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Abstract. One of the most important challenges for the researchers in the 21st Century is related to global heating
and climate change that can have as consequence the intensification of natural hazards. Another problem of changes in
the Earth’s climate is its impact in the agriculture production. In this scenario, application of statistical models as well
as development of new methods become very important to aid in the analyses of climate from ground-based stations
and outputs of forecasting models. Additionally, remote sensing images have been used to improve the monitoring
of crop yields. In this context we propose a new technique to identify extreme values in climate time series and to
correlate climate and remote sensing data in order to improve agricultural monitoring. Accordingly, this paper presents
a new unsupervised algorithm, called CLIPSMiner (CLImate PatternS Miner) that works on multiple time series of
continuous data, identifying relevant patterns or extreme ones according to a relevance factor, which can be tuned by
the user. Results show that CLIPSMiner detects, as expected, patterns that are known in climatology, indicating the
correctness and feasibility of the proposed algorithm. Moreover, patterns detected using the highest relevance factor is
coincident with extreme phenomena. Furthermore, series correlations detected by the algorithm show a relation between
agroclimatic and vegetation indices, which confirms the agrometeorologists’ expectations.

Categories and Subject Descriptors: H.2.8 [Database Applications|: Data mining, Spatial Database and GIS

Keywords: climate change, cross-correlation, extremes, knowledge discovery

1. INTRODUCTION

In the last decades, researches in Climatology have indicated that climate is changing in the whole
World. Meteorologists have analyzed large volumes of sensor data and outputs from global models in
order to understand and to forecast extreme conditions and phenomena. Recent studies have indicated
a disturbing situation regarding the temperature and precipitation in the Planet. Specifically, the
results of several analyses have showed that some extreme weather events have changed in frequency,
duration and intensity over the last years [Meehl and Tebaldi 2004; Vincent et al. 2005; Groisman et al.
2005; Goswami et al. 2006; Alexander et al. 2006; Ganguly and Steinhaeuser 2008|. Consequently,
increased temperatures and regional changes in precipitation patterns can have adverse effects on
natural and human systems.

In order to assess the real impact of such increases, as well as on how to deal with it, initiatives
of collaborative work involving meteorologists, mathematicians, statisticians and computer scientists
have emerged in several countries with promising results. One of them is the definition of a suite of
climate change indices derived from daily temperature and precipitation data in order to organize and
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allow comparisons among works around the World.

Extreme precipitation events such as strong daily rainfall and many days with rainfall above the daily
average can cause flooding, which often result in devastating rural and metropolitan environments, as
well as leading to loss of human lives. Thus, understanding trends of extreme events is so important
to governments and communities to learn and to be prepared to mitigate the problem, and more
importantly, to make decisions in a timely manner. Additionally, analyses of temperature time series
indicate that it is crucial to define methods to reduce the emission of greenhouse gases and to adapt
agricultural crops to the new conditions of increasing temperatures.

Since agriculture is affected by the climate conditions, it is strategic to the governments to be able
to forecast climate trends in order to generate or modify public policies and to act when necessary to
reduce negative impacts on the economy. Developing countries such as Brazil usually do not have an
ideal conception of monitoring network. The use of remote sensing data is an alternative to the more
conventional methods, because the remote sensors have an excellent spatial and temporal coverage.
These remote sensors also enable the achievement of continuous information about the country, with
spatial resolution of few kilometers and temporal order of minutes. However, measurements obtained
from remote sensors are indirect and, therefore, it is necessary to develop models that relate features
available in the satellite spectral channels to parameters associated with this information. In this
scenario, several satellites are being used to assist in monitoring and forecasting.

Climate data from ground-based stations, remote sensors, weather radars or sensor network have
been increased, yielding terabytes of data every week. In addition, climate change models have been
processed for different scenarios generating huge amounts of data. Consequently, experts have much
more effort to analyze and detect relevant patterns. Massive data volumes and processing complexity
bring up several problems and research challenges, such as forecasting of extreme events, correlation
between climate and remote sensing time series, among others. Therefore, developing algorithms
to retrieve relevant information for decision making and to extract interesting patterns is a deeply
endeavor.

Meteorologists and agrometeorologists use well-known statistical methods, such as principal compo-
nent analysis, cluster analysis, frequency distribution, geostatistics, Fourier transform, non-parametric
statistics and so on, for analyzing and finding patterns in Earth science. They are interested in defin-
ing the climatic behavior of each region in order to identify their anomalies, such as long periods of
drought (days with rainfall bellow 10 mm or without rainfall), day with extreme rainfall, periods of
drought in the Winter associated to high temperatures and other phenomena. In most cases, these
events are similar to positive and negative peaks. Most of these studies are done using time series that
can be correlated with other data sources such as remote sensors aboard satellites. Another way of
studying the climate is to correlate time series from ground-based meteorological stations with values
of sea surface temperature.

Knowledge discovery in database is an important approach that can be used to answer several
agrometeorologists’ questions. Thus, analyzing large amounts of climate data from real measures or
model outputs associated to remote sensing data and geographical information is an important reason
to develop new data mining algorithms. In this context, we consider the problem of finding relevant
patterns and extreme phenomena from heterogeneous time series. In general, time series are converted
into symbolic representation to simplify the analysis. However, we are interested in generating patterns
considering continuous data, i.e., convert time series to a character sequence without lost information
about data range.

Our focus is to generate patterns as discrete intervals that represent phenomena on climate time
series. These patterns should be positive peaks, negative peaks or range of values with low variation.
These patterns allow a quantization of time series, keeping the embedded semantic on data. In this
work, we address the following problems:
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1
2

(1)
(2)
(3) How to discover relevant patterns in datasets that combine heterogeneous time series?
(4)

How to mine interesting climate patterns in time series of continuous data?

How to quantize time series retaining the temporal meaning of the patterns?

How to mine different time series and detect time delay between them?

In order to address these problems, we propose a new unsupervised algorithm (CLIPSMiner) to
discover relevant and extreme patterns in heterogeneous climate and remote sensing time series. This
new method works on multiple time series of continuous data, identifying all patterns or the relevant
ones according to a relevance factor, which can be tuned by the user. To improve the analysis of long
series, the CLIPSMiner algorithm allows the generation of patterns for given periods of time (years,
for example). Thus, meteorologists can examine and compare patterns in each period, considering its
tendency, i.e., whether there was an increase/decrease on the number of patterns and if the maximum
and minimum values in each pattern varies between periods.

This paper is organized as follows. Section 2 presents the main related work. Section 3 formalizes
the necessary concepts related to the problem of pattern mining and presents CLIPSMiner, an efficient
algorithm for mining patterns from climate time series. Section 4 presents and analyzes experimental
results obtained by executing CLIPSMiner over synthetic data as well as over real data. Finally,
section 5 summarizes the conclusions and discusses future research.

2. RELATED WORK

Ganguly in [Ganguly and Steinhaeuser 2008| presented a work that maps climate requirements to
solutions available in temporal, spatial and spatio-temporal data mining. They introduce climate
challenges to the data mining community and suggest that relatively simple data mining methods can
result in scientific insights with social impacts, such as analyses of heat waves [Meehl and Tebaldi 2004]
or detection of extreme rain events [Goswami et al. 2006]. These studies use well-known statistical
techniques, which may not be as efficient as the volume of data increases, because it demands several
scans over the data.

Understanding spatio-temporal variability of precipitation extremes is an important task since pre-
cipitation extremes are related to natural disasters, such as flooding. Extreme Value Theory (EVT)
is a statistical area that deals with extreme deviations from the median of probability distributions.
Wu in [Wu and Chawla 2007] have analyzed precipitation extremes over El Nifio years using spatial
autocorrelation of Generalized Pareto distribution parameters from EVT. Spatio-temporal variability
of weekly precipitation extremes in South America also has been investigated [Khan et al. 2007; Kuhn
et al. 2007]. These papers analyze extreme phenomena in rainfall series using mature statistical tech-
niques. However, such methods do not automatically detect the context and period in which extreme
events occur, as the new proposed method in this paper does.

Methods of data mining are more suitable to find patterns in massive databases and have been
proposed in the literature for discovering sequential patterns [Zaki 2001; Wang and Han 2004; Cao
et al. 2005; Huang et al. 2006], mining association rules from them [Agrawal et al. 1993; Das et al.
1998] and clustering [Steinbach et al. 2003]. Mannila in [Mannila et al. 1997] also proposed a method
to episodical sequential data mining that uses all frequent episodes within one sequence.

There are several methods that use constraints to focus on the mining process to find relevant items.
Zaki in [Zaki 2000] proposed the use of temporal constraints in transactional sequences. Harms in
[Harms et al. 2001] defined methods that combine constraints and closure principles with a sliding win-
dow approach. Their objective was to find frequent closed episodes in multiple event sequence. They
developed the MOWCATL algorithm [Harms and Deogun 2004]| to mine frequent association rules
from sequential datasets. Wu [Wu et al. 2008] proposed the GEAM (Geographic Episode Association
Pattern Mining) algorithm to find association patterns in abnormal event sequences.
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Lin in [Lin et al. 2007] have applied data mining techniques to a global land precipitation dataset and
a Sea Surface Temperature (SST) dataset. They have discovered well-known teleconnection patterns
and previously unknown ones, such as an abnormally low sea surface temperature (SST) in the Eastern
Pacific that coincides with abnormally high precipitation in Shanxi.

This paper proposes a new way to analyze heterogeneous time series in order to discover relevant
or extreme patterns in complete time series or their parts divided into time windows. Moreover, we
propose a method to verify correlations between time series.

3. PROBLEM FORMALIZATION AND THE CLIPSMINER ALGORITHM

The CLIPSMiner algorithm detects sequential patterns on climate and remote sensing time series
that represent meaningful phenomena, such as periods with a small variation in data distribution
and negative or positive peaks. The size of these peaks may represent extreme phenomena, such as
meaningful drops in temperature or heavy rains in a short period of time. The CLIPSMiner algorithm
works on multiple and continuous time series.

3.1 Problem definition

The following definitions are fundamental to better understand the proposed method. Table I sum-
marizes symbols and mnemonics employed in this paper.

Definition 3.1. A Time series S is defined as a sequence of pairs (a;,¢;) with ¢ = 1,...,n, ie.
S = [(a1,t1)y. -y (@i, ti)y ..oy (an, tn)], such that (t; < ... < t; < ... < t,), where each a; is a data
value and each t; is a time value in which a; occurs.

Each pair (a,t) is called an event e. A set of events E contains n events of type (a;,t;) for
i=1,...,n. Each q; is a continuous value. Each ¢; is a unit of time that can be given in days, months
or years. Given two sequences S and R, the values t; of both must be measured in the same time
unit.

Definition 3.2. The event sequence S, is a set of consecutive events e;, i.e. Se = (€5,€i41,--.,€k),
where e; = (a;,t;) for i > 1 and k <n and k —4 > ¢, where ¢ is the minimum number of events in an
event sequence.

We are interested in extracting event sequences from a given sequence where the number of elements
e; in the event sequence depends on the difference between events given by d; = (a;+1 — a;) and a
given § parameter. The extracted event sequences comprise a period of events having the tendency
to rise or fall, when plotted as a graph.

The value of ¢ is usually very small, tending to zero (§ — 0). Therefore, we define three exclusive
types of event sequences.

Definition 3.3. The ascending event sequence S, is a set of consecutive events e;, such that S, =
(€5, €it1,---,€,) Where Zf(dz) > 0, such that Vd;, d; > 0 and |dx_;| < 0 to (k — i) < parameter
defined by the user.

Definition 3.4. The descending event sequence is a set of consecutive events e;, such that Seq =
(€5, €i41,-- -, €r) where Zf(dl) < 0, such that Vd;, d; < 0 or |di—;| < to (k—1i) < parameter defined
by the user.

Definition 3.5. The stable event sequence is a set of consecutive events e;, such that
Ses = (€i,€i41,-..,exr) where Vd;, |d;| < 0.
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The combination of different types of event sequences generates patterns that resemble peaks (neg-
ative and positive) and intervals with constant distribution.

A meaningful change or stability in the data distribution behavior should be monitored. For exam-
ple, a variation from Omm to 120mm in a short period of time in a rain series can mean an extreme
phenomenon responsible for a flood in a given location. Thus, we define three types of patterns used
to quantize a time series S.

Definition 3.6. Valley pattern (V) is defined as the concatenation of a descending event sequence
and an ascending event sequence, i.e. V = S¢qSeq.

Definition 3.7. Plateau pattern (P) is defined as a stable event sequence, i.e. P = S;.

Definition 3.8. Mountain pattern (M) is defined as the concatenation of an ascending event se-
quence and a descending event sequence, i.e. M = S¢;S¢4.

Figure 1(a) presents an example of a pattern V. In real data, a pattern V can be observed when
a sharp drop in the minimum temperature occurs, for example. Figure 1(b) presents an interval in
a time series and highlights a pattern P. For WRSI (Water Requirement Satisfaction Index) time
series, a pattern P can occur when a; has values closer to 1. This behavior in time series corresponds
to the maximum soil water content, after a long period of rainfall, for example. Finally, Figure 1(c)
presents an interval in a time series and highlights a pattern M. In a real dataset, pattern M occurs
when there is a significant variation in the amplitude, such as a very heavy rain, for example.

Two thresholds (p and A) are defined to identify only the relevant patterns, acting as filters. The
threshold p is the relevance factor and it depends on the amplitude measure. The relevance factor is
a measure for identifying whether a pattern M or V is relevant or not. The threshold A is the plateau
length and is defined to identify relevant P patterns. Both thresholds get a default value, what can
be tuned by the user.

Table I. Table of symbols and mnemonics

Symbols Definition

S, R Time series

a; Data value

t; Time value

e; Events of type (as,t;)
d; Difference of events

Event Sequence

Ascending event sequence

Descending event sequence

Stable event sequence

Pattern of type Valley (negative peak)

Pattern of type Mountain (positive peak)
Pattern of type Plateau (small variation)

Time series amplitude

Minimum variation between two consecutive events
Relevance Factor

Plateau Length

Time delay

Set of events

Number of elements in a time series

Number of time windows (pieces of time series)
Minimum number of events in an event sequence

S

N nlnn g
o 0
ISP
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»
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Fig. 1. Examples of patterns detected by CLIPSMiner are presented in graph format where the y axis represents
attribute value and time is measured in x axis. (a) Pattern of type V is similar to negative peaks. (b) Pattern of type
P implies an interval in the time series with low variation. (c) Pattern of type M is equivalent to a positive peak.

Definition 3.9. Amplitude (y) is defined as the difference between the maximum and the minimum
values of the time series, ¥y = amaz — Gmin-

Definition 3.10. Relevance factor (p) is a percentage of the amplitude value and is used to evaluate
the height of an ascending (Se,) and a descending (Seq) event sequence.

Definition 3.11. Plateau length (A\) defines the length of an stable event sequence (Ses).

For example, a pattern M of daily rainfall ranging among (0, 5, 0) is not representative because
it has a very small variation (only 5 mm), considering a range from 0 to around 150. However, an
interval of daily rain that ranges from (0, 120, 0) is an extreme phenomenon that may cause disasters.
In this case, the relevance factor indicates which patterns will be considered. In this work, the default
value for the parameter was defined empirically and corresponds to p =y *40/100. The default value
of X\ is 4 to allow discovering plateaus composed of four consecutive events, which was also defined

empirically.

Definition 3.12. Time delay T is the time interval between the beginning of the occurrence of a
pattern in a time series and the beginning of the occurrence of a similar pattern in another time series.
The time delay is measured in units of time.

3.2 The CLIPSMiner algorithm

In this section, we present the CLIPSMiner algorithm that finds relevant and extreme patterns on time
series. CLIPSMiner tracks time series of continuous data and sets control points as a quantization
method. However, the algorithm considers the time occurrence of the events, organizing the pieces
quantized in patterns that have a semantic related to weather events. Figure 2 presents a schema
of the algorithm steps using a time series of 16 values as example. In the first step, it generates
an array containing the differences between the previous and current values of the series. Thus, all
event sequences are identified (2nd step) and the patterns M, V and P are found in the 3rd step .
According to parameters, some patterns are pruned and only relevant patterns are presented as result.
Additionally, CLIPSMiner can divide time series in parts of a time period (usually in years) defined
by the user. Thus, it is able to discover different patterns in each part of the series, observing trends
and changes in different time periods.

Algorithm 1 summarizes the CLIPSMiner algorithm. For each time period (p) of time series,
CLIPSMiner first calculates an array composed by the differences between previous and current values,
ie. di = ajy1 — a; (lines 2 to 4). Thus, by analyzing the array of d;, it can discover if there is a
tendency for rising or falling in the time series, what facilitates discovering the sequence of events. In
the next step, the algorithm generates a set of sequences that can be ascending, descending or stable
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Fig. 2. Representation of the three steps executed by algorithm CLIPSMiner. (1) Calculation of differences between
previous and current values of time series, (2) Identification of ascending, descending and stable event sequences and
(3) Detection of patterns M, V and P.

according (lines 5 to 9). In the next step, CLIPSMiner prunes event sequences S, and S.q smaller
than p, and Ses smaller than A (lines 10 and 11).

For each event sequence S., not pruned, the algorithm concatenates consecutive sequences S, and
Seq to generate an M pattern, S¢q and Se, to generate a V pattern and Ses to generate P patterns
(lines 12 to 16). CLIPSMiner stores the mined patterns in an array for each time series S. The format
of the patterns is an event interval, such as [@init, Gmid, Gend), Where mid is an intermediate value, and
the time interval [t;n;t, tena] Where the event e occurs (line 17).

The last step (lines 21 to 24) corresponds to the calculus of the time delay between two time series
S;. The algorithm compares the occurrence time of the several intermediate values for the patterns
M and V in two series, and calculates the difference between the values. The time delay 7 is the mean
value found.

3.3 Time Complexity

CLIPSMiner reads each of the n events once, where n is the length of the time series. When the events
are read, an array of difference values are stored. Each of the n — 1 values from the differences array
are read to discover M, V and P patterns. This process is performed on the k time series stored in
the dataset. Thus, the algorithm time complexity is O(2nk) or simply O(n).

4. EXPERIMENTAL RESULTS

In this section, we discuss representative experiments performed on synthetic and real datasets. The
experiments were aimed at evaluating and validating the proposed algorithm. All experiments were
made on a computer with 4GB of RAM, an Intel(R) Core(TM)2 Duo 2.66 GHz processor and the
Microsoft Windows XP Professional.
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Algorithm 1 CLIPSMiner Algorithm
Input: Time series S; thresholds ¢, p, A and p
Output: Patterns V', M, P and time delay 7
for each time period p of time series S do
2: for all a; do
calculate array of differences d; = a;4+1 — a;

4: end for
for all d; values do
6: Find Seq = Set of ascending event sequences
Find S.q = Set of descending event sequences
8: Find S.s = Set of stable event sequences
end for

10: Prune Seq and S.q when Z dy <p
Prune Ses when Z d; < A
12: for all Se¢ not pruned do
V' = concatenation of S¢qSeq

14: M = concatenation of SeqSeq
P = Ses
16: end for

Set of all patterns as [ainit, @i, Qend]|(tinit, tend)
18: for all Patterns V, M, P do

write e;nit, €, €end

20: end for
for each pair of patterns array do
22: calculate time delay between patterns in different array

write time delay 7
24: end for
end for

4.1 Evaluating the results

The performance of the CLIPSMiner algorithm was evaluated based on measurements of the time
required to process datasets of different sizes. In addition, we assessed the algorithm response to find
patterns using several relevance factors.

To assess the quality of results, the CLIPSMiner algorithm was compared with two well-known
statistical techniques usually employed by climatology researchers to analyze climate data: percentile
and cross-correlation. Percentile is a measurement of the relative position of one value regarding all
other values. The pth percentile has at least p% of the values below that point and at least (100 —p)%
of the values above.

Percentile is widely used in climatology to determine high, very high and extreme values in climate
time series. Therefore, this measure was used to compare results of 99th percentile with outputs of
CLIPSMiner algorithm tuned to calculate extremes in time series.

The calculation of time lag (7) made by our algorithm was compared with results presented by the
cross-correlation method. This technique identifies the correlation between two time series, identifying
how much one series must be shifted along the x-axis to make it identical to other one.

A qualitative analysis is also presented and results are analyzed for different values of the relevance
factor p and length of plateau A patterns.

4.2 Datasets Description (Synthetic and Real data)

We generated synthetic data (Synth) to simulate real climate datasets tendency. By generating syn-
thetic data it was possible to control trends in the time series, which would not be possible if we
have used outputs of climate forecasting models. Synth dataset is composed of 100,000 events and
three float attributes: a; that represents maximum temperature trend, ao that represents values of
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minimum temperature and as that simulates daily rainfall values. Each attribute varies as follows:
ap from 10 to 45, as from -5 to 31 and a3 from 0 to 150.

We have also used two real datasets (Cps and FiveRegions) composed of climate measures and
remote sensing data, respectively. The Cps dataset is composed by 41,700 events and three attributes:
a daily rain value (rain), maximum (¢4, ) and minimum (¢,,;,) temperatures measured over a period
of 118 years at Campinas in Brazil.

The dataset FiveRegions is composed of values extracted from NDVI (Normalized Difference Veg-
etation Index) images and WRSI values. The NDVI index is calculated through the ratio between
channels 1 and 2 of the Advanced Very High Resolution Radiometer (AVHRR) sensor on board the
National Oceanic and Atmospheric Administration (NOAA) satellites. The NDVI index is closely
correlated with leaf area, green biomass and productivity indexes. This dataset has seven years of
sugar cane harvest for five regions. It is composed of monthly values of NDVI, which was obtained
using the MVC (Maximum Value Composition) technique. This technique makes composition of the
NDVI maximum value, obtained from a series of multi-temporal georeferenced images. This method
is applied to minimize the atmospheric effects in NOAA-AVHRR images.

The agroclimatic conditions through the period of analysis are described by WRSI, which is the
ratio between the real evapotranspiration and maximum evapotranspiration. Evapotranspiration is
the sum of evaporation and plant transpiration. WRSI index varies from zero to one and represents
a fraction of water consumed by plants from the total amount of water that would be used by plants
to ensure maximum productivity.

Multitemporal remote sensing images have been widely used in research works in recent years. In
these datasets, each tuple corresponds to one NDVI measurement per month, for a period of 7 years.
There are months in the year, such as January, February and March, where there is not good images
to analyze due to clouds coverage in Brazil. Then, this database has 500 events.

4.3 Results on the synthetic dataset

The Synth dataset was employed to show the results of our approach over reference data. We have
run CLIPSMiner on synthetic dataset to find relevant and extreme patterns. Figure 3 shows the
performance of the CLIPSMiner algorithm considering two aspects: number of events found and
variation of the relevance factor. The graph of Figure 3(a) shows the execution time by number of
tuples that varies from 15,000 to 90,000 tuples. The execution time grows linearly from 0.6 milliseconds
(ms) to 2.5 ms.

As the relevance factor is increased from 10% to 90%, the execution time decreases, as it can be
seen in Figure 3(b). Similarly, the number of patterns decreases as the relevance factor increases, as
expected (Figure 3(c)). When the relevance factor and the plateau length have higher values they
make CLIPSMiner more sensitive. That is, the CLIPSMiner algorithm finds only the extreme patterns
as p and A factors increase.

When parameters were set to p = y x 70% and A = 8, the detected patterns of type P, M and V
corresponds to relevant patterns with a meaningful variation in the amplitude. For example, Figure
4(a) shows a small part of time series considering attribute a;. CLIPSMiner detected the V' pattern
[37.06; 10.0; 43.66], highlighted in Figure 4a. These patterns are more representative than the negative
peaks in the period (27 to 32) and (33 to 36).

In real datasets, these relevant patterns correspond to periods with abrupt decrease in the maximum
or the minimum temperature. Usually, small oscillations in temperature are not important to be
monitored. However, sudden changes can be interesting to climate researchers. When a variation
occurs in a period distinct from the one where such variations usually occurs, it means that useful
knowledge was mined.
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Fig. 3. Performance of CLIPSMiner algorithm considering the number of patterns found and variation of the relevance
factor: (a) execution time by number of tuples (b) execution time by relevance factor (c¢) number of patterns by relevance
factor.
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Fig. 4. Example of extreme patterns: (a) V pattern similar to a negative peak (period 17 to 22) and (b) M pattern
similar to a positive peak (9 to 11).

When we increase the value of the relevance factor (p) to 95% of amplitude, CLIPSMiner becomes
more restrictive and only very extreme patterns are detected. Figure 4(b) presents a graph with a
pattern M detected in the time series considering the attribute az. CLIPSMiner found a pattern M in
the period from 9 to 11, which has an amplitude greater than others in time series. In real databases,
this pattern is similar to an increase in the amount of rainfall, for example.

Many days without rain especially in plant growth stages which are sensitive to water deficit can
be worrying for farmers and government. Some agricultural crops can be damaged by water deficit
and occasionally, it is necessary to use irrigation. Other crops may resist longer, but they also need
monitoring. To monitor this pattern, agrometeorologists could find periods in which this phenomenon
usually occurs, altering the A (plateau lenght) value. Increasing the A value allows to find the most
extreme phenomena. In the time series a3, for example, when we increased A, the number of P patterns
found decreased from 31 to 7. Consequently, the option to filter the result, by dynamically setting
the parameters according to the analysts needs is a big difference of the algorithm CLIPSMiner, when
comparing to others from the literature.

The CLIPSMiner algorithm allows to analyze time series for specific periods when the parameter p is
set. Thus, we defined periods of 50 years that generated 5 different periods. We executed CLIPSMiner
with p = y * 95% of amplitude to return only the most extreme patterns. In the first two periods,
patterns were generated with maximum values above 122 for attribute as. In the last two periods, the
maximum values found in the M patterns were above 120. Assuming that ag represents rainfall in
real data, we evaluated the value of extreme daily rain for every 50 year-period, and know if occured
changes in the time series trend. Any period of time could be set.

Comparing this result with the output generated by the percentile method, similarly we defined
periods of 50 years that generated 5 different periods. We set the Percentile algorithm to 99th to find
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extremes. This method detected only a value that represents extremes in each 5 parts of the time
series. The Percentile method find extremes in a efficient way, but does not provide information on
the period where the extreme event occured, neither about preceding and subsequent events, what
CLIPSMiner does.

The CLIPSMiner algorithm outputs show that in the majority of the extreme patterns occurred in
the range from 0 to 120 and back to 0. In the case of real data, this would be similar to the occurrence
of one heavy rain in a single day. In order to identify all possible extremes in a series, we included
an option —extreme to search beyond the standard M, P and V, situations in which extreme events
occur. For example, if an interval as [50, 130, 79] occurs, the algorithm does not return this event as
far as the relevance factor would be higher than the difference found in this range. Thus, when we
set —extreme parameter, patterns equal to those of the example would also be returned as possible
output.

Our algorithm also calculates the time delay between two time series, i.e., the time correlation be-
tween them. For the synthetic dataset, the 7 value ranged from 0 to 11 time lags, because CLIPSMiner
searches for lags in different parts of time series. Using the cross-correlation algorithm, no lags were
found between the two time series.

4.4 Results on Real Data - The Cps dataset

The same process described for the Synth dataset was employed. Two experiments were executed,
respectively, assigning the default and maximum values for parameters p and A, in order to find the
relevant and the extreme patterns. For both experiments, the § value was set to 0.9. Figures 5(a)
and (b) show the number of patterns discovered for the three time series of the Cps database when
parameters were set to discover relevant patterns. The parameters values to discover relevant patterns
were:

—tmin: p=1y*45% and A = 10
—tmaz: p =y *55% and A = 20
—rain: p=1y*70% and A\ = 30

The parameters are different because the range variation of time series. Thereafter, we have in-
creased the value of the parameters by 10 to find extreme patterns.

Analyzing the results presented in Figure 5, we can observe a meaningful decrease of patterns when
p and A values increase, i.e. they become more restrictive. Patterns of type V in time series ¢,,44
drops from 11 to 3. This pattern represents variations in maximum temperature in different periods
of time. Table II shows the V patterns found in time series t,,q, using p = y * 55%.

As it can be seen in Table II, CLIPSMiner discovered relevant V patterns in time series t,,44, in
the period between June to October, which is the Winter season and the beginning of Spring in South
America. In general, such fall in the maximum temperature in Brazil is associated to cold fronts that
comes from the South. The proposed algorithm aims at mining a huge amount of data evidencing
patterns according to a threshold that can be properly set by experts, in order to be more or less
restrictive, depending on the analysts’ intents.

Table III presents the M patterns found in time series rain using p = y * 70%. The results show
a high increase in the rainfall volume in a short interval of time. This extreme phenomenon causes
serious problems such as flooding. Researchers are interested in finding out when such phenomena
occurred in time series and the intensity of rainfall that occurred in a few days. Nowadays, these
extreme events have occurred with greater frequency and seem to be associated to climate change.

According to the results, extreme rainfall started to reach values above 115 mm from 1923, which
coincides with previous statistical analysis made by meteorologists using the Percentile method, as
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Table II. V' patterns found for t,,q, in Cps dataset considering relevance factor of 55%

# patterns tmaz values date
I: [31.8; 13.6; 30.2] [08,/27/1912-09/07/1912]
2: [27.0; 10.0; 26.3]  [06/23/1918-07/01/1918]
3: [31.0; 14.5; 31.5]  [09/28/1918-10/06,1918]
4: [32.2; 13.4; 31.4]  [09/02/1933-09/13/1933]
5: [32.0; 15.6; 32.8]  [09/09/1948-09/17/1948]
6: [26.7; 09.7; 27.4]  [06/16/1952-06,/24,/1952]
7: [34.3; 16.1; 32.6]  [10/27/1959-11/04,/1959]
8: [33.0; 14.2; 32.2]  [09/12/1990-09/19/1990]
9: [28.8; 12.8; 28.4]  [07/29/1993-08,/03/1993]
10: [34.4; 15.8; 31.4]  [09/07/1999-09/14/1999]
11: [37.2; 19.2; 35.8]  [10/21/2007-10,/29/2007]
Cps Dataset
250 T
Tmin I
Tmax
Rain
200 T
E 150
E 100
50
L 0. a. L
Mountains Valleys Plateaus Mountains Valleys Plateaus

(a) Relevant patterns (b} Extreme Patterns

Fig. 5. Results for Cps dataset: y-axis represents the number of patterns and the type of patterns are represented in
x-axis. (a) number of relevant patterns and (b) quantity of extreme patterns.

Table III. M patterns found for rain in Cps dataset

# patterns rain values date
[0.0; 103.0; 0.0]  [24/01/1899-27/01/1899]

—_

2: [0.0; 119.0; 0.0]  [11/13/1923-11/15/1923]
3: [0.0; 142.4; 0.0]  [12/23/1925-12/26/1925]
4: [0.0; 127.7; 1.6]  [12/23/1949-12/25/1949]
5: [0.0; 107.0; 0.0]  [11/23/1951-11/27/1951]
6: [0.0; 115.7; 0.0]  [01/01/1982-01,/04,/1982]
7: [0.0; 108.3; 0.0]  [03/07/1987-03/12/1987]
8: [8.0; 138.2; 0.0]  [12/30,/1989-01,/04,/1990]
9: [0.0; 107.6; 0.0]  [12/24/1997-12/26/1997]
10: [0.0; 144.7; 0.0]  [10/01/2001-10/04,/2001]
11: [0.0; 138.5; 11.4]  [01/18,/2005-01/21/2005]
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Fig. 6. Graph with extreme rainfall per year in the Campinas region with 17 values above 100 mm.
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illustrated in Figure 6. This fact confirms the hypothesis of the researchers that the distribution of
rainfall has increased in a fast pace, in the last decades.

Many P patterns were found in all time series, specially for rain. This dataset is composed by
daily values of temperature and rain. Thus, the algorithm detected periods with low variation in
temperature or days without rain. Changing the values of parameters § and A, CLIPSMiner discovered
prolonged droughts, that is a pattern studied by experts, because of their consequences for agriculture.
Mainly, if droughts occur in periods when they are not expected. This type of pattern found by
the CLIPSMiner algorithm is not detected by the percentile method. Experts commonly use other
statistical techniques for detection of extended dry periods.

Setting the parameter p, CLIPSMiner divides the time series into p pieces and discover patterns in
accordance with the relevance factor p for each period p;. Thus, it is possible to analyze the trend of
the series in each period separately.

In this experiment, we set p to 10 years and p to the maximum value (90%). Analyzing the results,
we see that at the beginning of the time series (1901 to 1908) the maximum precipitation reached
values of approximately 80 mm. After the 90s, these extreme values are above 130mm, as it can be
seen in Figure 7.

To compare this result with the output generated by the percentile method, similarly we defined
periods of 10 years. We set Percentile algorithm to 99th to find extremes. This method detected
only a value that represents extremes in each period of 10 years. It found smaller rain values at
the beginning of the time series than at the end, which shows that extreme climate phenomena has
become more intense in recent decades.

Beyond not getting the extreme events, the Percentile method does not provide information on
the period where the extreme event occurred neither about preceding and following events, what
CLIPSMiner does.

4.5 Results on Real Data - the FiveRegions Dataset
In this experiment, CLIPSMiner has detected more M and V patterns than plateaus (P), because
the time interval set to be monthly. Figures 8(a) and (b) summarizes the patterns detected when the

parameters were set to be smaller (p = y * 10% and A = 3) and more sensitive (p = y * 70% and
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{a) Beginning of time series (b} End of time series

Rain Date Rain Date

[0.2; 81.0; 0.0] [12/02¢1802-15/02115802] | [3.0;, 138.2, 0.0] [30412¢1989- 0450111 590]

[0.0; 84.0; 0.0] [03/01/1905-06/0111305] | [0.0; 144.7; 0.0] [O1/1052001-04110,2001]

[0.0; 81.0; 0.0] [0&/07¢1905-08/07/1805] | [0.0; 138.5; 11.4]  [18/01/2005-21/01/2005]

Fig. 7. Extreme rain values for the beginning and the end of the time series: (a)rainfall reached values of 80 mm
approximately in the beginning of the time series (1901 to 1905), (b) rainfall values increased to 130 mm in the end of
the time series (1989 to 2005).

FiveRegions Dataset

Valleys |
g 1
Mountains  E—
7 1
Plateaus I
6 1

Mumber of patterns

Araraquara Jaboticabal Jau Pitangueiras Sertaozinho Araraquara Jaboticabal Jau Pitangueiras Sertaozinho

(a) Relevant patterns (b) Extreme Patterns

Fig. 8. Results for FiveRegion dataset: y-axis represents the number of patterns and the type of patterns are represented
in x-axis. (a) number of relevant patterns and (b) quantity of extreme patterns.

A = 5), respectively.

CLIPSMiner found few M patterns using default values for parameters in NDVI time series.
The patterns detected were [0.247385;0.648107;0.307657] in [09/2003 — 10/2004] for Jaboticabal,
[0.296928;0.615282;0.237196] in [10/2004 — 10/2005] and [0.237196; 0.618585; 0.264748] in [10/2005 —
10/2006] for Jau and [0.264471;0.611832;0.269969] in [10/2002 — 09/2003] for Sertaozinho. These M
patterns are related to periods when the green biomass reaches its highest values, before the sugar
cane harvest that begins in May. P patterns were found in WRSI time series. It corresponds to a small
variation in the WRSI index, such as [0.95;1.0;0.99] in [10/2001 — 03/2002] found in the Jaboticabal
series. This phenomenon occurs when the maximum soil water content is reached after a long period
of rainfall.

The cross-correlation method was calculated for two time series (NDVI and WRSI) and presented
two months of time lag. The CLIPSMiner algorithm showed that there are different time lag values
along time series as it can be seen in Figure 9. CLIPSMiner found 7 equals 1, 2 or 3 depending on
the period. It means that there are correlations between NDVI and WRSI with a delay of one, two
or three months. The time delay is a relevant asset that can be used to mine different occurrences of
correlations, spotting issues not expected by the specialists.
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Fig. 9. WRSI and NDVI time series from Luis Antonio with example of two different time lags (7 =1 and 7 = 2).

5. CONCLUSION

This work presented CLIPSMiner, a new unsupervised algorithm to find relevant and extreme patterns
in climate and remote sensing time series, as well as correlations between time series, showing the
relationship between the series and when one affects the other. Therefore, CLIPSMiner is a powerful
technique to analyze long and multidimensional climate time series. This algorithm works on multiple
time series of continuous data, identifying sequential patterns defined with certain constraints that
are related to climate phenomena. The parameters can be dynamically tuned by the user, allowing
the specialist to set the size or scale of the pattern to be mined in order to find extreme phenomena,
or even to analyze parts of the series. Thus, CLIPSMiner gives more freedom and control to the user
to analyze more closely the dataset.

The patterns detected preserve the semantics of climate events. Thus, the patterns M, V, P
can summarize the series and be used to index and to detect correlation between series, as well as
provide a simple way to quantize a long and continuous time series, keeping the temporal meaning
of the patterns. The correlation among time series considering time windows are also provided by
CLIPSMiner, what the traditional method of cross-correlation fails in providing to the specialists.

In summary, the results showed that the algorithm detects the patterns known in climatology, which
are manually detected by specialists and are time expensive. CLIPSMiner does that automatically, in
linear time regarding the size of the dataset. Moreover, patterns detected using the highest relevance
factor are coincident with extreme phenomena as many days without rain or heavy rain. This feature
allows CLIPSMiner be used to compare real datasets to model outputs in order to assist in climate
change research.
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