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Abstract. Classification is one of the most important tasks in data mining and, nowadays, has been applied to
solve problems related to different areas, such as administration, finance, education, health and others. Therefore, the
construction of precise and computationally efficient classifiers is a relevant challenge in data mining field. In previous
works we presented an efficient method for protein classification, called HiSP (Highest Subset Probability) classifier,
capable of yielding highly accurate results, outperforming the results obtained by other researchers. Aiming to construct
a general purpose classifier based on the ideas explored to solve the protein classification problem, the method previously
proposed was adapted and extended. Here we present this expanded and general classification method, called HiSP-GC
(HiSP General Classifier), and show that it is appropriate and efficient for several kinds of databases associated with
different applications.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous|: Databases

Keywords: classification, data mining

1. INTRODUCTION

Due to its predictive capacity and applicability in different fields, classification has been one of the
most important tasks in data mining. It consists of examining features of a newly presented instance
and assigning it to a predefined class. Building precise and computationally efficient classifiers for
different databases, in terms of content and size, is an important challenge in data mining area. The
intense interest in this subject has resulted in the development of a large number of techniques for
the construction of classifiers, such as decision trees [Quinlan 1986], k-Nearest Neighbors [Cover and
Hart 1967], neural networks [Haykin 1994], Bayesian classifiers [Duda and Hart 1973], support vector
machines [Vapnik 1995] and others.

Classification techniques are generally categorized into two types: eager and lazy approaches. Eager
classification methods, such as decision trees, construct a generalization model from a training dataset
before any query instance is received for classification. They classify new (unlabeled) instances by
directly using the learned model. In a different way, lazy methods [Aha 1997], such as k-Nearest
Neighbor, do not previously build a generalization model from a training dataset to classify new
instances. For each instance to be classified, they process the stored training samples.

Nowadays, classification techniques have been applied to solve different bioinformatics problems
[Wang et al. 2005]. Bioinformatics is a recent research area which involves the design and imple-
mentation of computational systems for the storage, management and analysis of biological data.
In [Merschmann and Plastino 2006a], [Merschmann and Plastino 2006b| and [Merschmann and Plas-
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tino 2007], we proposed a lazy classification method for protein function prediction, which is an
important problem of bioinformatics. The proposed method, which works based on Bayes’ theorem,
was called HiSP (Highest Subset Probability). The goal was to present a computationally efficient
method for protein classification capable of yielding highly accurate results, outperforming the results
obtained by other researchers. The good results in terms of accuracy and time performance obtained
by HiSP showed the suitability of the new approach for the protein classification problem.

Aiming to construct a general purpose classifier based on the ideas explored to solve the protein
classification problem, in this work we present an extension of the method previously proposed and
show that it is appropriate and efficient for several kinds of databases associated with different appli-
cations. Due to its generality, the new method is named HiSP-GC — HiSP General Classifier. The
main characteristic of this method is the classification based on probabilistic analysis of patterns.
Considering that each instance is described by a set of attributes, a pattern corresponds to a subset
of attribute values. Given a new instance, subsets of its attribute values that better represent a par-
ticular class are used to classify it. In order to identify the subsets of attribute values that better
represent a particular class we evaluate, using the training dataset, a posteriori probabilities of each
class, given the attribute values subsets of the new instance.

The remaining of this paper is structured as follows. Section 2 gives an overview of previous works.
Section 3 presents the basic ideas and the essential features of the proposed HiSP-GC approach. The
computational experiments and results are discussed in Section 4. Finally, Section 5 concludes this
work with a brief summary of the main results and points out some future researches.

2. PREVIOUS WORKS AND MOTIVATION

Proteins are complex organic macromolecules made up of amino acids. They are fundamental com-
ponents of all living cells including many substances, such as enzymes, structural elements, and anti-
bodies, that are directly related with the functioning of an organism. Hence, the identification of the
proteins functions has become a very relevant problem. Given the huge amount of available sources
of information, computer-based methods to assist this process are becoming increasingly important.

Among the various sources of information that can be used for the purpose of protein function
prediction, possibly the protein sequence data is the most easily available. Therefore, sequence-based
approaches are one of the most commonly used. Approaches based on motifs have been developed
upon ideas pointed out in [Dayhoff 1983], where it was suggested that subsequences of amino acids
(referred as motifs) may be conserved in proteins of the same functional family.

Since the protein function is closely related with the occurrence of motifs in its sequence, the motif
composition has been used for the function prediction of proteins [Wang et al. 2003|. The difficulty in
this task arises because many proteins share one or more motifs with proteins that belong to different
functional families. Various protein sequence databases are readily available and can be used in the
task of assigning proteins to functional families, which can be viewed as a classification problem.

Eager learning approaches based on decision trees and finite state automata have been proposed
to address this protein classification problem [Wang et al. 2003], [Hatzidamianos et al. 2003], [Pso-
mopoulos et al. 2004], [Wang et al. 2001].

In [Merschmann and Plastino 2006a], [Merschmann and Plastino 2006b] and [Merschmann and
Plastino 2007|, we proposed and explored a lazy data mining method to classify proteins based on
the analysis of their motifs. The proposed method, named HiSP, predicts the functional family
of novel proteins based on a database which stores information about previously studied proteins
(i.e., proteins grouped into families according to the functions they perform). Among several motif
databases available (Prosite [Hulo et al. 2006], Prints [Attwood et al. 2000], Blocks [Henikoff et al.
2000], Pfam [Bateman et al. 2000] and others), according to [Henikoff and Henikoff 2001], Prosite is the
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best-documented protein database. This leaded us to use Prosite in the computational experiments.

The main objective of our previous works was to improve the accuracy results presented by other
methods, based on decision trees [Hatzidamianos et al. 2003] and finite automata [Psomopoulos et al.
2004], to solve the mentioned protein classification problem. The computational experiments showed
that HiSP outperformed the results presented in these works for all tested datasets.

The good results obtained for the protein classification problem encouraged us to extend the pro-
posed classification method (HiSP) aiming to make it suitable and efficient for several databases
associated with different applications. In the next sections, we present this extended classification
method and the computational experiments performed using several databases.

3. THE HISP-GC APPROACH

The main objective of this work is to extend the HiSP classifier, which was proposed to classify proteins
based on their motifs, to work on general domain datasets. In the protein classification problem, each
element of the dataset (i.e., each protein) was characterized by a set of motifs. This dataset could
then be categorized as a transactional dataset, where each protein is a transaction — a set of motifs.

Our proposal of generalization will consider that data are organized in relational tables, which
consists of a set of instances described by distinct attributes. In addition, each instance is associated
with a class belonging to a predefined set of classes.

HiSP-GC (HiSP General Classifier) will be defined as a lazy classifier, i.e., processing will be delayed
until there is an instance to be classified. Its main characteristic will be the classification based on
probabilistic analysis of patterns. Considering that each instance is described by a set of attributes, a
pattern corresponds to a subset of attribute values. Given a new instance, subsets of attribute values
that better represent a particular class will be used to classify it. In order to identify the subsets of
attribute values that better represent a particular class we will evaluate a posteriori probabilities of
each class, given the attribute values subsets of the new instance.

Let D be a relational training dataset — a relational table composed of n elements and z attributes.
Let dj, 1 < j < n, be an element of D and Ay, = {a;1,a;2,...,a;.} be the set of z attribute values
that characterize instance d;. If C = {C1,Cy,...,Cy,} is the set of classes in the training dataset,
then each instance d; € D is associated with a class C; € C'. Consider the new instance X to be
classified. Let Ax = {az1,042,...,0:.} be a set of z attribute values of X. For each class C; € C
and for each subset of attribute values t C Ax, the a posteriori probability P(C;|t) is calculated as
follows:

P(C‘Z A\ t) ’ (1)

P(t)
where P(C; At) stands for the probability of an instance pertaining to the class C; and having the

values in subset ¢. P(t) is the probability of the values in subset ¢ occurring in the training dataset.
They are estimated from the training dataset in the following way:

P(CinD) = T8 )

P(Cift) =

where F,+ and N are the number of instances of class C; having the values in subset ¢, and the total
number of training instances, respectively. And

P(t) = —, 3
where F} is the number of instances having the values in subset ¢.

The decision of which class will be assigned to the instance X is based on the analysis of the subsets
of attribute values associated with the higher a posteriori probabilities P(C;|t).
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Another difference between HiSP and its extension being proposed is based on the following hy-
pothesis: given a new instance to be classified, if each subset of attribute values and class (¢, C;) is
stored in a list in descending order of the a posteriori probability P(C;|t), then we expect that the
majority of the first elements (¢,C;) in this list belongs to the class of the new instance. Therefore,
the most frequent class, among that associated with the first elements in the sorted list, is assigned
to the new instance. If necessary, the class frequencies in the training dataset are used to break ties.

Then the HiSP-GC approach, different from HiSP original proposal, requires the definition of the
number of elements in the list to be considered in the computation of the most frequent class. We
consider all elements (t, C;) whose a posteriori probability P(C;|t) is larger or equal to a lower _limit
value. This lower _limit value is defined based on the dataset characteristics. For datasets containing
larger number of classes and higher degree of overlapping among classes, the a posteriori probabilities
P(C;|t) tend to be lower. For example, in a dataset containing two classes, a subset of attribute
values ¢ could be associated with these two classes, resulting in P(C4|t) = 0.6 and P(Cs|t) = 0.4. On
the other hand, in a dataset with five classes, if the same subset t is associated with the majority
of classes, the probabilities could be, for example, P(Cy|t) = 0.3, P(Cs|t) = 0.25, P(Cs|t) = 0.2,
P(C4|t) = 0.25 and P(C5]t) = 0. In other words, for the dataset containing only two classes, the
probabilities P(C;|t) tend to be higher than the ones estimated from the dataset with five classes. So,
the number of classes in the dataset is considered for the calculation of the lower limit value.

Another component that must be take into account to calculate the lower _limit value is the degree
of overlapping among the classes in the dataset. The greater the overlap among classes in the dataset,
the more the probability values P(C;|t) will be distributed among them. If this component is not
considered in the lower limit calculation, in an extreme situation, the lower limit value adopted
could be larger than the a posteriori probabilities calculated for all subsets of attribute values generated
from an instance to be classified. In this case, it would be impossible to classify the new instance,
since there would be no more frequent class among that associated with the subsets of attribute values
whose P(C;|t) > lower _limit.

In order to consider the degree of classes overlapping in the lower limit value calculation, for each
instance to be classified, the maximum probability P(C;|t) is used. Thus, if C = {C,Cs,...,Cp}
is the set of classes in the training dataset and considering that the lower limit value should de-
crease with the increase of the number of classes in the dataset, given an instance X to be classified,
characterized by the set of attribute values Ax = {ay1,az2,...,a.}, then the lower limit value is
calculated as follows:
max Prob

\/ﬁ )

lower limit =

(4)

where:

maz Prob = max{P(C;|t)}Vt C Ax,t # 0,VC; € C. (5)

Equation 4 shows that the lower limit value is inversely proportional to the square root of the
number of classes in the training dataset. The basic idea is to reduce gradually the lower limit value
as the number of classes increases.

We can observe that, while for the protein classification problem we simply choose the class associ-
ated to the highest a posteriori probability P(C;|t), HiSP-GC constructs a list of subsets of attribute
values and classes (¢, C;) ordered by a posteriori probability P(C;|t) values and uses it to classify the
query instance. Once we noticed that the size of this list would vary with the dataset characteristics,
the biggest challenge of making HiSP-GC suitable and efficient for different application domains was
to set this size automatically. The proposal of the lower limit value evaluation tries to solve this
problem.

The pseudo-code for HiSP-GC is presented in Figure 1. Let C' = {C1,C5,...,Cy,} be the set
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of classes in the training dataset and TrainingDataset = {di,da,...,d,} be the set of instances
belonging to it. Each training instance is labeled with a class of C'. Ax is the set of attribute values
that describe the query instance X and ¢ is a subset of these attribute values. The query instance X
will be assigned to a class of C' using the CLASSIFIER procedure. In lines 1, 2 and 3, the variables
bestClass, maxProb and lower limit are set to initial values. For each subset of attribute values
present in the query instance, the arrays F[t] (frequency of the subset ¢) and F[t][i] (frequency of
training instances of class C; having the subset ¢) are initialized in lines 4 and 5, and the training
dataset is scanned in order to compute them in lines 6 to 12. In line 17, the variable maxProb
is calculated following Equation 5, i.e, it will assume the largest a posteriori probability P(C;|t),
considering all classes C; € C and all subsets of attribute values t C Ax. The lower limit value is
calculated in line 21 based on the maxProb value and the number of classes in the training dataset,
as shown in Equation 4. In lines 22 to 28, the classes C; whose probabilities P(C;|t) are greater or
equal to the lower limit value are stored in the list LS. After that, in lines 29 to 33, if a single class
is the most frequent in the list LS, then it is assigned to the variable bestClass. If necessary, the tie
break criteria (the most frequent class C; € C in the training dataset involved in the tie is chosen) is
used to define the bestClass value. Finally, the class of the instance X is returned in line 34.

procedure CLASSIFIER(C, TrainingDataset, X)

1: bestClass — NO CLASS;

2: maxProb «— 0;

3: lower limit < 0;

4: F[t] «— 0; Vt C Ax

5: F[t][¢i] —0;Vi=1,...,m,Vt C Ax

6: for each instance d; € TrainingDataset do

7 T = {AX N Ad], };
8:  for each subset t C T (such that ¢t # 0) do
9: F[t][s] < F[t][s] + 1, where Cs is the class of the instance d;;

10: F[t] — F[t]| + 1;
11: end for
12: end for

13: for each subset t C Ax (such that ¢ # 0) do
14: for each class C; € C do

15 P(Cilt) — FRIE/FI;
16: if P(C;|t) > maxzProb then
17: maxzProb — P(C;|t);

18: end if

19: end for

20: end for

21: lower_limit — maxzProb//m;
22: for each subset t C Ax (such that t # () do
23: for each class C; € C do

24: if P(C;|t) > lower limit then
25: LS «— Cy;

26: end if

27: end for

28: end for

29: if a single class is the most frequent in the list LS then
30: bestClass < the most frequent class in the list LS,
31: else

32: bestClass < class defined by tie break criteria;

33: end if

34: Return (bestClass);

end

Fig. 1. Pseudo-code for HiSP-GC

As a lazy learning approach, a disadvantage of HiSP-GC in relation to eager methods is the time
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consumed during the classification process, since for each instance to be classified, all training dataset
must be processed. On the other hand, while eager methods build a model optimized for obtaining,
on average, a good predictive performance for any new instance, lazy methods may have better
predictive performance since they can take advantage of particular characteristics of a given instance
to be classified [Veloso et al. 2006].

In addition, since only subsets of attribute values present in the instance to be classified are pro-
cessed, the lazy approach adopted by HiSP-GC allows a reduction in processing effort and memory
consumption to classify this instance. If the proposed classifier followed an eager approach, the need
to process all subsets of attribute values in the training dataset could consume infeasible amounts of
computational resources.

However, even with the lazy approach allowing a reduction in the amount of subsets to be processed
by HiSP-GC, depending on the size of dataset and the characteristics of the instance to be classified,
the classification process can incur expensive computational costs. This is due to the evaluation of
all subsets of attribute values present in the instance to be classified. Therefore, with the aim of
making feasible the use of HiSP-GC for any size of dataset, in some cases, it may be necessary a
data preprocessing step to reduce the number of attributes in the dataset. This represents another
challenge that had to be considered while extending the original HiSP proposed since, due to the
feasible protein datasets dimensions explored in the previous work, the computational time did not
represent a problem. In the computational experiments evaluation, the dimensional reduction of large
datasets will be explained and discussed.

4. EVALUATING THE HISP-GC PROPOSAL

The computational experiments were designed to extensively evaluate the performance of HiSP-GC
with respect to accuracy, speed and scalability. First, predictive accuracy was chosen for comparative
experiments among the proposed method and other traditional classifiers. After, HiSP-GC was eval-
uated concerning the CPU time spent to classify an instance. Finally, a study was conducted in order
to verify if the proposed method is scalable with regard to the number of instances in the datasets.
The experiments were carried out on a Pentium 4 3.0 GHz PC, with 2 GB of RAM.

4.1 Comparative Experiments

We used forty different datasets, taken from the UCI Machine Learning Repository [Blake et al. 1998],
for comparative experiments. Such datasets are related to different applications, ranging consequently
in terms of content, number of instances and number of classes. We adopted the entropy-based
discretization method proposed in [Fayyad and Irani 1993] to discretize continuous attributes.

The predictive accuracy was measured by the ten-fold cross validation method [Han and Kamber
2006]. The exclusive ten-fold test sets were randomly selected from the original datasets. The same
partitions of the data were used to evaluate all classification algorithms.

HiSP-GC was compared with other four classifiers: decision tree, k-Nearest Neighbor (k-NN), naive
Bayes classifier and associative classifier. The experiments involving decision tree, k-Nearest Neighbor
(k-NN) and naive Bayes classifier were carried out using the algorithms J48, IBE (with & equals to 1,
3 and 5) and NaiveBayes, respectively, implemented in the Weka tool [Witten and Frank 2005]. For
associative classifier, we used the implementation of the CBA algorithm [Liu et al. 1998] (version
2.0), provided by its authors.

Experiments were conducted using the following parameter values. For the J48 algorithm, the pa-
rameter confidenceFactor, used to create pruned trees, was set to default value (0.25), and the value 2
was adopted for minNumObj parameter, which specifies the minimum number of instances per leaf.
The NaiveBayes algorithm was executed with False value for useKernelEstimator and useSupervised-
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Discretization parameters, indicating that the normal distribution must be considered for continuous
attributes, and the continuous attributes must not be discretized, respectively. For CBA algorithm,
the parameters were set to the same values used in [Liu et al. 1998|, which showed its superiority
when compared with other classification techniques. The values adopted were minimum support= 1%,
minimum confidence= 50% and mazimum number of rules= 80000.

As mentioned in Section 3, depending on the size of dataset (number of attributes) and the charac-
teristics of the instance to be classified, HISP-GC can present high computational costs to process it.
Therefore, with the aim of making feasible the use of HiSP-GC for any size of dataset, in some cases,
it is necessary a data preprocessing step to reduce the number of attributes in the dataset. Then, in
the experiments conducted in this work, the datasets were divided into two groups:

—Group 1: composed by 22 datasets which were not reduced before being processed by HiSP-GC. The
majority of datasets in this group contain less than 16 attributes (excluding the class attribute).

—Group 2: composed by 18 datasets which were reduced before being processed by HiSP-GC. Origi-
nally, the datasets in this group contained more than 15 attributes (excluding the class attribute).

The experimental results for the datasets in Group 1 are shown in Table I. The datasets names
are listed in the first column and their characteristics (number of instances, number of attributes
disregarding the class attribute, and number of classes) are presented in the second column. The
average accuracy results obtained with the algorithms J48, IBk (k=1), IBk (k=3), IBk (k=5), NB
(NaiveBayes) and CBA are reported from third to eighth columns. The last column presents the
average accuracies for HISP-GC and, in parentheses, the standard deviation for each average. In this
table, for each dataset, the largest accuracy value among those obtained by the methods included in
the comparison is in bold font.

The last row of Table I presents the average accuracy result for each technique. As can be observed
in this row, HiSP-GC reached the best average accuracy (79.06%). The other algorithms ranked as
follows, in descending order: IBk (K=1) (78.28%), NB (78.22%), IBk (K=3) (78.20%), IBk (K=5)
(77.50%), J48 (76.69%) and CBA (75.68%).

As shown in the last column of Table I, excluding the Shuttle-landing dataset, whose standard
deviation was 42.16%, for all datasets this value ranged from 0% to 11.59%. The high standard
deviation for Shuttle-landing dataset was due to the small number of instances in the test datasets.

In the result analysis presented so far, we have compared predictive accuracies without taking
into account statistical significance. Therefore, we employed the paired two-tailed Student’s t-test
technique with the aim of identifying which compared predictive accuracies are actually significantly
different. Next, Table II presents the results of a comparison between HiSP-GC and each other
technique considered in these experiments. The rows of this table show the frequency that HiSP-GC
obtained better accuracy (Better Results), worse accuracy (Worse Results) and equal accuracy (Equal
Results), considering a statistical significance with a p-value of 0.05, which means that the probability
of the difference of performance being due to random chance alone is less than 0.05. For example,
considering the 22 datasets in Group 1, when compared with J48 algorithm (second column), HiSP-
GC obtained better accuracy result for 6 datasets, worse for 1 dataset and equal result for other 15
datasets. The results presented in Table II showed that, in terms of predictive accuracy, HiSP-GC
is competitive and, frequently, better than the other techniques used in this evaluation. The results
of CBA technique were not considered in the statistical analysis due to CBA implementation do not
provide the accuracy result for each partition of the datasets.

In the experiments conducted with the datasets belonging to Group 2, three attribute selection
techniques were adopted to reduce their number of attributes. The selection techniques used in
this study, known as Correlation-based Feature Selection, Consistency-based Feature Selection and
Information Gain Attribute Ranking, are implemented in the Weka software [Witten and Frank 2005].
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Table I.  Accuracy comparison for the datasets in Group 1.

Instances,
Datasets Attributes, J48 IBk IBk IBk NB CBA HiSP-GC
Classes (k=1) | (k=3) | (k=5)

Balance-scale 625, 4, 3 69.13 69.29 69.29 69.29 72.17 71.85 73.61 (4.00)
Breast-cancer 286, 9, 2 7350 | 67.19 | 70.33 | 73.45 | T1.74 | 66.48 74.88 (9.97)
Breast-w 699, 9, 2 94.57 96.57 | 97.14 | 97.00 | 97.14 | 95.43 96.71 (2.03)
Credit-a 690, 15, 2 87.39 83.77 85.22 85.51 86.38 85.23 87.10 (4.29)
Diabetes 768, 8, 2 77.06 76.42 77.46 77.85 77.59 76.52 77.97 (6.41)
Glass 214, 9, 6 73.46 79.46 77.62 74.87 73.94 76.67 74.42 (8.46)
Hayes-roth 160, 4, 3 53.75 | 53.75 | 53.75 | 53.75 | 53.75 | 53.73 53.75 (7.34

)
Heart-cleveland 303, 13, 2 77.83 81.84 82.16 82.82 83.14 82.12 83.48 (3.90)
Heart-hungarian 294, 13, 2 79.57 82.68 83.68 83.32 | 84.01 | 83.04 83.69 (11.59)

Iris 150, 4, 3 94.00 92.67 94.67 | 94.67 | 94.67 93.32 93.33 (4.44)
Labor 57, 16, 2 88.00 96.33 91.33 87.67 98.00 89.33 100.00 (0.00)
Liver-disorders 345, 6, 2 63.23 | 63.23 | 63.23 | 63.23 | 63.23 | 63.23 57.96 (6.18)
Postoperative 90, 8, 3 70.00 62.22 67.78 70.00 68.89 61.13 71.11 (9.37)
Primary-tumor 339, 17, 21 43.40 39.23 44.53 46.60 48.39 39.83 45.72 (11.36)
Shuttle-landing 15, 6, 2 50.00 70.00 60.00 45.00 75.00 55.00 70.00 (42.16)
Solar-flarel 323, 12, 6 70.26 66.19 65.94 67.18 65.00 70.58 69.03 (5.87)
Solar-flare2 1066, 12, 6 74.58 73.08 74.02 73.83 74.02 34.27 74.29 (3.37)
Statlog-heart 270, 13, 2 81.85 83.33 81.48 81.85 83.33 83.72 83.70 (5.00)
Tic-tac-toe 958, 9, 2 84.77 98.75 98.75 98.75 69.62 99.07 78.61 (5.47)
Vote 435, 16, 2 95.64 92.41 92.41 91.73 89.87 93.56 94.50 (3.77)
Wine 178, 13, 3 92.09 97.78 96.63 95.52 98.89 97.73 99.44 (1.76)
Zoo 101, 17, 7 93.18 96.00 93.09 91.09 92.18 93.09 96.00 (5.16)
Average 76.69 78.28 78.20 77.50 78.22 75.68 79.06

Table II. Comparison between HiSP-GC and each other techniques (t-test results).

1Bk 1Bk 1Bk
J48 | (k=1) | (k=3) | (k=5) | NB
Better Results 6 5 5 5 3
Worse Results 1 1 1 1 0
Equal Results 15 16 16 16 19

For each dataset belonging to Group 2, Table III shows the number of attributes selected by the
early mentioned techniques. The number of attributes selected by Correlation-based Feature Selection
and Consistency-based Feature Selection techniques was automatically defined by their search method.
For Information Gain Attribute Ranking technique, as the number of attributes is an input parameter,
the value 15 was chosen for the majority of the datasets, and the values 10 or 13 for three datasets
with larger number of instances.

The experimental results for the datasets in Group 2 are presented in four tables: accuracy results
for all classification techniques using datasets with attributes selected by Correlation-based Feature
Selection (Table IV), Consistency-based Feature Selection (Table VI), Information Gain Attribute
Ranking (Table VIII), and accuracy results for all techniques (except for HiSP-GC) using original
datasets, i.e., with no attribute selection (Table X).

Again, statistical analyses using the paired two-tailed Student’s t-test technique (with p = 0.05)
were conducted to compare the predictive performance of HiSP-GC and the techniques used in this
study (except for CBA). Tables V, VII, IX and XI present the results of these comparative analyses.
The rows of these tables indicate the number of datasets for which HiSP-GC obtained better accuracy
(Better Results), worse accuracy (Worse Results) and equal accuracy (Equal Results) when compared
with the techniques reported in the columns.
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Table ITI. Number of attributes selected.

Number of Attributes Selected
Instances, Correlation Consistency Information
Datasets Attributes, based based Gain
Classes Feature Selection Feature Selection Attribute Ranking
Anneal 898, 38, 5 7 8 15
Audiology 226, 69, 24 6 13 15
Autos 205, 25, 6 5 6 15
Chess 3196, 36, 2 3 6 15
Flags 194, 29, 8 5 8 15
Hepatitis 155, 19, 2 8 9 15
Horse-colic 368, 27, 2 4 3 15
Tonosphere 351, 34, 2 13 7 15
Letter-r 20000, 16, 26 9 13 10
Lymph 148, 18, 4 9 9 15
Mol-bio-p 106, 58, 2 4 4 15
Mol-bio-s 3190, 61, 3 6 10 15
Pendigits 10992, 16, 10 11 10 10
Soybean-1 683, 35, 19 14 13 15
Spambase 4601, 57, 2 10 16 15
Statlog-s 2310, 19, 7 6 9 15
Statlog-v 846, 18, 4 9 16 15
Wayve-5000 5000, 40, 3 15 12 13

For Tables IV, VI and VIII, the datasets names are listed in the first column and their characteristics
(number of instances, number of attributes and number of classes) are described in the second column.
From third to eighth columns we observe the average accuracy results obtained with the algorithms
J48, IBEk (k=1), IBk (k=3), IBK (k=5), NB (Naive Bayes) and CBA, respectively. The last column
presents the average accuracies for HiSP-GC and, in parentheses, the standard deviation for each
average. In these tables, for each dataset, the largest accuracy value among those obtained by the
methods included in the comparison is in bold font. The last row in these tables presents the average
accuracy result for each technique.

The results presented in the last row of Table IV show that, on average, HiSP-GC reached the
best accuracy (85.93%). The other algorithms ranked as follows, in descending order: IBk (K=1)
(85.26%), IBk (K=3) (84.41%), NB (83.73%), IBk (K=5) (83.61%), J48 (82.65%) and CBA (78.97%).

Table V presents the results of the statistical analysis used to compare the predictive performance of
HiSP-GC with the other techniques. In this case, all techniques used datasets with attributes selected
by Correlation-based Feature Selection method. Analyzing the results of this table, we can note that
HiSP-GC always presents a number of better results greater than worse results. For example, when
compared with decision tree technique (J48 column), HiSP-GC reached better results for 7 datasets,
worse results for 2 datasets and equal results for 9 datasets.

The results for all techniques using datasets with attributes selected by Consistency-based Feature
Selection method are showed in Table VI. We can observe that, in the last row of this table, the
average accuracy of HiISP-GC was better than those reached by the other classifiers. While HiSP-GC
achieves accuracy of 85.87%, the other algorithms ranked as follows, in descending order: 1Bk (K=1)
(84.34%), IBk (K=3) (82.53%), J48 (82.37%), NB (81.80%), IBk (K=5) (81.55%) and CBA (76.47%).

The results of the statistical analysis for the experiments conducted using datasets with attributes
selected by Consistency-based Feature Selection are showed in Table VII and confirm the superiority
of HiSP-GC over the remaining techniques. For example, in the comparison between HiSP-GC and
IBk with k£ =5 (fifth column), HiSP-GC outperformed IBk for 10 datasets, presented equal accuracy
results for other 8 datasets and no worse result.
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Table IV. Results for Group 2 (all techniques used the datasets reduced by Correlation-based Feature Selection).

With attribute selection
Instances,
Datasets Attributes, J48 IBk IBk IBk NB CBA HiSP-GC
Classes (k=1) (k=3) | (k=5)
Anneal 898, 38, 5 97.22 97.77 96.55 96.10 96.33 96.69 95.99 (1.97)
Audiology 226, 69, 24 69.94 69.43 67.69 65.06 66.82 63.78 66.34 (10.88)
Autos 205, 25, 6 78.05 86.69 76.57 74.64 79.40 76.06 81.40 (6.47)
Chess 3196, 36, 2 90.43 90.43 90.43 90.43 90.43 90.42 90.43 (1.15)
Flags 194, 29, 8 56.18 58.74 61.34 59.79 59.87 60.24 60.84 (5.35)
Hepatitis 155, 19, 2 81.17 85.75 86.38 85.00 86.38 86.33 86.96 (7.00)
Horse-colic 368, 27, 2 85.07 84.52 84.23 84.78 87.50 | 86.97 83.16 (5.94)
Tonosphere 351, 34, 2 92.60 91.46 91.47 91.48 92.32 93.72 93.46 (4.44)
Letter-r 20000, 16, 26 | 79.37 90.22 87.80 86.41 72.96 3.54 91.73 (0.54)
Lymph 148, 18, 4 76.38 83.24 82.52 81.81 82.38 82.48 83.86 (11.04)
Mol-bio-p 106, 58, 2 73.45 87.64 90.55 89.55 94.27 | 89.45 93.27 (7.89)
Mol-bio-s 3190, 61, 3 93.17 89.78 88.43 88.03 93.54 | 92.66 93.42 (1.89)
Pendigits 10992, 16, 10 | 87.72 95.32 94.75 94.22 87.56 76.41 96.24 (0.51)
Soybean-1 683, 35, 19 91.95 91.07 89.32 87.26 90.48 88.57 91.35 (2.99)
Spambase 4601, 57, 2 91.31 92.07 91.78 91.63 91.72 | 92.63 92.33 (1.16)
Statlog-s 2310, 19, 7 95.80 95.67 93.55 92.03 93.07 92.24 95.89 (1.35)
Statlog-v 846, 18, 4 71.39 69.85 67.02 66.31 61.10 67.49 66.30 (4.88)
Wave-5000 5000, 40, 3 76.52 75.06 79.06 80.50 80.98 81.78 83.74 (1.52)
Average 82.65 85.26 84.41 83.61 83.73 78.97 85.93

Table V. Comparison between HiSP-GC and the other techniques (t-test results).

1Bk 1Bk 1Bk
Ja8 | (k=1) | (k=3) | (k=5) | NB
Better Results 7 6 8 9
Worse Results 2 3 0 0 1
Equal Results 9 9 10 9 10

Finally, the accuracy results for the techniques using datasets with attributes selected by Informa-
tion Gain Attribute Ranking method are presented in Table VIII. Similarly to the previous exper-
iments, the average accuracy results presented in the last row of this table indicate the superiority
of HiSP-GC when compared with the other classifiers. HiSP-GC reaches 86.88% and the other tech-
niques ranked as follows, in descending order: IBk (K=1) (84.39%), IBk (K=3) (84.21%), IBk (K =5)
(83.47%), J48 (83.36%), NB (82.46%) and CBA (75.96%).

Again, the results of statistical analysis, showed in Table IX, confirm that HiSP-GC, in terms
of predictive accuracy, frequently performed better than the other techniques adopted in this work.
For example, when compared with Naive Bayes classifier (NB column), HiSP-GC achieved better
predictive accuracy for 11 datasets, worse for 1 dataset and equal for 6 datasets.

Although HiSP-GC, for datasets in Group 2, had been used only with datasets reduced by attribute
selection techniques, for the other techniques the experiments were carried out with both original and
reduced datasets. Therefore, Table X presents the accuracy results for all techniques (except for
HiSP-GC) using original datasets, i.e., with no attribute selection. From third to eighth columns we
observe the average accuracy results obtained with the algorithms J48, IBk (k=1), IBk (k=3), IBK
(k=5), NB (Naive Bayes) and CBA, respectively, for the original datasets, without attribute selection.
The last three columns show the average accuracy results for HISP-GC with their respective standard
deviation in parentheses, considering the datasets after attribute selection.

The last row of Table X shows that, regardless of the adopted attribute selection technique, HiSP-
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Table VI. Results for Group 2 (all techniques used the datasets reduced by Consistency-based Feature Selection).
With attribute selection

Instances,
Datasets Attributes, J48 IBk IBk IBk NB CBA HiSP-GC
Classes (k=1) (k=3) | (k=5)
Anneal 898, 38, 5 99.00 99.67 98.55 98.00 97.89 98.46 97.11 (1.67)
Audiology 226, 69, 24 75.65 77.43 68.08 65.83 67.75 69.00 74.35 (7.04)
Autos 205, 25, 6 76.05 86.33 73.05 65.29 75.52 78.48 83.40 (7.68)
Chess 3196, 36, 2 94.34 94.34 94.34 94.34 94.34 | 94.34 94.34 (1.23)
Flags 194, 29, 8 59.29 59.42 60.39 57.29 59.84 55.26 60.97 (9.28)
Hepatitis 155, 19, 2 83.13 87.63 84.33 84.96 86.38 88.24 90.17 (7.94)

Horse-colic 368, 27, 2 66.35 71.19 66.59 66.33 64.65 66.64 69.58 (7.17)
Ionosphere 351, 34, 2 90.60 90.32 91.46 91.46 90.90 | 92.00 90.61 (4.82)

Letter-r 20000, 16, 26 | 79.15 92.21 90.51 89.57 74.60 3.87 94.08 (0.44)
Lymph 148, 18, 4 77.05 75.76 77.76 75.10 79.00 79.77 | 81.10 (10.45)
Mol-bio-p 106, 58, 2 78.27 86.00 83.91 84.91 91.45 | 86.72 89.73 (10.18)
Mol-bio-s 3190, 61, 3 93.79 86.68 86.65 86.52 94.45 | 92.74 94.42 (1.30)

Pendigits 10992, 16, 10 | 87.55 93.90 93.25 92.59 85.26 49.47 95.12 (0.53)
Soybean-1 683, 35, 19 91.36 87.27 84.03 83.75 84.18 86.11 88.72 (2.00)

Spambase 4601, 57, 2 91.78 92.00 92.13 91.81 88.87 92.02 93.13 (0.92)
Statlog-s 2310, 19, 7 95.32 94.46 92.94 91.90 93.29 93.47 96.06 (1.09)
Statlog-v 846, 18, 4 69.25 71.98 71.74 71.03 63.11 71.49 71.50 (5.79)
Wave-5000 5000, 40, 3 74.76 71.56 75.88 77.20 80.92 78.46 81.32 (1.72)
Average 82.37 84.34 82.53 81.55 81.80 76.47 85.87

Table VII. Comparison between HiSP-GC and each other techniques (t-test results).

1Bk 1Bk 1Bk
Ja8 | (k=1) | (k=3) | (k=5) | NB
Better Results 7 6 9 10 9
Worse Results 2 2 0 0 0
Equal Results 9 10 9 8 9

GC reached average accuracy higher than the other classifiers (which used original datasets). While
HiSP-GC reaches 85.93%, 85.87% and 86.88%, considering the datasets with attributes selected by
Correlation-based Feature Selection, Consistency-based Feature Selection and Information Gain At-
tribute Ranking, respectively, the other algorithms ranked as follows (in descending order): IBk (K=1)
(84.38%), J48 (83.95%), IBk (K=3) (83.57%), IBk (K=5) (82.98%), NB (82.49%) and CBA (78.83%).

Table XI presents the results of statistical analysis. Now, the comparison was made between HiSP-
GC (using datasets with attributes selected by Correlation-based Feature Selection, Consistency-based
Feature Selection and Information Gain Attribute Ranking) and each of the other techniques (us-
ing original datasets, without attribute selection). The results obtained here were similar to those
reported in the previous statistical analyses, that is, in terms of predictive accuracy, HiSP-GC was
competitive and, frequently, better than other techniques used in these experiments. This can be
verified, for example, by looking at IBk (K=5) column, where, regardless of the adopted attribute
selection technique, HiSP-GC always achieves the best or equal accuracy for almost all datasets.

It is important to mention that, in spite of CBA has never been considered in the statistical analyses
conducted in this work, we can say that, in terms of predictive accuracy, HiSP-GC also performed
better than CBA in all experiments conducted in this work. This can be confirmed by the results
presented in the last row of Tables I, IV, VI, VIII and X, in which CBA always obtained the worst
average accuracy among all techniques used in the experiments.
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Table VIII. Results for Group 2 (all techniques used the datasets reduced by Information Gain Attribute Ranking).
With attribute selection

Instances,
Datasets Attributes, J48 IBk IBk IBk NB CBA HiSP-GC
Classes (k=1) (k=3) | (k=5)
Anneal 898, 38, 5 98.00 95.20 93.67 96.89 92.76 | 98.68 | 98.11 (1.58)
Audiology 226, 69, 24 75.24 74.28 69.78 65.43 68.56 72.14 72.55 (3.60)
Autos 205, 25, 6 78.10 84.10 79.70 74.45 74.43 79.05 | 87.26 (5.96)
Chess 3196, 36, 2 97.09 96.46 93.81 95.46 89.61 96.70 95.87 (0.64)
Flags 194, 29, 8 61.03 57.29 66.40 63.45 62.45 55.22 61.39 (7.10)
Hepatitis 155, 19, 2 77.24 82.50 81.58 84.42 83.83 85.08 | 87.71 (6.37)

Horse-colic 368, 27, 2 87.70 79.91 82.67 81.57 83.96 79.67 82.91 (6.57)
Ionosphere 351, 34, 2 91.21 93.45 91.17 91.17 91.74 | 94.56 93.45 (4.47)

Letter-r 20000, 16, 26 | 79.40 90.89 88.48 87.21 73.33 3.54 92.65 (0.61)
Lymph 148, 18, 4 75.57 85.86 83.86 82.43 86.43 | 79.67 | 85.81 (10.23)
Mol-bio-p 106, 58, 2 75.83 83.91 86.73 84.73 91.45 | 75.90 89.55 (8.39)
Mol-bio-s 3190, 61, 3 91.89 83.35 85.33 85.67 95.80 | 94.56 95.11 (1.36)

Pendigits 10992, 16, 10 | 86.78 91.94 91.58 90.97 82.18 29.07 | 93.55 (0.40)
Soybean-1 683, 35, 19 87.86 87.85 85.51 84.19 81.97 86.39 84.47 (2.93)
Spambase 4601, 57, 2 91.52 91.65 91.98 91.89 91.11 92.53 | 92.94 (0.88)

Statlog-s 2310, 19, 7 95.32 93.12 92.64 92.08 91.26 93.10 94.76 (1.33)

Statlog-v 846, 18, 4 73.74 71.07 71.04 69.50 62.05 69.96 72.09 (5.16)

Wave-5000 5000, 40, 3 76.90 76.22 79.86 80.90 81.28 81.48 83.62 (1.22)
Average 83.36 84.39 84.21 83.47 82.46 75.96 86.88

Table IX. Comparison between HiSP-GC and each other techniques (t-test results).

1Bk 1Bk IBk
Ja8 | (k=1) | (k=3) | (k=5) | NB
Better Results 8 9 9 10 11
Worse Results 1 2 0 0 1
Equal Results 9 7 9 8 i

Table X. Results for Group 2 (only HiSP-GC used the datasets reduced by the attribute selection techniques).

Instances, With no attribute selection With attribute selection

Datasets Attributes, J4a8 IBk IBk IBk NB CBA

Classes (k=1) (k=3) (k=5) HisP-GCl HiSP-GC2 HiSP-GC3
Anneal 898, 38, 5 98.78 99.22 97.89 96.77 94.88 98.01 95.99 (1.97) 97.11 (1.67) 98.11 (1.58)
Audiology 226, 69, 24 78.75 71.25 60.95 58.70 66.80 70.75 66.34 (10.9) 74.35 (7.04) 72.55 (3.60)
Autos 205, 25, 6 78.48 | 85.33 78.93 76.95 72.02 | 78.58 | 81.40 (6.47) | 83.40 (7.68) | 87.26 (5.96)
Chess 3196, 36, 2 99.41 96.03 96.56 96.18 87.70 98.78 90.43 (1.15) 94.34 (1.23) 95.87 (0.64)
Flags 194, 29, 8 62.53 | 56.74 57.87 61.47 | 60.80 | 57.27 | 60.84 (5.35) | 60.97 (9.28) | 61.39 (7.10)
Hepatitis 155, 19, 2 76.00 83.08 86.96 84.96 84.54 81.87 86.96 (7.00) 90.17 (7.94) 87.71 (6.37)
Horse-colic 368, 27, 2 86.96 77.70 75.83 74.22 81.80 81.87 83.16 (5.94) 69.58 (7.17) 82.91 (6.57)
Ionosphere 351, 34, 2 90.02 93.17 90.61 89.19 90.31 93.72 93.46 (4.44) 90.61 (4.82) 93.45 (4.47)
Letter-r 20000, 16, 26 78.85 91.78 90.42 89.86 74.02 3.87 91.73 (0.54) 94.08 (0.44) 92.65 (0.61)
Tymph 148, 18, 4 76.33 | 85.19 82.48 82.43 | 85.76 | 79.01 | 83.86 (11.0) | 81.10 (10.5) | 85.81 (10.2)
Mol-bio-p 106, 58, 2 75.36 82.18 83.00 79.09 89.64 71.90 93.27 (7.89) 89.73 (10.2) 89.55 (8.39)
Mol-bio-s 3190, 61, 3 94.33 74.51 77.34 79.59 95.20 91.70 93.42 (1.89) 94.42 (1.30) 95.11 (1.36)
Pendigits 10992, 16, 10 88.23 97.18 96.84 96.58 87.90 83.91 96.24 (0.51) 95.12 (0.53) 93.55 (0.40)
Soybean-1 683, 35, 19 93.27 91.95 91.65 90.62 89.45 90.05 91.35 (2.99) 88.72 (2.00) 84.47 (2.93)
Spambase 4601, 57, 2 93.18 92.89 93.15 93.22 90.24 93.34 92.33 (1.16) 93.13 (0.92) 92.94 (0.88)
Statlog-s 2310, 19, 7 95.15 94.16 93.68 92.86 91.65 93.90 95.89 (1.35) 96.06 (1.09) 94.76 (1.33)
Statlog-v 846, 18, 4 68.90 72.10 71.38 71.02 61.34 69.01 66.30 (4.88) 71.50 (5.79) 72.09 (5.16)
‘Wave-5000 5000, 40, 3 76.62 74.30 78.70 79.86 80.72 81.34 83.74 (1.52) 81.32 (1.72) 83.62 (1.22)

Average 83.05 | 84.38 83.57 82.08 | 82.49 | 78.83 85.93 85.87 86.88

LCorrelation-based Feature Selection. 2Consistency-based Feature Selection. ®Information Gain Attribute Ranking.

4.2 Speed and Scalability
The results presented so far evaluated HiSP-GC with respect to classification accuracy. In this section,
we evaluate the computational time spent by HiSP-GC in classification process and show the noticeable

scalability of HiSP-GC over the number of training instances.
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Table XI. Comparison between HiSP-GC and each other techniques (t-test results).

With no attribute selection
IBE IBE IBE

Ja8 | (k=1) (k= 3) (k=5) | NB

Better Results 5 4 6 7 9

HiSP-GC with ‘Worse Results 5 4 5 3 1
Correlation-based Feature Selection Equal Results 8 10 7 8 8
Better Results 6 5 5 5 9

HiSP-GC with Worse Results 5 6 4 2 2
Consistency-based Feature Selection Equal Results 7 7 9 11 7
Better Results 8 4 7 10 11

HiSP-GC with Worse Results 3 3 3 2 1
Information Gain Attribute Ranking | Equal Results 7 11 8 6 6

Due to its lazy approach, generally, HiSP-GC is slower than eager classifiers such as decision tree
techniques. However, as can be observed in Tables XII and XIII, the average time spent by HiSP-GC
to classify one instance was generally a small fraction of a second. In Table XII, we can observe that,
for approximately 73% of datasets in Group 1, HiSP-GC spent, on average, less than one second to
classify an instance. For only 9% of datasets, which are the largest (in number of attributes) in the
Group 1, the classification time per instance exceeds three seconds.

Table XII. CPU time spent by HiSP-GC to classify one instance of Group 1.

Instances, Time (sec)
Datasets Attributes, | [Standard deviation)]
Classes
Balance-scale 625, 4, 3 0.0067 [0.0026]
Breast-cancer 286, 9, 2 0.0196 |0.0088
Breast-w 699, 9, 2 0.1663 |0.1382
Credit-a 690, 15, 2 1.8069 [1.0448]
Diabetes 768, 8, 2 0.0842 [0.0185]
Glass 214, 9, 6 0.0603 [0.0277]
Hayes-roth 160, 4, 3 0.0045 [0.0023]
Heart-cleveland 303, 13, 2 0.4942 [0.2199]
Heart-hungarian 294, 13, 2 1.3219 [0.6639]
Tris 150, 4, 3 0.0011 [0.0018]
Labor 57, 16, 2 0.1978 [0.1263]
Liver-disorders 345, 6, 2 0.0398 [0.0031]
Postoperative 90, 8, 3 0.0062 |0.0032
Primary-tumor 339, 17, 21 7.9808 [4.2875
Shuttle-landing 15, 6, 2 0.0003 [0.0010]
Solar-flarel 323, 12, 6 0.5506 [0.2356]
Solar-flare2 1066, 12, 6 2.2314 [0.8965]
Statlog-heart 270, 13, 2 0.8588 [0.3223]
Tic-tac-toe 958, 9, 2 0.0351 |0.0044
Vote 435, 16, 2 1.2244 [3.1563
Wine 178, 13, 3 0.2994 [0.2955]
Zoo 101, 17, 7 2.4613 [1.5613]

Although the datasets in Group 2 are larger than those pertaining to Group 1, after the size
reduction obtained by the attribute selection techniques mentioned in Section 4.1, the classification
time spent by HiSP-GC was as reduced as those presented for the datasets in Group 1. As can be
observed in Table XIII, for all datasets reduced by the Correlation-based Feature Selection, HiISP-GC
spent, on average, less than two seconds to classify an instance. Being more specific, for 16 out of the
18 datasets, this classification time was only a fraction of a second.

A very similar behavior in terms of classification time was reached by HiSP-GC for the datasets
reduced by Consistency-based Feature Selection technique. The results presented in the third col-
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Table XIII. CPU time spent by HiSP-GC to classify one instance of Group 2.
Correlation Consistency Information Gain
Datasets Time (sec) Time (sec) Time (sec)
[Standard deviation| | [Standard deviation] | [Standard deviation]

Anneal 0.0724 [0.0263] 0.0949 [0.0324] 5.9187 [3.2614]
Audiology 0.0060 [0.0032] 0.3921 [0.1922] 1.2301 [0.8435]
Autos 0.0014 |0.0019 0.0022 |0.0020 0.4100 [0.2406]
Chess-Kr-vs-Kp 0.0207 |0.0063 0.2761 |0.1021 37.7151 [19.3857]
Flags 0.0022 [0.0020] 0.0057 [0.0032] 0.1829 [0.0977]
Hepatitis 0.0161 [0.0079] 0.0399 [0.0226] 1.0446 [0.9392]
Horse-colic 0.0018 [0.0020] 0.0006 [0.0014] 0.1355 [0.1255]
Tonosphere 0.4782 [0.3752] 0.0091 [0.0062] 0.8444 [0.8808]
Letter-recognition 0.1792 |0.0972 1.0714 [0.9979 0.2612 |0.1845
Lymph 0.0225 |0.0076 0.0117 [0.0046 0.3906 |0.1649
Mol-bio-promoters 0.0006 [0.0014] 0.0005 [0.0014] 0.0313 [0.0524]
Mol-bio-splice 0.0377 [0.0211] 0.1251 [0.0743] 0.6139 [0.4521]
Pendigits 0.1731 [0.0675] 0.1174 [0.0447] 0.1314 [0.0518]
Soybean-large 1.4730 [1.1302] 0.2843 [0.1408] 7.6009 [6.8221]
Spambase 1.6277 [1.0570 18.7108 [26.0220] 14.6166 [13.5034]
Statlog-segment 0.0137 |0.0073 0.0396 [0.0214] 1.1817 [1.5271]
Statlog-Vehicle 0.1110 [0.0540] 4.0832 [3.1017) 2.6926 [2.3279]
Waveform-5000 0.4423 [0.3812] 0.1526 [0.0504] 0.2356 [0.1821]

umn of Table XIII show that, for 15 out of the 18 datasets, HiSP-GC did not spend even a second
to classify an instance. The exception was for Spambase, which even after the attribute reduction
process, it remained with a large number of attributes and, therefore, the average classification time
spent by HiSP-GC to classify an instance was superior to those presented by the remaining datasets in
Group 2, reaching 18.7108 seconds. Finally, the results presented in the fourth column of Table XIII,
concerning to the datasets reduced by Information Gain Attribute Ranking technique, show again
that, for most datasets, HISP-GC spent less than one second to classify an instance. Since the reduc-
tion of these datasets was lower than the reduction obtained by Correlation-based Feature Selection
and Consistency-based Feature Selection techniques, for Chess-Kr-vs-Kp and Spambase datasets, the
average classification time per instance was superior to 10 seconds.

In order to analyze the scalability of HISP-GC over the number of training instances we selected four
datasets: Solar-flare2, Tic-tac-toe (the largest datasets in terms of number of instances of Group 1),
Pendigits and Letter-recognition (the largest datasets in terms of number of instances of Group 2).

To examine the scalability of HiSP-GC, for each dataset, we randomly selected 90% of the original
dataset as training instances and 10% as testing instances. Then, we formed four new training datasets
using 20%, 40%, 60% and 80% of the training instances, all with the same number of attributes.
Figure 2 shows the linear scalability of the average classification time per instance of HiSP-GC when
the number of training instances increase in Solar-flare2, Tic-tac-toe, Pendigits and Letter-recognition.
In this experiment, the Pendigits and Letter-recognition datasets were reduced by Correlation-based
Feature Selection technique.

5. CONCLUSION

An important challenge in data mining and machine learning areas is to build precise and computa-
tionally efficient classifiers for different applications. In this work, we have proposed an instance-based
classifier named HiSP-GC (HiSP General Classifier).

In the HiSP-GC approach an instance is classified based on the evaluation of its subsets of attribute
values, i.e, the subsets of attribute values that better represent a particular class in the training
dataset are used to classify it. The decision of which class will be assigned to an instance X is based
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Fig. 2. Scalability on number of training instances.

on calculation of a posteriori probabilities, where the subsets of attribute values associated with larger
probabilities of pertaining to some training class define the classification of the instance X.

HiSP-GC was evaluated from experiments conducted on forty datasets from the UCI Machine
Learning Repository. First, the predictive accuracy was the measure adopted for comparative tests
among HiSP-GC and other traditional classifiers such as decision tree, k-Nearest Neighbor (k-NN),
naive Bayes classifier and associative classifier. Our experimental results have shown that the accuracy
achieved by HiSP-GC was better or similar to the accuracy obtained by the other methods.

Next, experiments were carried out to evaluate the performance of HiSP-GC with respect to compu-
tational time and scalability over the number of training instances. Due to its classification approach,
depending on the size of the dataset (number of attributes), HISP-GC can present high computational
costs to process it. Therefore, with the aim of making feasible the use of HiSP-GC for any size of
dataset, in some cases, it was necessary a data preprocessing step to reduce the number of attributes
in the dataset. Then, two groups of datasets were used in the experiments: one composed by datasets
which were not reduced before being processed by HiSP-GC and other by datasets which were reduced
before their processing. Our experimental results have shown that, for both groups of datasets, the
average time spent by HiSP-GC to classify one instance was generally a small fraction of a second.
This result confirms the usefulness of HiSP-GC for applications such as those present in this work.
Also, the scalability tests showed that HiSP-GC is scalable over the number of training instances.

Therefore, the results achieved in the conducted experiments showed that HiSP-GC can be an
adequate and efficient classifier for distinct applications. Our future work will be focused on HiSP-GC
adaptations in order to make it applicable to any size of dataset without need of a previous data
reduction. To do so, we plan to explore heuristic methods that search for good performing sets of
attribute values. In addition, once HiSP-GC is a probabilistic classifier, in order to try to improve
and formally justify its behavior, we intend to conduct a comparative study with other variants of the
naive Bayes classifier [Wang and Webb 2002]|, such as TAN [Garg and Roth 2001| and LBR [Zheng
and Webb 2000].
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