
An Adaptive Multi-level Hashing Structure for Fast
Approximate Similarity Search

Alexander Ocsa, Elaine P. M. de Sousa

Universidade de São Paulo, Brazil
{aocsa, parros}@icmc.usp.br

Abstract. Fast information retrieval is an essential task in data management, mainly due to the increasing availability

of data. To address this problem, database researchers have developed indexing techniques to logically organize elements
from large datasets in order to answer queries efficiently. In this context, an approximate similarity search algorithm

known as Locality Sensitive Hashing (LSH) was recently proposed to query high-dimensional datasets with efficient

computational time. The query cost of LSH is sub-linear on the dataset size. However, some drawbacks of LSH
have not been solved entirely, such as the need of several hash indexes to achieve accurate query results and the

critical dependency on data distribution and parameter values. Therefore, the LSH solution is unsuitable to many real

applications involving dynamic datasets. In this paper, we propose an adaptive Multi-level hashing to support dynamic
index construction efficiently. By employing a Multi-level scheme it is possible to dynamically adapt the data domain

parameters and exploit the resulting multi-resolution index structure to speed up the query process. Experimental

studies on large real and synthetic datasets show the similarity search performance of the proposed technique.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Databases

Keywords: Access methods, LSH, Multidimentional Index, Similarity Information Retrieval

1. INTRODUCTION

In the past few decades, the information retrieval and database communities have been challenged
by the increasing availability of complex data from different domains, such as multimedia (video
sequences, images, CAD drawings), internet (XML), Biology (DNA sequences), sensor networks (data
streams), and so on. Representing and searching complex data are non-trivial tasks. Usually, data
representation is not precise and search processes are not based on equality criteria. For instance,
it is highly improbable to obtain two identical descriptor patterns from two different images, even if
they we obtained from the same person. Hence, the use of similarity criteria is particularly common
in such complex domains, as similarity is an intuitive criterion for comparisons. In this scenario,
many research works have put a great deal of effort into developing efficient indexing structures and
similarity search algorithms, mainly following two different approaches: exact similarity search, such
as Metric Access Methods (MAMs) and Spatial Access Methods (SAMs), and approximate similarity
search, such as techniques based on data projection into sub-spaces.

Many multidimensional indexing techniques have been applied to information retrieval tasks. Database
applications employ Access Methods such as MAMs and SAMs due to their ability to build data struc-
tures for managing and organizing large datasets efficiently. In particular, several empirical results,
such as Slim-Tree [Traina et al. 2002] and DBM-Tree [Vieira et al. 2004], support that MAMs are
more suitable than SAMs to handle high-dimensional data.

The performance of MAMs depends mainly on the Number of Distance Computations performed

This work has been partially supported by CNPq, CAPES, FAPESP, STIC-AmSud, and Microsoft Research.
Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that

the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission

of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010, Pages 359–374.

360 · A. Ocsa and E. P. M. de Sousa

during the index construction and the search processing. Generally, in order to answer similarity
queries a MAM needs to hierarchically explore the index data and try and prune regions which do not
overlap the query region by virtue of the triangle inequality (see details in Section 2). The remaining
data (i.e. relevant candidate set) is exhaustively analyzed to report only objects that satisfy the query
condition.

Although several MAMs have been proposed to speed up similarity queries, most of them are either
affected by the well-known “curse of dimensionality” or suffer from overlapping among regions. Some
studies have shown that the idea of data representation with hyper spherical or rectangular region
hierarchies can deteriorate similarity queries even compared with sequential search [Böhm et al. 2001].

Different approaches have been studied to solve the “curse of dimensionality”. One of the research
lines is to try to avoid the dimensionality problem by relaxing the query precision to speed up the
query time. Potentially, this approach is feasible for applications that do not require exact answers and
for which speed is more important than search accuracy. Moreover, the metric space definition already
leads to an approximation of the true answer, and thus a second approximation at search time may
be acceptable [Chávez et al. 2001]. In this direction, Locality Sensitive Hashing (LSH) [Datar et al.
2004] is one of the recent hash-based techniques proposed to organize and query high-dimensional
data. Indeed, LSH is one of the few techniques that provide solid theoretical analysis and predictable
loss of accuracy in the results. To answer similarity queries, LSH searches only regions, which are
represented by buckets, to which the query object is hashed (i.e., the candidate buckets containing
the dataset objects with a high probability of similarity to the query object). Therefore, there is no
need to fully explore the index data, and only the objects into the candidate buckets require further
processing. However, some drawbacks of LSH have not been solved entirely, as follows:

- LSH requires several indexes such that each index organizes the whole dataset using a hash table with
independent hash functions. This requirement is remarkably critical to improve search accuracy,
but leads to high memory consumption. In a recent work, a variant of LSH called Multi-probe LSH
[Lv et al. 2007] was proposed to keep the memory cost acceptable. The Multi-probe LSH is build
on the basic LSH, but while the LSH query algorithm examines only one bucket for each hash table,
Multi-probe LSH effectively probes multiple buckets that are likely to contain query results in each
hash table. Consequently, the number of hash tables is reduced with no significant loss of accuracy.

- A recent research on LSH [Dong et al. 2008] approaches shows that their performance on point
queries depends not only on the overall distribution of the dataset, but also on the local geometry
in the vicinity of the particular query point. In the original Multi-probe LSH, a fixed number of
probes may be insufficient for some queries and larger than necessary for others.

- LSH has a critical dependency on parameter values and data domain, which determine the number
of hash functions and number of hash tables. Moreover, its parameters also depend on the number
of objects to be indexed; as a consequence, LSH is not an incremental solution. To deal with
this issue, a scheme called LSH Forest [Bawa et al. 2005] was developed to support a self-tuning
behavior with respect to number of hash functions. Essentially, LSH Forest is a collection of prefix
trees where each one can handle a different number of hash functions. However, It does not ensure
the same search accuracy and performance as LSH.

- The basic LSH parameters are tuned considering a static dataset. However, in many real applications
data distribution changes dynamically and LSH cannot handle this dynamic workload efficiently.

This paper proposes a novel hashing technique, named Adaptive Multi-Level LSH, designed to
perform approximate similarity search on dynamic datasets. Our technique is based on the idea
of LSH of hashing similar objects to the same bucket, but unlike LSH it does not expect the data
domain parameters. Hence, we do not need the complete dataset to define the search space. Instead,
we dynamically adapt the data domain parameters during the indexing process thanks to the self-
adaptive abilities of a multi-resolution index structure (see details in Section 3). Additionally, the

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 361

multi-resolution approach can speed up the query process.

Our contributions are as follows. First, we introduce and define a multi-resolution index structure
designed to handle a dynamic set of objects. Second, we exploit the multi-resolution approach to
speed up similarity queries. Finally, we present our Adaptive Multi-Level LSH algorithms and report
experiments on real and synthetic datasets, comparing our approach to recent MAMs and current LSH
extensions. To the best of our knowledge, this is the first work that reports a complete performance
study comparing state-of-the-art MAMs and LSH indexing techniques.

The paper is organized as follows. Section 2 summarizes the background for this work. Section
3 describes the proposed technique and Section 4 reports experimental results on real and synthetic
datasets. Finally, we conclude in Section 5.

2. BACKGROUND

This section presents background concepts and related work. Table I lists the main symbols used
hereinafter. We first define a universe of objects U and a function d : U × U → R that measures

Table I. Summary of symbols.

Symbol Definition Symbol Definition

U domain of objects h() locality sensitive hash function

S set of objects (dataset) in domain U H = {h1(), ..., hm()} a family of m hash functions

N number of objects in a dataset m number of hash functions
D intrinsic dimensionality of a dataset C bucket capacity

q a query object (or query center) T hash table
r radius of range query L number of hash tables

k number of neighbors in a k-NN query w quantization bucket width

d() distance function I bucket in a hash table
c approximation ratio t level in a multi-level data structure

the distance between two objects of U. On metric spaces, S ⊆ U is a finite set of data that can
be preprocessed, where the function d() measures the dissimilarity between objects and satisfies the
following proprieties, ∀x, y, z ∈ U:

1. d(x, y) ≥ 0 positiveness
2. d(x, y) = d(y, x) symmetry
3. d(x, y) = 0↔ x = y reflexivity
4. d(x, y) ≤ d(x, z) + d(y, z) triangle inequality

Triangle inequality is an important property applied to speed up similarity search algorithms. It
gives bounding values on a distance we may not have computed, i.e., if we have the distances d(x, z)
and d(y, z), the bounding values for the unknown distance d(x, y) are |d(x, z) − d(y, z)| ≤ d(x, y) ≤
d(x, z) + d(y, z).

Given a query object q ∈ U, in order to recover similar objects to q, the following basic types of
queries are defined:

- Range query Rq(q, r): finds all elements within the query radius r, i.e.,
Rq(q, r) = {u ∈ U|d(u, q) ≤ r}.

- k-Nearest Neighbor query kNN(q, k): finds the k nearest neighbors of q, i.e.,
Finds a set A ⊆ U so that |A| = k and ∀u ∈ A, v ∈ U −A, d(q, u) ≤ d(q, v).

- Nearest Neighbor query NN(q): finds the nearest neighbor of q, i.e.,
NN(q) = kNN(q, 1).

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

362 · A. Ocsa and E. P. M. de Sousa

In order to improve the performance of similarity queries, different indexing approaches have been
proposed. Metric Access Methods (MAMs) work on metric spaces, organizing data according to
a similarity criterion. Many MAMs, such as tree-based techniques VP-Tree [Yianilos 1993], SAT
[Navarro 2002], M-Tree [Ciaccia et al. 1997] and their extensions Slim-Tree [Traina et al. 2002],
DBM-Tree [Vieira et al. 2004] and DF-Tree [Traina et al. 2002] are found in the literature. Good
surveys on MAMs can be found in [Chávez et al. 2001; Hjaltason and Samet 2003].

Spatial Access Methods (SAM), such as Kd-Tree [Bentley 1979], R-tree [Guttman 1984] or methods
based on them such as R*-Tree [Beckmann et al. 1990], R+-Tree [Sellis et al. 1987], X-Tree [Berchtold
et al. 1996], describe the input data as dimensional vectors (x1, x2, ..., xn). They can index points
and geometrical objects. Good survey on SAMs can be found in [Gaede and Günther 1998].

Recently, a promising indexing technique named Locality Sensitive Hashing (LSH) [Gionis et al.
1999; Datar et al. 2004] was proposed to solve the approximate similarity search in high dimensional
data efficiently. LSH is based on the idea that closeness between two objects is usually preserved by
a projection operation. In other words, if two objects are close together in their original space, then
these two objects will remain close after a scalar projection operation.

Figure 1 illustrates similarity search models for both MAM and LSH approaches. Figure 1 (a) shows
the unified model for searching on metric spaces presented in [Chávez et al. 2001]. A metric index
organizes the dataset into regions defined by the distance function, such that each region includes
objects which are sufficiently close to each other. At the query time, the triangle inequality is applied
to discard regions which do not overlap the query region (sphere in the figure). Hence, only the
objects in the qualifying regions (gray regions in the figure) are further processed in order to test
the query condition. A similar search model for LSH is shown in Figure 1 (b), where each index
is defined by a set of hash functions (H1, H2, H3) which generate three different partitioning of the
search space. Hence, each partitioning is associated to a hash table and its corresponding set of hash
functions. Each set of hash functions is employed to organize the dataset into regions of the search
space such that objects in the same region are considered close together under certain probability. At
the time query, the query object is hashed (using each of the three sets of hash functions - one for
each partitioning) to regions with high probability of finding similar objects (all regions in the figure).
Finally, the qualifying regions are analyzed in order to report only the objects which satisfy the query
condition.

(a) search in candidate regions (b) search in subspaces

Fig. 1. Unified model for searching. (a) Metric Access Methods . (b) LSH.

2.1 Locality Sensitive Hashing

Some previous work [Gionis et al. 1999; Datar et al. 2004; Andoni and Indyk 2008] have recently
explored the idea of hashing objects and grouping them into buckets with the goal of performing

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 363

approximate similarity search within buckets associated to the query element. In fact, LSH was
designed to efficiently solve a c-approximate range query, i.e., find the objects whose distance to the
query object q is at most c× r, where r is the query radius.

The idea behind LSH is that if two objects are close together in their original space, then these two
objects will remain close after a scalar projection operation. So, let h(x) be a hash function that maps
a d-dimensional point x to a one-dimensional value. The function h(x) is said to be locality sensitive if
the probability of mapping two d-dimensional points x1, x2 to the same value grows as their distance
d(x1, x2) decreases. Formally:

Definition 1. Given a distance value r, an approximation ratio c, the probability values P1 and P2

such that P1 > P2, a hash function h() is locality sensitive if it satisfies the following conditions:

1. If d(x1, x2) ≤ r then Pr[h(x1) = h(x2)] ≥ P1, i.e., if two points x1 and x2 in Rd are close to each
other, there is a high probability P1 that they fall into the same bucket;

2. If d(x1, x2) > c× r then Pr[h(x1) = h(x2)] ≤ P2, i.e., if two points x1 and x2 in Rd are far apart,
there is a low probability P2 < P1 that they fall into the same bucket.

The LSH scheme proposed in [Datar et al. 2004] uses p-stable distributions as follows: given a
d-dimensional vector ~a with entries independently chosen from a p-stable distribution (Cauchy or
Gaussian), a real number b uniformly chosen from the range [0, w], the hash value of a d-dimensional
point ~x, for the `2 norm, is defined as:

h(x) = b~a · ~x + b

w
c (1)

Equation 1 has a simple geometric interpretation. Consider Figure 2: lets ~p1 and ~p2 be two vectors
in R2, ~a a unit norm vector (without loss of generality) and b a random real number. The slope of
the line crossing the origin coincides with the direction of ~a. We project ~p1 onto line ~a by performing
the dot product operation ~a · ~p1. This projection is then finally quantized into intervals of fixed width
w, defining point A. The same procedure is repeated for ~p2, determining point B.

Fig. 2. LSH geometric interpretation. Hashing ~p1 and ~p2.

It is possible to magnify the difference between P1 and P2 by using a set of m different hash
functions H = {h1, h2, ..., hm}, each one defined according to Equation 1. It increases the ratio of the
probabilities since (P1/P2)m > (P1/P2), ensuring that if two points are far away from each other, they
are unlikely to fall in the same bucket. However, although preventing distant points from falling in the
same bucket is crucial to preserve the spatial proximity, it is not enough. It is equally important to
ensure that close points will appear in the same bucket with high probability. Unfortunately, the latter
cannot be accomplished by using a single hash structure. Thus, LSH overcomes this problem cleverly

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

364 · A. Ocsa and E. P. M. de Sousa

by considering L independent projections (i.e., building L independent hash structures) [Slaney and
Casey 2008; Tao et al. 2009].

The process of indexing a complete dataset S using L hash tables with their respective sets of
hash functions H is summarized in the Algorithm 1. Note that each element x of the dataset S is
a d-dimensional point and, for each hash table Ti, x is projected according to each hash function in
Hi. The result of these m projections is a m-dimensional vector x′, where each entry corresponds to
a hash value. The quantization process quantize(x′) is then computed using Equation 1. Finally, the
appropriate bucket I is located and a new entry e is created.

Algorithm 1 Construction algorithm for LSH
Input: The dataset S = {x1, ..., xN} to be indexed
Output: All objects are hashed in the L hash tables

1: for i = 1 to L do
2: Hi ⇐ {h1, ..., hm} // Initialize hash table Ti with a set of hash functions Hi

3: end for
4: for i = 1 to L do
5: for each x in S do
6: x′ ⇐ [h1(x), ..., hm(x)] // Project x: m projections using the set of hash functions Hi

7: g ⇐ quantize(x′) // Quantization process - compute the final hash value
8: I ⇐ Ti[g mod |Ti|] // Locate the bucket I
9: add entry e=<x, g> on bucket I // Store a reference to x and hash value g

10: end for
11: end for

By the LSH construction algorithm, each bucket is created considering intra-similarity. Thus,
similarity queries are performed by hashing the query object q into a number of buckets (qualifying
buckets), also considering the L hash tables and their corresponding sets of hash functions H. As a
consequence, the object q is mapped to buckets where similar objects are likely to be placed, limiting
the number of required distance computations. In a nearest neighbor query, only the distances between
q and the elements in the qualifying buckets are computed in order to find the nearest element.
Similarly, in a range query the elements within a query radius r are output as the answer of the query.
The range query algorithm for LSH is described in the Algorithm 2.

Algorithm 2 Range query algorithm for LSH
Input: The query object q and the query radius r
Output: Objects that satisfy the query condition.

1: for i = 1 to L do
2: q′ ⇐ [h1(q), ..., hm(q)] // Project q: m projections using the set of hash functions Hi

3: g ⇐ quantize(q′) // Quantization process - compute the final hash value
4: I ⇐ Ti[g mod |Ti|] // Locate the bucket I
5: for each entry e in I do
6: // Query condition. Note: e =< x, g >
7: if e.g = g1 ∧ d(q, e.x) ≤ r then
8: report e.x if it has not been previously reported
9: end if

10: end for
11: end for

Note that the kNN query algorithm can be obtained by modifying the query condition in Algorithm
2. Thus, the kNN query algorithm will stop once it has found k distinct objects or if there is not

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 365

more buckets to explore. However, it is important to recall that LSH ensures quality results only
for c-approximate range queries. Thus, the quality results in kNN queries can be improved if one of
the next strategies are considered: (1) Using multiples LSH schemes configured with different radii in
order to cover the most distances between q and its k nearest neighbors. However, this approximation
requires expensive space and query cost. (2) Using the Multi-probe approach where multiples buckets
are analyzed by each hash table in order to increment the candidate elements. However, a fixed
number of probes used in the original Multi-probe LSH may be insufficient for some queries and larger
than necessary for others. As we can see in the next section we use the last approach to continue
ensuring quality results for kNN queries.

In summary, the original LSH algorithm tessellates the search space by employing m hash functions
randomly chosen from a Gaussian (or a Cauchy) distribution. The number of hash functions (m)
determines how sparse or dense the search space will be. By increasing the value of m, objects tend
to be uniformly distributed into buckets, reducing query accuracy as it is more likely that similar
objects fall into different buckets. That is the reason why many hash tables are required to ensure
quality results as they mitigate this bad effect. On the other hand, by decreasing the value of m,
the consequent large number of collisions degrades the performance of the queries, as the amount of
qualifying buckets and candidate elements to be processed increase.

3. ADAPTIVE MULTI-LEVEL LSH

In this section, we propose the Adaptive Multi-level LSH to solve approximate similarity search on
a dynamic set of objects. As introduced in Section 1, our strategy is to design an adaptive data
structure by considering a multi-resolution index structure. The Adaptive Multi-level LSH, like LSH,
is based on the idea of projecting similar objects into the same bucket. But unlike LSH, it does not
expect the data domain parameters. Hence, we do not need the full dataset to define the search space.
Instead, we dynamically adapt the data domain parameters during the indexing process by using a
multi-resolution approach, i.e., hash tables with dynamic capacity of hash functions are created during
the index construction.

As the performance of a hash table degrades if there are too many objects in one bucket, the number
of buckets may need to grow dynamically. Two important methods to support graceful growth are
extensible and linear hashing. Both start by hashing search-key values to long bit-strings and use a
varying number of those bits to determine the bucket [Ullman et al. 2001]. In our work, we apply the
linear hashing approach because it allows expansion of the hash table one bucket at a time.

Additionally, the multi-resolution index structure supports the use of the relations among different
resolution levels to extend the candidate set of objects during the query process. As a consequence,
fewer LSH hash tables are needed and the query process can be improved.

3.1 The Multi-level structure

Recall that the original LSH [Datar et al. 2004] consists of L hash tables with a fixed number of hash
functions per hash table. Each hash table indexes the whole dataset and each bucket can contain an
arbitrary number of objects. Our technique changes a one-level hash table into a Multi-level data
structure. In each level t the data is organized using distinct numbers of hash functions. The first
level of the structure uses m1 = 4 hash functions. The next levels use mt = mt−1 + 2, t > 1 hash
functions. The initial value m = 4 is the minimum number of hash functions needed to distribute data
uniformly into buckets for a standard dataset. Each bucket I can store C objects and a reference list,
which keeps references to buckets located in the next level and with a vicinity relation with bucket I.
Consecutive levels are thus connected.

Figure 3 illustrates the basic concept of the multi-level hashing by showing a 3-level structure, each
level with resolution 4, 6, 8 respectively. The bucket capacity C for this example is 2.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

366 · A. Ocsa and E. P. M. de Sousa

Fig. 3. Multi-level LSH structure. (a) internal view. (b) logical view.

3.2 Construction of Multi-level LSH

While the basic LSH scheme indexes the whole dataset using L hash tables with independent hash
functions considering a fixed resolution m (as described in Algorithm 1), the adaptive Multi-level
scheme can index data by incrementally adapting the number of hash functions. Thus, data is orga-
nized into a multi-resolution structure.

The Multi-level LSH is constructed by executing a recursive insertion procedure for each object of
the dataset, for each hash table Ti, 1 ≤ i ≤ L. Thus, for a hash table Ti, if an object is supposed
to be inserted into a bucket of level t that is already full, it is hashed to the next level t + 1, and
so on. The relation between the bucket in the level t and its vicinity in the following level t + 1 is
then established. The insertion algorithm for the Adaptive Multi-level LSH is described in Algorithm
3. Notice that the input parameters are the object to be inserted and number of hash functions m,
which is initially set to m = 4 in order to initialize the hash table Ti.

Algorithm 3 Insert(level t, Object x, Integer m) Note: for each hash table Ti, call insert(Ti, x, 4)
Input: The object to insert x and the current level value m (# of hash functions)
Output: Insert the object x into Ti

1: if Ht is NULL then
2: Ht ⇐ {h1, ..., hm} //Initialize the current level t with a set of hash functions
3: end if
4: x′ ⇐ [h1(x), ..., hm(x)] // Project x: m projections using the set of hash functions Ht

5: g ⇐ quantize(x′) // Quantization process - compute the final hash value
6: I ⇐ Tt[g mod |Tt|] // Locate the bucket I
7: if |I| < C then
8: add entry <x, g> on bucket I // Store a reference to x and value g if I is not full
9: else

10: Insert(nextLevel(t), x, m + 2) // Otherwise, insert x recursively in the next level
11: Save the connection between the current level and the next level on the reference list of I
12: end if

An important issue to be considered is the nonexistence of sufficient buckets in the index to partition
the dataset effectively. To handle this problem, we follow the linear hashing approach [Litwin 1988]
to grow the number of buckets by 1 whenever the average bucket occupation reaches a threshold. We
empirically set the default threshold to 75%. Finally, as the population of a single bucket cannot cause
the table to expand, overflow buckets are needed in some situations.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 367

3.3 Similarity search in Adaptive Multi-level LSH

To solve similarity queries in the Multi-level LSH scheme, the query object q is hashed to locate the
appropriate bucket I in each level t by using mt hash functions. Once the bucket I is located, the
relevant candidate set are formed by I, the neighbors in the next level stored in the reference list of I.
Then, the elements in the candidate set are exhaustively analyzed in order to recover only the objects
that satisfy the query condition. This process is performed for each of the L hash tables.

The range query algorithm for the Adaptive Multi-level LSH is described in Algorithm 4. For some
queries (say kNN queries), the number of buckets to be explored are insufficient to ensure the quality
results. Thus, to increment the candidate elements the basic LSH can use more hash tables. However,
there is a much clever idea, the Multi-probe LSH [Lv et al. 2007] employs multiple probes to extend
the candidate set at query time. The problem is determine the number of probes required by a specific
query. As we can see in the next section the number of required probes depends on the query region
density.

Algorithm 4 Range query algorithm for the Adaptive Multi-level LSH
Input: The query object q and the query radius r
Output: Objects that satisfy the query conditions.

1: for i = 1 to L do
2: for each level t in the hash table Ti do
3: q′ ⇐ [h1(q), ..., hm(q)] // Project x: m projections using the set of hash functions H(i,t)

4: g ⇐ quantize(q′) // Quantization process - compute the final hash value
5: I ⇐ T(i,t)[g mod |T(i,t)|] // Locate the bucket I
6: for each entry e in I, the vicinity of I (probes), the reference list of I do
7: // Query condition. Note: e =< x, g >
8: if e.g = g1 ∧ d(q, e.x) ≤ r then
9: report e.x if it has not been previously reported

10: end if
11: end for
12: end for
13: end for

3.4 Selection of parameters

As discussed previously, there is a tradeoff between time and space on LSH techniques, which is related
with parameters configuration. But in our proposal, these parameters are not so crucial to answer
similarity queries on dynamic datasets.

The increment parameter, which defines the number m of hash functions in the next level, was
empirically determined by observing that when it is set with a high value, the elements though the
multi-level structure tend to be uniformly distributed into the buckets. As a consequence, most
connection tend to have a one-to-one relationship. Under this experimental observation, we found
that the increment value 2 as the best value for which the Multi-level structure reaches a acceptable
balance between space and time efficiency.

Another parameter is the bucket capacity C. If it is set with a high value, the number of levels will
be small; otherwise, the number of levels will be large. To simplify our approach, we only consider
the bucket capacity as a tuning parameter.

Thus, both the bucket capacity and the increment parameter will determine the number of connec-
tions among buckets at different levels. We observed that these connections also determine density
regions. Hence, as the number of connections among buckets at different levels is a good indicator to

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

368 · A. Ocsa and E. P. M. de Sousa

determine density regions, the number of probes to respond a specific query is defined by using the
following rule: The first level uses T1 = all connections probes, where all connections is the sum of
all connections of implicated buckets when the query object q is projected throughout all levels. The
next levels use Tt = Tt−1/2; t > 1 probes. In other words, the number of probes is set with a high
value if the query region is dense.

4. EXPERIMENTS

We performed a comprehensive performance evaluation of our algorithm in terms of the query perfor-
mance (number of distance computations and response time), accuracy, scalability and memory usage.
The performance of Multi-level LSH was compared to those of the two most well-known LSH methods,
namely LSH [Datar et al. 2004] and Multi-probe LSH [Lv et al. 2007], and tree structures Slim-Tree
[Traina et al. 2002] DF-Tree [Traina et al. 2002] and DBM-Tree [Vieira et al. 2004]. Furthermore,
for all the LSH-based methods we compared their query results with linear-scan search to measure the
search accuracy. The Euclidean distance (L2) was used as the distance function in our experiments.

The Multi-level and all the LSH indexing methods were implemented in C++ into the Arboretum
library 1, all with the same code optimization, to obtain a fair comparison. All of the experiments
were performed on a 3.4Ghz Pentium 4 with 2Gb RAM.

4.1 Dataset description

We used synthetic and real datasets in our experiments.

(1) synt16 This synthetic dataset contains 10,000 16-dimensional vectors normally distributed into
10 clusters in a 16-d unit hypercube.

(2) synt32 Similar to Synthetic16D, but this contains 100,000 32-dimensional vectors.
(3) synt64 Similar to Synthetic16D, but this is a 64-d unit hypercube.
(4) synt256 Similar to Synthetic16D, but this is a 256-d unit hypercube.
(5) color This real dataset contains 68,000 32-dimensional vectors. Each vector describes the color

histogram of an image in the Corel collection 2.
(6) mnist This real dataset contains 60,000 50-dimensional vectors. The MNIST 3 dataset of hand-

written digits is a subset of a larger set available from NIST (National Institute of Standards and
Technology) database. The dimensionality is reduced by taking the 50 dimensions with the largest
variances.

(7) audio This real dataset contains 54,387 192-dimensional vectors. The audio dataset comes from
the LDC SWITCHBOARD-1 4 collection. It is a collection of about 2,400 two-sided telephone
conversations among 543 speakers from all areas of the United States.

The process to generate the synthetic datasets is described in [Ciaccia et al. 1997]. These synthetic
datasets were widely used to test metric access methods due to their simplicity to create complex
sceneries. The color, mnist, and audio are real datasets and they were mainly used to test LSH in
[Datar et al. 2004] and [Lv et al. 2007]. In our experiments, a test set was created for each dataset
using 500 objects randomly chosen from the dataset. Half of them (250) were removed from the
dataset before creating the indexes. This configuration allows us to evaluate queries with centers into
the index or not.

1http://www.gbdi.icmc.usp.br/arboretum/
2http://kdd.ics.uci.edu/databases/CorelFeatures/
3http://yann.lecun.com/exdb/mnist/
4http://www.ldc.upenn.edu/Catalog/docs/switchboard/

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 369

LSH parameters

Dataset Method Parameters

synt16 (16-D)

LSH L = 10, m = 8

Multi-probe LSH L = 3, m = 8, T = 20
Multi-level LSH L = 3, C = 64

synt32 (32-D)

LSH L = 135, m = 24

Multi-probe LSH L = 14, m = 10, T = 30

Multi-level LSH L = 17, C = 64

synt64 (64-D)

LSH L = 54, m = 10
Multi-probe LSH L = 8, m = 10, T = 30

Multi-level LSH L = 8, C = 64

synt256 (256-D)

LSH L = 231, m = 16

Multi-probe LSH L = 40, m = 16, T = 40
Multi-level LSH L = 40, C = 256

color (32-D)

LSH L = 153, m = 14
Multi-probe LSH L = 35, m = 14, T = 20

Multi-level LSH L = 35, C = 128

mnist (50-D)

LSH L = 231, m = 16

Multi-probe LSH L = 37, m = 16, T = 30
Multi-level LSH L = 37, C = 128

audio (192-D)

LSH L = 62, m = 20

Multi-probe LSH L = 10, m = 20, T = 40

Multi-level LSH L = 10, C = 256

Table II. LSH parameters for synt16, synt64, synt256, mnist, color, and audio datasets.

4.2 Experiment 1: Similarity search performance

LSH based methods report efficient results when adequate values for m (number of hash functions),
L (number of indexes), T (number of probes for Multi-probe LSH) are chosen. The LSH parameters
(m and L) used in this experiment were tuned according to the implementation of Exact Euclidean
LSH (E2LSH) 5. The tuning parameter m is chosen as a function of the dataset to minimize the
running time of a query while the space requirement is within the memory bounds. L is given by
L = m(m−1)/2. And T is defined using the following reasoning: The original LSH uses L projections
to respond a query. The Multi-probe LSH requires fewer indexes to respond a query (say L′, L′ < L).
Thus, the number of projections used by the Multi-probe LSH is L′×T which should be approximately
equal to L. This reasoning is not always exact (e.g., non-uniform datasets are especial cases). So for
some datasets the T parameter was tuned by hand in order to report comparable search accuracy.
The query range for LSH and Multi-probe LSH was set to r = 10.0% of the largest distance between
pairs of objects in the dataset and the approximation ratio was configured to c = 1.05 which means
95% of success probability at query time.

Note that our technique only needs information the bucket capacity C and the number of indexes
L. Table II shows the LSH parameters used in these experiments for the original LSH, Multi-probe
LSH, and Multi-level LSH. For simplicity, in all experiments the page size for Slim-Tree [Traina et al.
2002], DF-Tree [Traina et al. 2002] and DBM-Tree [Vieira et al. 2004] was configured to keep 64
objects per node.

Number of distance Computations and Response Time. The aim of this experiment is to measure the
average number of distance computations and the total time spent to retrieve the nearest neighbor
objects from a dataset using range queries rQ and k-nearest neighbor queries kNNq. The data
structures being compared were tested with different radius values for the rQ queries, ranging from
1.0% to 10.0% of the largest distance between pairs of objects in the dataset and from 1 to 10 for the
kNN queries. Figures 4, 5 shows the comparison in terms of average number of distance computations

5http://www.mit.edu/~andoni/LSH/

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

370 · A. Ocsa and E. P. M. de Sousa

Fig. 4. Comparison of k nearest neighbor queries (kNNq) at various k using the average number of
distance computations (first row) and response time (second row) for synt16 (first column), synt64
(second column) and synt256 (third column) datasets.

and total time for all the methods. The basic LSH is faster than metric trees independent of the
dimension or size of the dataset. These results indicate that Multi-probe and Multi-level LSH are
more efficient than any metric tree considered in this paper. This is expected since metric tree
structures suffer from “curse of dimensionality” problem. This implies overlapping among regions
when the dimensionality is very high, and as a consequence, they need to explore many paths in the
tree structure during the query process.

Tables III and IV shows the average number of distance computation and total response time for
all hash based approaches using range queries. Multi-level LSH outperforms the other structures
decreasing the query time (number of distance computations) by up to 51% (72%) in comparison to
the original LSH and 34% (45%) in comparison to Multi-probe LSH as it can be observed in tables
III and IV.

In this experiment, we observed that the structure with the three-level hash tables (for a appropriate
parameter C) give a superior performance over one-level hash table (the basic LSH or multi-probe
LSH) in term of time and space. Under this configuration our technique is good at distributing objects
into buckets uniformly at different levels and quickly retrieving them using hashing functions. This is
because in contrast to LSH, Multi-level LSH exploits the multi-resolution index structure to compute
and locate the probes needed for a specific query. Thus, multiple probes are computed by each index
in the query process and as a consequence they do not need more indexes to ensure the same quality
results.

4.3 Experiment 2: Accuracy

The goal of this experiment is to evaluate the average accuracy of our approach against other well-
known indexes. Given an index and a dataset, we evaluate the average accuracy by performing a
range query and k-nearest neighbor query. For each query result we check if it includes the same
elements reported by a linear scan with euclidean distance as dissimilarity function. After repeating

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 371

Fig. 5. Comparison of range queries (rQ) at various radii using the average number of distance
computations (first row) and response time (second row) for mnist (first column), color (second
column) and audio(third column) datasets.

color minst audio synt256

NDC %gained NDC %gained NDC %gained NDC %gained

LSH 541 0,00% 11.427 0,00% 6.373,36 0,00% 2.207 4,58%

Multi-probe LSH 340 37,12% 8.310 27,28% 5.175,18 18,80% 2.313 0,00%
Multi-level LSH 322 40,38% 3.116 72,73% 2.588,36 59,39% 1.854 19,84%

Table III. Comparison of Number of Distance Computation (NDC) for each LSH method. Results for the color (32-D),

minst (50-D), audio (190-D) and synt256 (265-D) datasets

color minst audio synt256

TT %gained TT %gained TT %gained TT %gained

LSH 2,87 0,00% 9,88 0,00% 15,892 0,00% 12,588 0,00%
Multi-probe LSH 2,64 8,01% 6,82 30,94% 13,133 17,36% 8,715 30,77%

Multi-level LSH 2,74 4,53% 5,05 48,94% 7,776 51,07% 6,345 49,59%

Table IV. Comparison of Total Time (TT) for each LSH method. Results for the color (32-D), minst (50-D), audio
(190-D) and synt256 (265-D) datasets

this process for all objects in the test set (500 iterations), we average the precision values of the index.
We perform a similar procedure to that of Experiment 1 to evaluate the similarity search performance
and show the results in Table V for all hash-based approaches (LSH, Multi-probe LSH, and Multi-level
LSH). Since metric trees report exact result only results for hash-based approaches are shown. This
is because the distance function used in this experiment defines a suitable metric space to perform
similarity queries. In contrast, LSH is based on projection into subspaces in a approximately way and
only can report good results for ranges less than c × r. Even though, Multi-probe and Multi-level
LSH overcame this problem by using multiples probes in each index, the quality and efficiency has a
certain umbral limit for some greatest k in kNN queries or greatest r in range queries as we will see
in the scalability experiments.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

372 · A. Ocsa and E. P. M. de Sousa

color minst audio

NDC %gained accuracy NDC %gained accuracy NDC %gained accuracy

LSH 541 0,00% 0,99 11.427 0,00% 1,00 6.373 0,00% 0,99

Multi-probe LSH 340 37,12% 0,99 8.310 27,28% 1,00 5.175 18,80% 0,99
Multi-level LSH 322 40,38% 0,99 3.116 72,73% 0,995 2.588 59,39% 0,94

Table V. Average accuracy for the color (32-D), minst (50-D) and audio (190-D) datasets.

Fig. 6. Comparison of range query (rQ) at 5.0%. The average number of distance computations (first
column), response time (second column) and accuracy (third column) is shown for synt32 dataset.

Fig. 7. Comparison of 100-nearest neighbor query (kNNq). The average number of distance computa-
tions (first column), response time (second column) and accuracy (third column) is shown for synt32
dataset.

4.4 Experiment 3: Scalability

In this experiment, we want to study the behavior of our technique and dynamic indexes, Slim-Tree
[Traina et al. 2002], DF-Tree [Traina et al. 2002] and DBM-Tree [Vieira et al. 2004], as the size
of the dataset increases. We vary the size of the dataset and measure performance to determine
scalability. We split the synt32 dataset by 10. After inserting each subset we run sets of queries
executing 500 similarity queries. The behavior was equivalent for different values of k and radius,
thus we present only the result for k = 100 and radius = 5.0% of the largest distance between pairs
of objects in the dataset. Figures 6, 7 show the average number of distance computations, response
time and accuracy for synt32 dataset using range queries and k-nearest neighbors queries. Multi-level
LSH shows sub-linear behavior when the number of elements indexed grows, what makes the scheme
sufficient to index very large datasets. Moreover, Multi-level LSH exhibits good accuracy while the
bucket capacity is near to the query condition. For range queries, our approach shows reasonable
accuracy (≥ 90%) while the radius is less than 2.5% of the largest distance between pairs of objects
in the dataset. For greater ranges, increasing of the number of probes should be sufficient and if it is
not the case, the number of indexes can be increased in order to ensure satisfactory results.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

An Adaptive Multi-level Hashing Structure for Fast Approximate Similarity Search · 373

4.5 Experiment 4: Usage Space

Table VI shows the memory used in Megabytes by LSH, Multi-probe LSH, Multi-level LSH, Slim-
Tree, and DF-Tree. Only the well-balanced tree (Slim-Tree) and the tree designed to prune more sub
trees (DF-Tree) are considered for this experiment because they have the minimum and maximum
usage space uses among the trees analyzed. We take the number of buckets and nodes with their
respectively capacity as measures to compute the space usage. LSH needs more memory than metric
trees; however, Multi-level LSH reduces space usage by up to 35% in comparison to the original LSH
and it has similar scores in comparison to Multi-probe LSH. This is expected since Multi-level LSH
and Multi-probe LSH use fewer number of indexes due to instead of probing only one bucket for
each hash table in the query algorithm, these methods use multiple buckets that are likely to contain
query results in a hash table, as a result, fewer indexes are needed. An interesting observation about
Multi-probe LSH, Multi-level LSH and DF-Tree (the tree designed to prune more sub trees) is that
they use a quite similar amount of memory.

method / dataset synt16 synt64 synt256 mnist color audio

LSH 12 58 252 740 1404 1428

Multi-probe LSH 3 14 63 185 351 376
Multi-level LSH 3 15 88 235 352 546

Slim-Tree 2 8 47 29 23 94

DF-Tree 3 23 95 28 38 258

Table VI. Space usage experiments. Comparison of the memory used by LSH, Multi-probe LSH, Multi-level LSH,

Slim-Tree, and DF-Tree in Megabytes

5. CONCLUSIONS

In this paper, we presented a new scheme to solve approximate similarity search called Adaptive
Multi-level Locality Sensitive Hashing. Our approach considers the linear and multi-level hashing
scheme to adjust the number of hash functions and number of buckets needed to index a dynamic set
of objects. Due to the self-adaptive abilities of the multi-resolution index structure we can adapt the
data domain parameters during the indexing process. Additionally, this scheme allows us to exploit
the multi-resolution approach to compute the number of probes needed for a specific query. As a
consequence, we can speed up the query process as the need of more indexes decreases.

We conducted performance studies on many real and synthetic datasets. The empirical results show
that Multi-level LSH outperforms the metric data structures and LSH-based methods by decreasing
the query time (number of distance computations) by up to 51% (72%) in comparison to the original
LSH and 34% (45%) in comparison to Multi-probe LSH. Additionally, Multi-level LSH reduces space
usage by up to 35% in comparison to the original LSH and it has similar results in comparison to
Multi-probe LSH. Our results show the self-tuning behavior of our approach during the indexing
process offering sub-linear cost for query processing and preserving an acceptable accuracy score.
Additionally, our experimental studies show that, current state-of-the-art metric trees exhibit exact
precision and satisfactory performance and usage space. However, even though LSH methods have
a trade-off among space, speed and quality, they are still more effective and faster than metric trees
specially in sceneries where the dataset size and dimension are very high. That was expected but not
clear in the literature considering that ,in contrast to LSH methods, metric tree structures suffer from
the “curse of dimensionality” problem.

REFERENCES

Andoni, A. and Indyk, P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions.

Communications of the ACM 51 (1): 117–122, 2008.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

374 · A. Ocsa and E. P. M. de Sousa

Bawa, M., Condie, T., and Ganesan, P. LSH forest: self-tuning indexes for similarity search. In Proceedings of the

14th international conference on World Wide Web. Chiba, Japan, pp. 651–660, 2005.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. The R*-tree: An efficient and robust access method
for points and rectangles. SIGMOD Record 19 (2): 322–331, 1990.

Bentley, J. L. Multidimensional binary search trees in database applications. Transactions on Software Engineer-

ing 5 (4): 333–340, 1979.

Berchtold, S., Keim, D. A., and Kriegel, H.-P. The X-tree: An index structure for high-dimensional data. In
Proceedings of the International Conference on Very Large Data Bases. San Francisco, CA, USA, pp. 28–39, 1996.

Böhm, C., Berchtold, S., and Keim, D. A. Searching in high-dimensional spaces: Index structures for improving the

performance of multimedia databases. ACM Computing Surveys 33 (3): 322–373, 2001.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroqúın, J. L. Searching in metric spaces. ACM Computing
Surveys 33 (3): 273–321, 2001.

Ciaccia, P., Patella, M., and Zezula, P. M-tree: An efficient access method for similarity search in metric spaces.

In Proceedings of the International Conference on Very Large Data Bases. San Francisco, CA, USA, pp. 426–435,

1997.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable

distributions. In Proceedings of the Twentieth annual Symposium on Computational Geometry. Brooklyn, New

York, USA, pp. 253–262, 2004.

Dong, W., Wang, Z., Josephson, W., Charikar, M., and Li, K. Modeling LSH for performance tuning. In Proceedings
of the International Conference on Information and Knowledge Engineering. Napa Valley, California, USA, pp. 669–

678, 2008.

Gaede, V. and Günther, O. Multidimensional Access Methods. ACM Computing Surveys 30 (2): 170–231, 1998.

Gionis, A., Indyk, P., and Motwani, R. Similarity search in high dimensions via hashing. In Proceedings of the
International Conference on Very Large Data Bases. San Francisco, CA, USA, pp. 518–529, 1999.

Guttman, A. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data Conference. New York, NY, USA, pp. 47–57, 1984.

Hjaltason, G. R. and Samet, H. Index-driven similarity search in metric spaces. ACM Transactions on Database
Systems 28 (4): 517–580, 2003.

Litwin, W. Linear hashing: a new tool for file and table addressing. In Readings in database systems. pp. 570–581,

1988.

Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. Multi-probe LSH: efficient indexing for high-dimensional

similarity search. In Proceedings of the International Conference on Very Large Data Bases. Vienna, Austria, pp.
950–961, 2007.

Navarro, G. Searching in metric spaces by spatial approximation. The VLDB Journal 11 (1): 28–46, 2002.

Sellis, T., Roussopoulos, N., and Faloutsos, C. The R+-tree: A dynamic index for multi-dimensional objects. In

Proceedings of the International Conference on Very Large Data Bases. New York, NY, USA, pp. 507–518, 1987.

Slaney, M. and Casey, M. Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal
Processing Magazine 25 (2): 128–131, 2008.

Tao, Y., Yi, K., Sheng, C., and Kalnis, P. Quality and efficiency in high dimensional nearest neighbor search. In

Proceedings of the ACM SIGMOD International Conference on Management of Data Conference. Providence, Rhode
Island, USA, pp. 563–576, 2009.

Traina, Jr., C., Traina, A., Faloutsos, C., and Seeger, B. Fast indexing and visualization of metric data sets using

Slim-trees. IEEE Transactions on Knowledge and Data Engineering 14 (2): 244–260, 2002.

Traina, Jr., C., Traina, A., Filho, R. S., and Faloutsos, C. How to improve the pruning ability of dynamic
metric access methods. In Proceedings of the International Conference on Information and Knowledge Engineering.
McLean, Virginia, USA, pp. 219–226, 2002.

Ullman, J. D., Garcia-Molina, H., and Widom, J. Index Structures. In , Database Systems: The Complete Book.
Prentice Hall PTR, Upper Saddle River, NJ, USA, pp. 649–660, 2001.

Vieira, M. R., Jr., C. T., Chino, F. J. T., and Traina, A. J. M. DBM-tree: A dynamic metric access method sensitive
to local density data. In Proceedings of the Brazilian Symposium on Databases. Braśılia, Brasil, pp. 163–177, 2004.

Yianilos, P. N. Data structures and algorithms for nearest neighbor search in general metric spaces. In Proceedings

of the fourth annual ACM-SIAM Symposium on Discrete algorithms. Philadelphia, PA, USA, pp. 311–321, 1993.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

