domains and levels of difficulty will help to consolidate our current results. Different
methods for the selection of training examples could also be tested, for example, choosing the pairs
of records that lied closer to the replication identification thresholds, possibly improving the current
results. Moreover, we could use different deterministic techniques for the selection of training examples
allowing a comparison of different approaches for this task. Finally, a graphical interface (GUI ) could
be developed to facilitate the process of generating deduplication functions with the GP-based method.
In the current version of the developed tool, the user needs to modify several files written in Python to
configurate the whole record deduplication environment, which requires a good knowledge about the
syntax of the language and restricts the potential use of the method to experient users. A graphical
interface would make it easier for a user with less experience in Python and the record deduplication
environment to use the proposed method.
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