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Abstract. Complex networks are intrinsically present in a wide range of applications. Real world networks have

several unique properties, such as, sparsity, node degree distribution, which follow a power law and a large amount
of triangles that further form larger cliques. Triangles and cluster coefficient, which are usually used to find groups,

are not always enough to distinguish a different node neighborhood topology. By using cliques of sizes 4 and 5, it is

possible to study how triangles become involved to form large cliques. To retrieve these cliques called κ4 and κ5 a novel
technique called “FCR - Fast Clique Retrieval” has been developed, taking advantage of the data management

and optimization techniques of a relational database management system and SQL to query cliques of sizes 4 and 5. This

paper demonstrates that cliques (3, 4 and 5) follow interesting power laws that allow identifying nodes with suspicious
behaviors. It also presents an extension of the cluster coefficient formula, which may become a valuable equation to

identify nodes that most influence the network first eigenvalue.

Categories and Subject Descriptors: H.2 Database Management [H.2.8 Database Applications]: Data Mining

Keywords: cliques, cluster coefficient, graph mining, power law, RDBMS

1. INTRODUCTION

Complex networks, such as biological (protein, DNA), academic (DBLP, Arxiv) and social (Facebook,
LinkedIn), have been increasing in size very quickly. Furthermore, complex networks have attracted the in-
terest of research communities with very interesting findings over the past years. Finding patterns in complex
networks is extremely important, given that they help detecting abnormalities (outliers) and interesting regions
in these networks. If most of the nodes in the network closely follow a power-law, then the few deviations that
do exist are probably outliers. To find such patterns, there exists a large number of interesting tasks in complex
network mining, such as node degree distribution, betweenness, cluster coefficient, among others [Newman
2003].

The fact that the majority of networks have a high number of triangles [Watts and Strogatz 1998] is common
knowledge. For instance, in complex networks, especially in social ones, friends of friends are friends them-
selves. Plenty of research has investigated the behavior of triangles on a network and how they can indicate the
existence of larger cliques [Tsourakakis 2008], [Du et al. 2009].

Cluster coefficient measures the percentage of a node’s neighbors that are neighbors to one another [Watts
and Strogatz 1998]. It measures the degree of “cliquishness” of a graph. Figure 1 shows two nodes with the
same cluster coefficient value (= 0.2), but different topologies. The distinction among different topologies is
important, given that they can help, for instance, personalizing product recommendation.

Also, when the cliques, specially κ4 and κ5, are analyzed on a network, what patterns do they follow? If
someone has many “contacts” that are cliques κ4 and κ5, does that indicate popularity? The study of κ4 and
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κ5 allows evaluating the overlapping among the several social circles that one frequents. An example is shown
in Figure 1. The two nodes in black represent the differences between the node topology even when they have
the same cluster coefficient.

(a) (b)

Fig. 1. Two graphs (a) and (b) showing a black node with the same cluster coefficient 0.2, but distinct neighborhood topology. The node
in (a) might be more popular that the node in (b).

It is straightforward that cliques of larger sizes, such as sizes 4 and 5 (here called κ4 and κ5) can be very
useful to spot nodes with different topologies given that their topology shows how the relationship of a node
with its neighbors is. Besides, one can have a better picture of the social circles that a network has and
also quantify how important a node is to the first eigenvalue. This task is a very important, specially for
immunization in epidemics [Chakrabarti et al. 2008] and network resilience [Albert et al. 2000]. In this context,
this paper proposes the extension of the cluster coefficient, Generic Cluster Coefficient, allowing
the distinction of nodes in situations like the one depicted in Figure 1 and identification of nodes that most
influence the complex network first eigenvalue.

Another interesting contribution of this work is the Degree Clique Law, which shows that not only triangles
(κ3), but also cliques of other sizes, such as κ4 and κ5, follow a power law correlated with the node degree.
Moreover, the relations between the cliques and clique distribution follow the power laws named Power Clique
Law and Clique Distribution Law. These power laws help to investigate nodes with suspicious behaviors like
spammers. For example, a fake user could mimic a small social circle (triangles) by adding a person and some
of his/her friends, however it would be more difficult to mimic a large social circle (cliques of size 4 and 5).

Considering that complex networks can be already stored in a relational table, the aim is to verify how
feasible it is to use an RDBMS to retrieve κ4 and κ5 cliques. The last 40 years have proven how database query
languages are valuable to access a large amount of data. SQL queries are easier to modify and understand
[Rustin 1974]. Also, all of the modern Relational Database Management System (RDBMS) use hash or B-
tree indexes to accelerate data access. Most database systems also support multiple indexes per table. Thus,
the query optimizer can decide which index to use for each query or whether to simply perform a brute-force
sequential search [Pavlo et al. 2009].

To find κ4 and κ5 a novel technique called FCR - Fast Clique Retrieval has been proposed. It is
based on a RDBMS and allows users to use SQL to find these cliques in a faster way. This technique breaks
the network into small ones to find κ4 and κ5 more efficiently and can be up to 5x faster for κ4 and 12x faster
for κ5 than the direct processing, named here Standard Approach.

This paper is organized as follows: Section 2 introduces the graph terminology and the symbols used
in the paper; Section 3 presents the existing related work; Section 4 proposes the Generic Cluster
Coefficient; Section 5 explains the proposed method; Section 6 presents the FCR scalability; Section
7 discusses the laws found over real-world complex networks and, finally, Section 8 concludes the work.

2. TERMINOLOGY

Table I shows the symbols employed in this paper. Let G = (V, E) be an undirected graph without self-
edges, where V is the set of nodes, also called vertices, and E is the set of edges. For a given node vi ∈ V ,
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Table I. Symbols used in this work
Symbol Description

G a graph
E edges of a graph G
V nodes of a graph G
Gs a subgraph of a graph G
Es edges of a subgraph Gs

Vs nodes of a subgraph Gs

d(vi) degree of node v
N (vi) neighborhood of node v
κt a clique of size t
κt(vi) number of cliques of size t of node vi

C(vi) Cluster Coefficient of node vi

Ck(vi) Generic Cluster Coefficient of node vi

until clique of size k
u, v, w nodes of graph G
λ1 First eigenvalue of graph G
λ′
1 First eigenvalue of graph G without node vi

λD eigenvalue drop

N (vi) = {(vi, w)|vi, w ∈ V ∧ (vi, w) ∈ E} is defined as the neighborhood of node vi. The number of edges
in the neighborhood of node vi is called its node degree d(vi).

DEFINITION 1. Subgraph: Gs = (Vs, Es) is a subgraph of G = (V, E) if Vs ⊆ V and Es ⊆ E .

DEFINITION 2. Induced Subgraph: Gs is an induced subgraph of G if Vs ⊆ V and Es contains all edges
of E that connect nodes in Vs.

DEFINITION 3. complete graph or clique: κt is a graph with t nodes such that for every node pair u, v ∈ V
there is an edge (u, v) ∈ E .

In a graph G, a subset of nodes Vs ⊆ V is a clique of size t (κt) if the induced subgraph Gs on G is a
complete graph of size t. A clique of size t = 4 is called κ4 and t = 5 is κ5. The number of cliques of size t
that a node vi participates in is represented as κt(vi).

The clustering coefficient C(vi) of a node vi, given by Equation 1, is the proportion of edges between the
node within its neighborhood divided by the number of edges that could possibly exist between them.

C(vi) =
2 ∗ κ3(vi)

d(vi) ∗ (d(vi)− 1)
(1)

where κ3(vi) is the number of triangles containing vi.

In spectral graph theory, an eigenvalue (λ) of a graph is defined as an eigenvalue of the graph’s adjacency
matrix A represented by Ax = λx, where A is the adjacency matrix of graph G, x is a vector and λ is an
eigenvalue [Mihail and Papadimitriou 2002]. The set of eigenvalues of graph G is called graph spectrum.
Recent developments in spectral graph theory have concerned the effectiveness of eigenvalues in the study of
general graphs. An example is Google’s PageRank algorithm based on graph’s eigenvector [Page et al. 1998].
Usually, the eigenvalue of a graph means the graph connectivity. For example, in [Chakrabarti et al. 2008] the
authors prove that the first (highest) eigenvalue (λ1) is the epidemic threshold, which is very important to the
prevention of a contagious disease spread over a population. They also state that the node that most affects the
first eigenvalue should be the one to be vaccinated.
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3. RELATED WORK

There exist a significant amount of research related to the problem in focus, which we categorize as cliques and
other subgraphs, triangles, cluster coefficient, communities structure, and power law distributions.

Cliques and other subgraphs: The retrieval of either quasi-cliques or the largest clique in a graph have
been studied by a large number of researchers [Liu and Wong 2008], [Zeng et al. 2007], [Modani and Dey
2008], [Stix 2004], [Du et al. 2009]. However, these works aimed to find maximal or quasi-cliques of any
size, while the present work focuses only on cliques of sizes 4 and 5. One of the most pursued recent tasks in
graph mining is how to discover subgraphs that frequently occur over a database with several graphs [Wang
et al. 2005], [Han et al. 2007]. Many works, such as [Chakravarthy et al. 2004] and [Chakravarthy and Pradhan
2008] use a Relational Database System (RDBMS) to find the FSG (Frequent SubGraph), however, an FSG
does not need to be a clique.

Triangles, cluster coefficient and Communities Structure: The network transitivity can be measured
through the cluster coefficient [Watts and Strogatz 1998]. It is found that, in many networks, if node v is
connected to node u and node u to node w, then there is a high probability that node v will also be connected
to node w. In social networks, this means that a friend of your friends is also likely to be your friend. In terms
of network topology, transitivity means the presence of many triangles in the network, which is a triad of three
nodes connected among themselves.

Several recent works, such as [Becchetti et al. 2008] and [Tsourakakis 2008], have aimed to count triangles
without identifying them. For instance, the eigenvalue multiplication is used to find out the total number of
triangles. In [Latapy 2008], the author proposes a fast algorithm to count triangles in graphs with a degree
distribution that follows a power law. A triangle is also a cycle of size 3, as in the works of [Fronczak et al.
2002], [Caldarelli et al. 2004], which proposed a different cluster coefficient to count cycles of different sizes.
However, those techniques count cycles, not cliques.

The cluster coefficient tends to be considerably greater for real networks than for a random graph with
similar numbers of nodes and edges. The cluster coefficient is also known to be dependent on the node degree
[Dorogovtsev et al. 2002], [Ravasz and Barabsi 2003]. The cluster coefficient C(vi) of a node vi decreases as
its degree d(vi) increases, by following a power law for models like scale-free networks[Ravasz and Barabsi
2003]. This means that low-degree nodes tend to form highly connected groups, which are connected to
each other and form larger groups. The presence of these larger groups, that is, cliques of size larger than 3,
explains the “Small World” phenomenon [Watts and Strogatz 1998] and how the “Diameter evolves over time”
[Leskovec et al. 2007]. In a social network these groups are seen as communities, where the edges between
nodes represent friendship and nodes represent people. This property corresponds to the fact that people are
more related to people from their own communities and less connected to people outside them.

In [Leskovec et al. 2008], the authors show that communities tend to be quite small, with no more than
approximately 100 nodes, and barely connected to the rest of the network. Value 100 is known as Dunbar’s
number, which is the number of connections that a person can handle [Dunbar 1998]. Also, most graphs exhibit
a jellyfish pattern [Tauro et al. 2001], which is a graph with a core that is a clique of high-degree nodes, and
also a first layer whose nodes are adjacent to the core. Nodes in the first layer have more one-degree nodes
connected to them than to the core.

Power law distributions: Power-law distributions occur in many types of graphs of scientific interest and
have significant consequences to the understanding of both natural and man-made phenomena. The growth
of city populations, earthquake intensities and power outage ranges are very well known examples that follow
power-law distributions. In graphs, we can highlight the node degree distribution [Chakrabarti and Faloutsos
2006], triangles distribution over node degree [Tsourakakis 2008], eigenvalue distribution [Faloutsos et al.
1999] and others all following power-law distributions. A distribution is a Power law if its probability density
function (PDF) is as follows: p(x) ∝ x−α, where p(x) is the probability of x and α is the power law exponent
[Newman 2005], [Clauset et al. 2009].

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



RDBMS as an Efficient Tool to Mine Cliques on Complex Networks · 411

4. GENERIC CLUSTER COEFFICIENT

The analysis of a node neighborhood topology is an important task in social network mining. The Cluster
Coefficient of a node indicates how strong the connectivity among its neighborhoods is. However, nodes that
have the same degree and/or the same number of triangles are not always equivalent in terms of topology
and connectivity, as the traditional Cluster Coefficient forces a social homogenization among the nodes of the
network.

Figure 2 presents three subgraphs centered at nodes u, v and w. They have the same degree (d(u) =
d(v) = d(w) = 12) and the same number of triangles (κ3(u) = κ3(v) = κ3(w) = 6 ), hence the same cluster
coefficient 2∗6

12∗(12−1) = 0.09. However, they have different numbers of κ4 (κ4(u) = 0, κ4(v) = 1, κ4(w) = 4).

In a social network, nodes can be viewed as people and edges as friendship. Node u shows a stronger
connectivity with a selected group of neighbors (friends), while node v shows a more uniform relationship of
all its neighbors (friends). A node with a topology showing fewer κ4(vi) and κ5(vi) than others, but with same
d(vi) and κ3(vi), like node u, can represent a node that interacts clearly with more than one social cycle, given
that most of its neighbors are disconnected among themselves. The distinction of node neighborhood topology
is an interesting task for system recommendation and personalization, since it can help finding groups of nodes
that interact more clearly and can buy the same product or service.

(a) center node u (b) center node v (c) center node w

Fig. 2. Three subgraphs where the center nodes u, v, w have the same degree d(u) = d(v) = d(w) = 12 and κ3(u) = κ3(v) =

κ3(w) = 6: (a) only triangles centered at node w, (b) one κ4 centered at node v, (c) four κ4 and one κ5 centered at node u

Nodes with different topologies like, u, v and w in Figure 2 can play different roles in the network. If some-
one wants to know how closely a person interacts in his/her social groups, this interaction can be represented
by node topology. For example, node w is probably a node that has a strong interaction with a group of friends,
since they form a clique of larger size, while node u interacts almost the same way with all of its friends.
Traditional Cluster Coefficient can not be used in situations like the one presented in Figure 2, since it is the
same for all three nodes presented.

Based on this fact, we propose a modification in the cluster coefficient definition that considers a larger
clique size. Besides, it is possible to emphasize the differences in node connectivity, as in the nodes shown in
Figure 2, adding components to the original cluster coefficient up to a desired size t of counted cliques.

The maximum number of possible cliques of size t given the number of edges is obtained through the use of

a combinatorial equation:
(
d(vi)

t− 1
)

= d(vi)!
(t−1)!·(d(vi)−(t−1))! . Thus, a Generic Cluster Coefficient is

defined in Equation 2 for a node vi.

Ck(vi) =
k∑
j=3

κj(vi)(
d(vi)

j − 1
) (2)

The Generic Cluster Coefficient can be used with any value of t, that is, it will work for cliques
of any size that can be found in the network. However as the size t increases, the computational cost to recover
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all cliques of size up to t becomes unfeasible. For the proposal of this paper the use of t = 5 is enough
and feasible. As a rule of thumb enough cliques occur when different topologies have different coefficient
values. Equation 3 presents the Generic Cluster Coefficient considering the cliques until κ5. The
Generic Cluster Coefficient removes the social homogenization imposed by the traditional cluster
coefficient.

C5(vi) =
2 ∗ κ3(vi)

(d(vi) ∗ (d(vi)− 1))
+

6 ∗ κ4(vi)
(d(vi) ∗ (d(vi)− 1) ∗ (d(vi)− 2))

+

24 ∗ κ5(vi)
(d(vi) ∗ (d(vi)− 1) ∗ (d(vi)− 2) ∗ (d(vi)− 3))

(3)

in which κ3(vi) is the number of triangles, κ4(vi) is the number of 4-sized cliques, κ5(vi) is the number of
5-sized cliques and d(vi) is the degree for node vi.

4.1 Eigenvalue Influence Observation

One of the interesting observations is that the number of cliques which a node participates in has a high influ-
ence on the eigenvalue of the graph. First, we need to define the eigenvalue drop to explain node influence.
The eigenvalue drop is defined as the original value of the first eigenvalue of a graph minus the first eigenvalue
measured from the graph without the node whose influence we want to analyze. Then eigenvalue drop is given
by the formula λD = λ1 − λ′1, where λD is the eigenvalue drop.

The eigenvalue experiment was carried out as follows: first, the first eigenvalue (λ1) of graph G was mea-
sured, then a node vi was removed from graph G, the first eigenvalue (λ′1) was measured again and the eigen-
value drop λDi

= λ1 − λ1′
i

was computed. Node vi was put back and another node vi+1 was removed. Then
λ1′

i+1 and λDi+1 were computed again. The process was repeated until all the chosen nodes had been deleted.

The eigenvalue drop is usually related to node degree. Thus, by following this idea, two nodes with the same
degree should have the same eigenvalue drop. However, as showed in Table II we can see that this is not true.
Actually, nodes with different numbers of cliques (3, 4 and 5) influence the eigenvalue drop in different ways.
Notice that for each row of Table II, the node analyzed and its edges were deleted and before the next node was
deleted, the node and its edges had been reinserted.

Table II. Four nodes of AS network with the same degree (d(vi) = 7) and κ3 = 7, hence the same cluster coefficient (=0.16), but different
influence on the eigenvalue drop.

κ4 κ5 eigenvalue drop C5(vi)

0 0 0.003445 0.16
2 0 0.003946 0.28
3 0 0.004391 0.33
4 1 0.004746 0.43

5. PROPOSED METHOD

This section presents the proposed algorithm, which not only counts the numbers κ4(vi) and κ5(vi) of a given
node vi, but also lists them. Networks can be viewed as relationships on a database and many times are already
stored on the database. Thus, the management and optimization techniques provided by the Relational Database
Management System (RDBMS) to retrieve κ4 and κ5 from a graph can be explored. However, the conventional
graph scheme, which stores only the edges file on the database, here called “Standard Approach”, requires too
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many join operations to retrieve these cliques and since most graphs are very large, it requires a long time to
process a reasonably-sized graph. One of the techniques used to speed up queries is to store partial information
used in these queries. Therefore, we propose FCR - Fast Clique Retrieval, which breaks the graph
into small subgraphs that allow retrieving κ4 and κ5 for each node in a faster way.

In FCR, the graph is first divided into n small subgraphs, where n is the number of nodes, as presented in
details in Algorithm 1 and in the following explanation: A subgraph Gsi

= (Vsi
, Esi

), i ∈ {1, . . . n} is the
induced subgraph centered at node vi, such that Vsi = {u|u ∈ V ∧ (vi, u) ∈ E} and contains all edges of E
that connect nodes in Vsi , which contains the neighborhood of a node vi and each edge that connect these
nodes. Each edge of Esi

− N (vi) = {(u,w) ∈ Esi
∧ (u,w) /∈ N (vi)} is stored in an additional table, called

“Subgraph table”. Thus, the database needs only one extra table besides the edges file containing all
edges of G. For each edge stored in the Subgraph table, there exist the edge source and destination and
an identification attribute graphi, which is index i of subgraph Gsi . There exist B-tree indexes in both tables
for all the attributes in order to take advantage of the optimization of RDBMS.

Algorithm 1 Subgraph table creation
Require: The input graph G(N,E)
Ensure: Loaded Subgraph table

1: Create edges table
2: Insert graph G in the edges table
3: Create the Subgraph table
4: Divide graph G in to |N | = n subgraph
5: for i=1 to n do
6: for all edges connecting neighbors of node vi do
7: Label these edges as vi.
8: Insert these edges in the Subgraph table
9: end for

10: end for
11: create index in both tables

The Subgraph table keeps the edges of all the subgraphs, except the ones that neither have edges
connecting their neighbors and nor one-degree nodes. Since most of the real graphs are sparse, i.e., they have
many one-degree nodes, this approach does not need an unfeasible extra disk space.

Figure 3 (a) shows an example of a graphG = (V, E) and the corresponding node vi = 1 as a black dot in the
graph. This graph will be used to explain how the FCR works. The edge table of G, in this paper exemplified
by Figure 3 (a), is stored on the database as a relational table, with some tuples shown by Figure 3(b). Part of
one Subgraph table is represented in Figure 3 (c), which shows some of the edges of subgraphs Gsi

in
Figure 3 (a). An example of the amount of tuples in the Subgraph table compared with the number of
total edges of a graph and the amount of cliques (3, 4 and 5) will be presented in Section 6.

The idea to find all κ4 of a node vi is the following:

(1) Retrieve the node neighborhood Nvi
;

(2) For each edge (vi, vj), retrieve all edges (vi, vj , z) in the Subgraph table

(3) Check if the two-by-two combination of index z of all retrieved edges is in G.

Now, following the steps above to find the κ4(vi) of node vi = 1 from Figure 3 (a) we have:

(1) The neighborhood of node vi, (1, 2); (1, 3); (1, 4); (1, 5); (1, 6); (1, 7), is retrieved.
(2) For each retrieved edge, check in the Subgraph table if it belongs to any subgraph. For example, for

edge (1, 2), the following tuples are retrieved: (1, 2, 3); (1, 2, 4); (1, 2, 7). Edge (1, 2) belongs to Esi of
node 3, 4 and 7.
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SRC DEST SRC DEST i
1 2 2 3 1
1 3 2 4 1
1 4 3 2 1
1 5 3 4 1
1 6 4 2 1
1 7 4 3 1
2 1 1 2 3
2 3 1 2 4
3 4 1 2 7
... ... ... ... ...

(a) - A graph G (b) - Edge File (c) - Subgraph Table

Fig. 3. (a) a graph G and node vi = 1, whose edges, represented by thick lines, are stored in the Subgraph table. Table (b) is
the traditional edges table (the only one used in the Standard Approach). Table (c) is the Subgraph table that stored the edges from
subgraphs Gsi .

(3) Thus, there exists a κ4(vi) if there is an edge between the nodes retrieved, i.e., it is necessary to check if
edges (3, 4); (3, 7); (4, 7) exists Each of them represents the existence of one κ4(vi).

The SQL query to retrieve all κ4 from Epinions network is presented in Figures 4 and 5. First, the SQL for
the standard approach, which requires 11 joins to retrieve all κ4, is presented.

Clique κ4 is composed of 6 edges (a, b, c, d, e, f) that correspond to each table in the query presented in
Figure 4. The join operation in SQL query corresponds to the graph nodes that compose κ4. The intuition of
the SQL query is represented by the graph in Figure 6.

SELECT a.src, a.dest, b.dest, c.dest
FROM epinions a, epinions b, epinions c, epinions d, epinions e,

epinions f
WHERE and a.src = b.src and a.src = c.src and d.src = a.dest

and d.dest = c.dest and e.src = b.dest and e.dest = c.dest
and f.src = a.dest and f.dest = b.dest and a.dest <> b.dest
and a.dest <> c.dest and b.dest <> c.dest;

Fig. 4. SQL query to retrieve all κ4 from Epinions network using the standard approach

By using the Subgraph table, only 4 join operations are needed, as represented by the query in Figure
5. This query is simpler and more efficient than the one in Figure 4. The improvement is obtained by avoiding
the verification of an edge existence more than once.

SELECT a.src, a.dest, m.src, m.dest
FROM epinions a, epinionssubgraph m, epinionssubgraph n
WHERE a.src = m.grafhi and a.dest = n.grafhi and m.src = n.src

and m.dest = n.dest;

Fig. 5. SQL query to retrieve all κ4 from Epinions network by using the Subgraph table

To find all κ5 of a node vi, one can follow the steps below:

(1) Retrieve the node neighborhood Nvi
;

(2) For each edge (vi, vj) retrieve all edges (vi, vj , z) in the Subgraph table;
(3) Check if the three-by-three combination of index z, (z1, z2, z3) corresponds to a tuple in the Subgraph

table;

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



RDBMS as an Efficient Tool to Mine Cliques on Complex Networks · 415

(a) (b)

Fig. 6. Graph representing the following SQL queries: (a) Figure 4 - (b) Figure 5

Now, instancing the steps above to find the κ5(vi) of node vi = 1 from Figure 3 (a) we have:

(1) The neighborhood of node vi, (1, 2; 1, 3; 1, 4; 1, 5; 1, 6; 1, 7) is retrieved.
(2) For each retrieved edge, check in the Subgraph table if it belongs to any subgraph. For instance, for

edge (1, 2) the following tuples are retrieved: (1, 2, 3; 1, 2, 4; 1, 2, 7). Edge (1, 2) belongs to Esi
of node 3,

4 and 7.
(3) Thus, there exists a κ5(vi) if there are edges among the nodes retrieved, i.e., it is necessary to check if

tuple (3, 4, 7) is in the Subgraph table.

Actually, using the Subgraph table it is necessary to verify if tuple (z1, z2, z3) in in Subgraph
table, instead of checking if there are three tuples ((z1, z2), (z1, z3) and (z2, z3)) in the edges table.

The SQL query to retrieve all κ5 from Epinions network is presented in Figure 7 and Figure 8. First, the
standard approach, which requires 21 join operations. Second, the FCR approach, which requires only 7 join
operation, reducing the computational cost.

SELECT a.src, a.dest, b.dest, c.dest, d.dest
FROM epinions a, epinions b, epinions c, epinions d, epinions e,

epinions f, epinions g, epinions h, epinions i, epinions j
WHERE a.src = b.src and a.src = c.src and a.src = d.src

and a.dest = e.src and a.dest = g.src and a.dest = i.src
and b.dest = e.dest and b.dest = h.src and b.dest = j.src
and c.dest = g.dest and c.dest = j.dest and c.dest = f.src
and d.dest = f.dest and d.dest = h.dest and d.dest = i.dest
and c.dest <> d.dest and a.dest <> b.dest and a.dest <> c.dest
and a.dest <> d.dest and b.dest <> c.dest and b.dest <> d.dest;

Fig. 7. SQL query to retrieve all κ5 from Epinions network by using the standard approach

SELECT z.src, z.dest, z.grafoi, a.src, a.dest
FROM epinionssubgraph z, epinionssubgraph a,

epinionssubgraph b, epinionssubgraph c
WHERE z.src = a.grafoi and z.dest = b.grafoi and z.grafoi = c.grafoi

and a.src = b.src and a.src = c.src
and a.dest = b.dest and a.dest = c.dest;

Fig. 8. SQL query to retrieve all κ5 from Epinions network by using the Subgraph table

In practice, to find all κ5 of a node, almost the same proceedings to find all κ4 of a node are followed. The
difference is that the existence of three edges connected is checked, instead of one edge as in κ4. It is easy for
the FCR to find these tree edges, since they are connected and stored as a tuple in the Subgraph table.
The total number of edges stored in the Subgraph table for each graph is presented in Table III.
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6. SCALABILITY

This section shows that the FCR - Fast Clique Retrieval is up to 5 and 12 times faster than the
Standard approach to query all κ4 and κ5, respectively. The evaluation was performed by using the open
source RDBMS PostgreSQL 8.3.7 on a computer equipped with an Intel Core2 Quad 2.83GHZ processor and
4Gb of RAM. Table IV and Figure 9 present the results of the experiments to evaluate how fast FCR is to query
all κ4 and κ5. The time was measured in seconds and the values shown are the average of three executions,
with the cache being cleaned before each execution. To control the experiment, we used a graph based on
US cities, that is, a graph composed of a set of latitudes and longitudes of 25,375 US cities. The graphs used
to evaluate the scalability were created based on a US cities dataset by using a k-nearest neighbor query for
each node, varying k ∈ {4, 5, 7, 10, 15, 20, 25}. Thus, every graph has the same number of nodes, but a varied
number of edges, as described in Table III, which also reports the number of edges stored in the Subgraph
table. All graphs are considered undirected. The highest speed is reached when k = 25, that is, querying all
the κ4 by using FCR is 4 times faster and querying all the κ5 using FCR is 12 times faster than by using the
standard approach.

Table III. US Cities dataset information (nodes, edges and edges in Subgraph table).
Dataset Information

K-NN Edges Subgraph table κ4 κ5

4 62,401 250,044 241,584 21,744
5 77,104 418,332 640,440 121,896
7 106,283 882,324 2,391,816 946,560

10 149,760 1,889,838 8,571,576 6,305,136
15 222,348 4,411,422 33,506,928 43,521,504
20 295,239 8,001,498 85,459,368 160,675,416
25 368,308 12,690,354 175,523,400 436,345,200

Table IV. Average execution time (in seconds) to count κ4 and κ5 for each node using both FCR and the Standard approach with the US
Cities dataset.

K-NN Time κ4 Time κ5

FCR Standard FCR Standard
4 2.1 6.4 4.2 21.2
5 4.0 12.0 15.8 44.2
7 12.4 33.0 19.8 116.3

10 16.2 93.5 88.9 607.3
15 278.1 327.0 500.8 4,156.9
20 1,105.1 1,284.6 1,720.7 21,214.8
25 6,731.1 29,579.5 4,894.3 60,593.4

The second scalability experiment executed a query for a thousand nodes from RNT (our largest real graph
in number of nodes and edges) which were randomly chosen. Figure 9 presents the average time per query of
both the FCR and the standard approach. Before each query, the cache of the computer and the database were
cleaned up. As we can see, the FCR approach is up to 8 times faster for κ4 and 9 times faster for κ5, when
compared to the standard approach, which uses only the edges table stored in the RDBMS. As shown in our
experiments, the FCR is a feasible approach to retrieve κ4 and κ5.

7. PATTERNS AND OBSERVATIONS

The findings about the complex networks tested are shown here. First, a description of the datasets is given and
then the patterns for the real world networks are studied. Three newly discovered patterns the datasets seem to
contain are also presented.
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Fig. 9. Average time over thousand queries on RNT graph.

The first is the Clique-Degree, which shows that cliques κ4 and κ5 as κ3 also exhibit a correlation
with the node degree distribution. The second is the Power Clique, which presents the correlation among
cliques, for example κ4 vs. κ3 and so on. The last one is the Clique Distribution, which shows that
the amount of cliques κ3, κ4 and κ5 follows a power law very close to the node degree distribution power law.

7.1 Dataset description

The FCR approach was tested with several network datasets, however, only the results of four datasets are
presented, as the other have similar behavior. All datasets are undirected and do not contain self-edges. Figure
10 presents the node degree distribution of the evaluated datasets detailed below:

—AS-Network: The Internet can be organized into subgraphs called Autonomous Systems (AS). Each AS
exchanges traffic flows with its neighbors (peers). A communication network of who-talks-to-whom from
the BGP (Border Gateway Protocol) and its logs can be used to build a graph. We used the AS-Network
dataset from Caida [asc 2007]. It has 26,389 nodes and 52,861 edges.

—Email-Enron network: It is a social network that contains data from users of Enron company [Klimt and
Yang 2004].It has 33,696 nodes and 180,811 edges.

—Epinions Network: It is a real social network of who-trusts-whom from Epinions [Richardson et al. 2003],
where nodes represent people and edges represent relationships. It has 75,877 nodes and 405,739 edges.

—Recommendation (RNT): The RNT [Clauset et al. 2004] represents information about purchases in a store,
where the nodes represent items and there is an edge from item v to another item u if u is frequently
purchased by buyers of item v. It has 473,315 nodes and 3,505,519 edges.

Degree Distribution

(a) AS (b) Email-Enron (c) Epinions (d) RNT

Fig. 10. Node degree distribution of AS, Email-Enron, Epinions and Recommendation Network.
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7.2 Cliques Power Laws

Figure 11 presents the average κt (κt) for t ∈ {3, 4, 5} versus node degree (d). All the plots of Figure 11 exhibit
a correlation between degree and clique distribution, that is, all cliques, including κ3 presented in [Tsourakakis
2008], follow a power law. Thus, it is possible to generalize the power law as being the Degree Clique Law.

Degree-Clique Law. The relation between the average number of t-sized cliques vs. degree d of a network
that follows a power law with exponent α > 0.

κt = dα (4)

where κt is the average number of t-sized cliques, d is the node degree and the power law exponent is α > 0.

Average κ3 vs. Degree

Average κ4 vs. Degree

Average κ5 vs. Degree

(a) AS (b) Email-Enron (c) Epinions (d) RNT

Fig. 11. Average of κt(vi) (t ∈ 3, 4, 5) vs Degree for Epinions and Recommendation Network.

As t increases, more nodes tend to deviate from the tendency shown in Figure 11. In most networks high-
degree nodes have many one-degree nodes connected to them, which decreases the probability of a node par-
ticipation in a clique. However, they still participating in many more cliques than in nodes with an inferior
degree.

The nodes that deviate in this law are nodes that have fewer t-sized cliques than expected, as the two high-
lighted points in Figures 11 (b) and (d). These plots present the average of t-sized cliques with t ∈ 3, 4, 5
vs. degree. The highlighted points are high-degree nodes that are expected to have a higher number of t-sized
cliques with t = 3, 4, 5, but as the plots show, they have fewer cliques. Thus, they are nodes that present a
suspicious behavior and should be analyzed carefully. However, due to the lack of detailed information about
the network, it is not possible to identify and analyze these nodes more deeply.
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Figure 11 also shows that in these networks (columns (b), (c) and (d)) most of the nodes start deviating
around degree 100, which is the best size for a community structure. Actually, communities tend to achieve
the well-functioning size around 100 nodes. In the RNT dataset, given that it is a recommendation network,
the deviation of high-degree nodes can be explained by the fact that it is rare to buy a large number of products
together. Thus, it is improbable for high-degree node to have a large number of cliques.

A surprising observation occurs with the RNT dataset, Figure 11 (d), which seems to follow two different
tendencies: one up to degree 10 and the other above degree 10, which is exactly the same point where the RNT
degree distribution shown in Figure 10 has a “bend” in its tendency.

It is interesting to observe that the results of the Email-Enron network are almost identical to the Epinions
graph, not only κt versus node degree (shown in Figure 11 (b) and (c)) but also the degree distribution (Figure
12 (b) and (c)). Thus, Email-Enron and Epinions have the same behavior, what is explained by the fact that
both are social networks. Moreover, in Email-Enron there is one highlighted point, corresponding to the highest
degree node in Figure 11 (b) that significantly deviates from all the other nodes in the plots. This node has a
spammer behavior, since it has fewer cliques than the second highest degree nodes.

Table V. The κ3(G), κ4(G) and κ5(G) all networks.
Network κ3(G) κ4(G) κ5(G)

AS-network 205,590 1,184,544 9,169,320
Email Enron 4,345,594 56,177,760 697,083,240
Epinions 9,746,886 139,281,528 2,090,091,840
RNT 39,772,974 204,902,448 973,945,920

Table V presents the total numbers of κ3, κ4 and κ5 for all four networks. As one can observe, the RNT has
the largest number of κ3 and κ4. However, Epinions has many more κ5 and fewer edges and nodes than the
RNT, which means that it is more clustered than the RNT.

Figure 12 depicts the correlation of κt+1 versus κt with t = 3, 4, 5. These relations show, for instance, how
many κ4 are on average κ5. One can observe that all plots follow power laws, i.e., the triangles of a node
tend to be connected to other triangles becoming larger cliques, such as κ4 and κ5. The higher number of
κ4(vi) and κ5(vi) proves that the networks are very well connected exhibiting a network community structure.
Epinions and Email-Enron networks, which are social networks are the ones that have fewer nodes deviating
from the tendency. This fact was expected, since people in social networks usually take part in large social
groups, like schools, sports and so forth. On the other hand, the RTN has fewer κ4 and κ5 than Epinions.
This is also expected, since it is a recommendation network and most of the people buy fewer products at
the same time. A surprising observation is related to the AS network, as most of the nodes that deviate from
the tendency (highlighted nodes in Figure 12 column (a)) are not the high-degree nodes. This is explained by
the AS topology, given that the high-degree nodes are connected and form a core and the other layers have
average-degree nodes. Thus, the nodes on the AS network that deviate from the pattern are probably from the
second and the third layers.

Power Clique Law. A given number of t-sized cliques usually becomes a number of j-sized cliques with
j > t following a power law with α > 0.

κj = κt
α (5)

where κj is the average of j-sized cliques and κt is the number of t-sized cliques with t < j.

The clique distribution also follows a power law, called Clique Distribution Law, as shown in Figure 13,
and is similar to the degree distribution. They have almost the same slope (α) and curve, especially for cliques
of the smallest size, like κ3. An example of this observation is the RTN, which has a bend at degree 10 that
appears in its clique distribution. However as t becomes higher, the bend tends to be dissolved in the clique
distribution. For Epinions network, which is clearly a social network, one can observe that, as the clique size
increases, the number of cliques of a given size a node participates in also increases.
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κ4 vs. κ3

κ5 vs. κ3

κ5 vs. κ4

(a) AS (b) Email-Enron (c) Epinions (d) RNT

Fig. 12. Average number of κ4 vs. κ3, Average number of κ5 vs. κ3 and Average number of κ5 vs. κ4 of Epinions and Recommendation
Network

Clique Distribution Law. The distribution of cliques κt in a graph follows a power law with α > 0.

P (κt) = κt
−α (6)

The number of possible κ3(vi), κ4(vi) and κ5(vi) that a node might have is larger than the real number of
κ3, κ4 and κ5 that a node really has. Thus, a real network still has many triangles that do not become large
cliques, i.e., although networks are very well connected, they are far from being only one large clique.

8. CONCLUSIONS

This paper highlighted the importance of studying cliques of a larger size than the triangles (cliques of size
three). The main contributions of the paper are the following:

—The design of a cluster coefficient extension, called Generic Cluster Coefficient, which allows
the identification of nodes that have distinct connectivity strength and can not have their topologies distin-
guished only by the number of triangles, which is important for community analyses and abnormalities.

—The Degree Clique Law, which shows the correlation of a node degree distribution with κ3, κ4 and κ5

distributions. Different types of networks have a different node degree, which deviates from the κ3, κ4 and
κ5 distributions.

—The Power Clique Law, which is the power law distribution of a clique of a given size vs. cliques of smaller
sizes.

—The Clique Distribution Law, which shows that clique distribution follows a power law similar to the degree
distribution.
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κ3 Distribution

κ4 Distribution

κ5 Distribution

(a) AS (b) Email-Enron (c) Epinions (d) RNT

Fig. 13. κt distribution with t = 3, 4, 5 for (a) Epinions and (b) RTN networks. The clique distribution follows a power law very similar
to the degree distribution with the same bend.

—The proposal of a new efficient approach called FCR - Fast Clique Retrieval, which allows list-
ing and counting the number of κ4 and κ5 in a faster way by using an RDBMS. Queries to count κ4 and
κ5 are executed, respectively, up to 5 and 12 times faster than the standard approach, by using only an extra
table.

As future works, we suggest the analyses of κ4 and κ5 extended to other network models and how they
evolve over time in real networks.
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