
Supporting Temporal Queries on

XML Keyword Search Engines

Edimar Manica1,3, Carina F. Dorneles2, Renata Galante1

1 Universidade Federal do Rio Grande do Sul, Brazil
{edimar.manica, galante}@inf.ufrgs.br

2 Universidade Federal de Santa Catarina, Brazil
dorneles@inf.ufsc.br

3 Instituto Federal do Rio Grande do Sul - Campus Avançado Ibirubá, Brazil

Abstract. In this paper, we propose an approach for providing support to temporal queries on XML keyword search
engines. Our proposal is based on identifying temporal constraints in a keyword query and intercepting the query

processing, executed by a conventional XML search engine, in order to evaluate those constraints. Our approach allows
users to find the temporal information that they are interested in without having to learn a complex query language or
needing prior knowledge of the structure of the underlying data. In this paper, we present a web search log analysis,
which is our main motivation for considering temporal queries in keyword search and describe the proposal that has

been defined for allowing such a query. In order to demonstrate the effectiveness of our proposal, we have executed a
set of experiments over three real XML datasets.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Databases

Keywords: Temporal keyword search, temporal XML search

1. INTRODUCTION

The use of temporal data for recording historical information is a common practice, and essential
in many applications (for example, web server logs, financial data, online transaction logs, workflow
process logs, georeferencing applications for the localization and evaluation of a culture, scientific
data and so on). In this context, a common question that arises when the topic of temporal query
languages is introduced is “why are they necessary”? First, SQL-92 includes date and time data types
and many applications seem to have gotten along fine using SQL. After, extensions of SQL have been
proposed to support temporal queries. Furthermore, in recent years, the use of temporal expressions
has emerged in Web search queries once Web documents also have temporal information.

The ability to correctly access such a data in an environment like Web is still a challenge due to
scalability and diversity of data representation. Consider, for example that a simple date can be
stored as “2009 - October 12th”, “2009-10-12”, “12/10/2009”. How do users write their queries in
a search engine? Are they really interested in temporal search? An exploratory study [Nunes et al.
2008] has concluded that the temporal expressions are used in 1.5% of queries, and they are related to
current and past events. Although temporal expressions appear in only a small fraction of all queries,
the scale of the Web translates this percentage into a large number of users. We speculate that the
reason that might explain this situation is that the conventional search engines do not have any specific
treatment for the temporal information presented in the query or in the documents. Moreover, when
they offer such a functionality, most users do not know how to access or to use it.

This work was partially supported by grants from project INCTWeb (573871/2008-6 CNPq) and by a CNPq scholarship
to Edimar Manica.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010, Pages 471–486.



472 · E. Manica, C. F. Dorneles and R. Galante

A temporal constraint in a keyword search can be expressed in different ways that are not treated
correctly by a conventional XML search engine. We have performed a web query analysis in order
to identify the different meanings of the temporal expression posed in Web queries. We have used a
dataset containing Brazilian web search queries from the extinct real search engine called TodoBR1.
We found queries where the user restricted query using a point in time (“... in 2008”, for example)
or an interval (“... between 2008 and 2010”, for example), using temporal operators (after and
before, for example) and granularities (year, month and day, for example). Therefore, our main goal
is to fill this gap by defining an approach for automatically identifying and perform a special treatment
to the temporal constraints posed in keyword queries according to web query analysis performed. We
have treated this challenge in-depth when compared with related works [Wang et al. 2010]. We have
covered all the temporal relations defined by Allen [Allen 1983], also including a new temporal operator
(intersect) that considers the intersection relation. The temporal operator A intersect B restricts
that a temporal interval A shares, at least, 1 temporal instant with the temporal interval B. It is
important because it was the second relation more frequent in query analysis. We believe that the
treatment of temporal expression can be used successfully in public search engines to improve ranking
or result clustering. Besides, the user does not need to know the details of query languages nor uses
advanced interfaces.

Another front is concerned with giving temporal treatment for XML documents. Works in this field
require that the XML documents follow a specific temporal model [Li et al. 2007; Rizzolo and Vaisman
2008]. However, most XML documents that contain temporal information do not follow a specific
temporal model. In this case, a temporal data might be a point in the time, which could be represented
by means of a simple element, such as <date>15/09/2010</date>, or a fragmented instant, represented
by more than one element, such as <date><day>15</day><month>09</month><year>2010</year> </date>.
Another possible representation in a XML document is to express time as a temporal period, like
<period><begin>10/09/2009</begin><end>10/12/2009</end></period>.

Therefore, beyond identifying temporal information presented in the query, we identify the tem-
poral information contained in the XML documents. Our proposal is based on identifying temporal
constraints in a keyword query and intercepting the query processing, executed by a conventional
XML search engine, in order to evaluate those constraints. Our approach allows users to find the
temporal information that they are interested in without having to learn a complex query language
or needing prior knowledge of the structure of the underlying data. This paper presents four main
contributions to our community: (i) web search log analysis, which illustrate how the users pose their
temporal queries over the web; (ii) a temporal query classification that defines the meaning of the
different types of temporal expressions used in the queries, that is used in our proposal on supporting
temporal queries; (iii) a proposal to support temporal queries on XML search engines through the
interception of the query processing; and (iv) experimental evaluation, showing that our implementa-
tion is effective since it improves significantly the precision and does not put down the conventional
XML search engine performance.

The rest of this paper is structured as follows. Section 2 goes over related work. Section 3 presents
a web query analysis for verifying how temporal expressions are posed in keyword search in order
to define what kind of temporal constraint must be treated. We also describe the most important
concepts related to temporal keyword search. Based on log analysis, in Section 4 we first specify a
classification to be used as guidance for our temporal XML keyword search approach. The experiments
that demonstrate the effectiveness of our approach are described in Section 5. The main ideas of this
paper, and future work, are summarized in Section 6.

1TodoBR is a trademark of Akwan Information Technologies, which was acquired by Google in July 2005.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 473

2. RELATED WORK

Several works [Tyler and Teevan 2010; Mendoza and Baeza-Yates 2008; Graells and Baeza-Yates
2008; Nunes et al. 2008] have been addressed to analyze user query logs topic in order to understand
on-line user behavior and how it improves Web IR. We believe that temporal expression can be
used successfully in public search engines to improve ranking or result clustering. As an example,
Google has released the Google News Timeline2, which is a web application that organizes search results
chronologically. Google Timelines allows users to view news and other data sources on a browsable,
graphical timeline. Our contribution in this paper, about analyzing temporal information in Web
search queries, is on evaluating how users built a query using temporal predicates in a search engine.

In the field of temporal query languages, [Rizzolo and Vaisman 2008; Gao and Snodgrass 2003]
extend XML query languages, respectively XPath and XQuery, to add time support by extending the
syntax and semantics of the query. Timely YAGO(T-YAGO) [Wang et al. 2010] is a prototype system
that extracts temporal facts from Wikipedia, which are represented as semi-structured data, such as
infoboxes, categories, and lists, and integrates them into a knowledge base. T-YAGO provides a time-
aware query language (SPARQL-style language) to access the temporal data. Our work is focused on
extracting temporal information from XML documents while T-YAGO extracts temporal information
from HTML sources, and [Rizzolo and Vaisman 2008] and [Gao and Snodgrass 2003] require a specific
temporal data model. Moreover, our work provides keyword search while T-YAGO, [Rizzolo and
Vaisman 2008] and [Gao and Snodgrass 2003] allows queries into a structure query language. Our
approach allows users to find the information that they are interested in without having to learn a
complex query language or needing prior knowledge of the structure of the underlying data.

There are three main categories for determining returned nodes in XML keyword searches. First,
returning the subtrees rooted at the lowest common ancestor (LCA) nodes of the matches of the
keyword queries [Guo et al. 2003; Cohen et al. 2003; Xu and Papakonstantinou 2005]. Second [Bhalotia
et al. 2002; Hristidis et al. 2006], returning the paths in the XML tree from each LCA node to its
descendants that match with a keyword query. Last [Liu and Chen 2007], inferring the semantics
of the search to identify returned nodes. These works have general solutions for keyword searching
within semi-structured documents, but do not treat specifically the problem of temporal information.
Although temporal expressions appear in only a small fraction of all queries, we speculate that the
reason that might explain this situation is that the search engines do not have special treatment for
the temporal information.

Our approach can be applied in any conventional XML search engine. To validate it, we use the
XML search engine XSeek [Liu and Chen 2007], which allows users to execute keyword searches in XML
documents, and identifies meaningful return nodes without identifying the user preferences. Return
nodes refer to the node names that are the goal of user searches. XSeek analyzes both XML data
structure and keyword match patterns. The XML data are separated in three types of information:
(i) entities in the real world; (ii) attributes of entities; and (iii) connection nodes. Keywords are
also categorized in two types: (i) search predicates; and (ii) return information that user is looking
for. In this way, XSeek generates return nodes, which can be explicitly inferred from keywords, or
dynamically constructed according to the entities in the data that are relevant to the search. In this
paper, we propose an approach that allows temporal keyword searching. We adopt XSeek in order
to process the non-temporal keywords of the query. It means that we extract and treat temporal
keywords of temporal queries once that this feature is not supported by other XML keyword search
engines, such as XSeek.

2http://newstimeline.googlelabs.com

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



474 · E. Manica, C. F. Dorneles and R. Galante

3. USING TEMPORAL PREDICATES IN WEB SEARCH

In this section, we present a web query analysis whose objective is to verify how temporal expressions
are posed in keyword search in order to define what kind of temporal constraint must be treated.
Before we describe our analysis, we shortly present some concepts about temporal queries that are
important to understand the analysis itself.

3.1 Temporal Queries

Informally speaking, a temporal query is composed by temporal expressions that act as a predicate
to the query. This predicate represents a binary temporal condition between the temporal expression
and the other keywords of the query. This temporal condition, or temporal relation [Allen 1983], can
be expressed explicitly by a temporal operator or inferred by the query semantics and context.

The temporal expression represents an operand of this operator (a temporal operand) and the other
keywords express the other operand (a non-temporal operand). For instance, in the query “president
after 2000”, after is a temporal operator, president is the non-temporal operand and 2000 is the
temporal operand.

Allen [Allen 1983] defines 13 temporal relations: after, before, contains, during, equal,
finished by, finishes, meets, met by, overlapped by, overlaps, started by and starts. From
these disjoint basic relations, it is possible to define other relations. For instance, the temporal rela-
tion intersect combines the relations equal, overlaps and overlapped by. Figure 1 depicts these
relations.

 equal before 
meets 

after 
met by 

overlaps overlapped by 

during 
contains 

starts 
started by 

finishes 
finished by 

Fig. 1. Temporal Relations

3.2 Web query analysis

In this work, we have analyzed the temporal predicates used in queries with temporal expressions. We
have used a dataset containing web search queries from the extinct real search engine called TodoBR.
This dataset contains the queries performed on the Brazilian web in November 2005, and includes
65,737 duplicate queries and 33,154 distinct queries. In order to find the queries with temporal
expressions, we have submitted each query to GUTime [GUTime 2009] and ANNIE [ANNIE 2009],
which are tools for annotating temporal expressions. After, we analyzed manually each query that
was annotated by at least one of the tools.

First of all, we distinguished queries with temporal expressions, called temporal queries, from queries
without temporal expression (in both cases, duplicate and distinct queries). We also distinguished
queries with temporal expression from queries with a software version (Windows 2000, for example),
which we do not consider as temporal expression. As we can see in Table I, 318 (0.48%) of queries
have temporal expressions and 223 (0.34%) have information about version of some specific software.
Removing duplicate queries, 202 (0.61%) of the queries have temporal expressions and 96 (0.29%) have

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 475

information about version. In [Nunes et al. 2008], the authors present a higher rates of queries with
temporal expressions (1.5% in query with duplicates and between 1.6% and 1.9% in distinct queries),
since they have analyzed the entire Web, while in our study we have just analyzed queries on Brazilian
web. Moreover, they also have considered as temporal expressions dates and periods represented by
names, such as Christmas, Easter, Paleolithic, while we do not consider these cases. Furthermore, they
do not distinguish versions from temporal expressions, since the temporal expression identification is
fully automatic. In this study we have distinguished version from temporal expressions, because the
software version can not be exactly its release, for instance, “Windows 2000 Advanced Server - Limited
Edition” was released in 2001.

Distinct Queries Duplicate Queries Distinct Queries (%) Duplicate Queries (%)

Total queries 33,154 65,737 - -

Queries with temporal

expressions 202 318 0.61 0.48

Queries with versions 96 223 0.29 0.34

Table I. Use of Temporal Expressions on Brazilian web searches.

Considering queries with temporal expressions (temporal queries), our next step was to verify the use
of explicit temporal operators in order to specify temporal relations between the temporal expression
and the others query keywords. We have checked, manually, all the 202 distinct, and 318 duplicates,
temporal queries, where we have found 61 (30.20%) explicit temporal operators in distinct queries, and
in 108 (33.96%) in duplicate queries. The temporal operators we found are presented in Figure 2(a). It
is important to note that we cluster some operators: in X (em X) includes no ano X (in the year X),
nos anos X (in the years X) and na década X (in the decade X); from X to Y (de X a Y) includes
de X a Y (from X to Y), de X e Y (from X and Y), de X Y (from X Y), no período de X a Y (in
the period from X to Y) and dos anos X e Y (from the years X and Y); and from X (de X) includes
de X (from X), do ano X (from year X) and da década X (from decade X).

(a) Use of explicit Temporal Operators in
Temporal Queries

(b) Temporal Relations inferred in the temporal
queries

Fig. 2. Temporal Operators and Temporal Relations

Based on this analysis, we could observe that some temporal operators used in the queries represent
the same temporal relation, for instance, in X and from X represent the temporal relation intersect.
Moreover, queries with temporal expressions, but without explicit temporal operator also have a
temporal relation between the temporal expression and the other query keywords that can be inferred
by the semantics of the query. We classified manually each query with temporal expressions (including
queries without explicit temporal operators) according to temporal relations defined by [Allen 1983]
more the relation intersect. It is a subjective classification that considers the query semantic, the

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



476 · E. Manica, C. F. Dorneles and R. Galante

query context and the explicit temporal operators (when it was explicit). For instance, the query
“deputadas federais em 1988” (federal deputies in 1988) contains the explicit temporal operator
em X; as in Brazil the mandate of federal deputies is fours years, we infer that the temporal relation
for this query is intersect, i.e., the user wants all federal deputies whose mandate was still valid in
1988. Another example, the query “regime militar 64 84” (military regime 64 84) does not contain
explicit temporal operator, but we know that the military regime in Brazil occurs from 1964 to 1984,
then we infer that the temporal relation is equal, i.e., the user wants web pages about the military
regime, whose period was from 1964 to 1984. As we can see in Figure 2(b), six temporal relations
were found: equal, intersect, starts, contains, before and after.

We also could check the frequency of the use of periods or instants in the temporal operand. As it
can be observed in Table II, 184 (91.09%) temporal queries had an instant as temporal operand, while
18 (8.91%) temporal queries had a period. Considering duplicates queries, 297 (93.40%) queries had
an instant as temporal operand, while 21 (6.60%) had a period. In these periods used as operand, it
were found periods composed of two instants, an initial instant and a final instant. But, it were also
found periods composed of the expression “last x gran”, where x is a value and gran is a granularity
(last 5 years, for example), representing a displacement from the current date.

Distinct Duplicates Distinct (%) Duplicates (%)

Instants 184.00 297.00 91.09 93.40

Periods 18.00 21.00 8.91 6.60

Table II. Proportion of instants and periods in the temporal queries.

As we can see in Figure 3, most of temporal queries (72.77% in the distinct queries and 65.41% in
the duplicate queries) have granularity year, followed by decade (21.78% in the distinct queries and
28.62% in the duplicate queries). It is important to note that the granularity of the query can be
different of granularity of the data. For instance, the query “músicas nos anos 60” (songs in the

years 60) should return songs of 1960, 1961, until 1969.

Fig. 3. Granularities in Temporal Operand

When analyzing the position of a temporal expression in the query (Table III), we discover that in
the most queries (93.22% of distinct queries and 94.62% of the duplicate queries), temporal expressions
are in the end of the query, i.e., after all the other keywords. Later, this feature is considered to identify
what kind of temporal query has to be processed by query processor. It is important to note that
there are 25 distinct queries (58 duplicate queries), in which all keywords are temporal expressions,
and then these queries were not considered in this analysis of location.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 477

Distinct Duplicates Distinct (%) Duplicates (%)

Beginning 2 2 1.13 0.77

Middle 10 12 5.65 4.62

End 165 246 93.22 94.62

Table III. Temporal expressions localization.

Figure 4 shows the number of non-temporal keywords in the temporal queries (removed the stop
words). As we can see, most queries have between 0 and 3 non-temporal keywords.

Fig. 4. Number of Non-temporal Keywords

4. SUPPORTING TEMPORAL SEARCH

In this section, we present our proposal for supporting temporal XML keyword search. First, we
introduce a temporal predicate classification we have defined, based on the web query analysis, to be
used as guidance for constructing our temporal search proposal itself. After, we briefly describe, the
temporal indexing processing, which is based in some concepts introduced in the classification. Finally,
we present the two phase interceptor (TPI), which has been built to handle temporal requirements in
a query user.

4.1 Temporal predicate classification

From the results we have obtained in the web query analysis, we propose a predicate classification
that is used to identify what kind of temporal query has to be processed by query processor over XML
documents. Figure 5 presents an overview about our classification proposal.

A Temporal Predicate is a temporal restriction applied to some text node with temporal data,
and is composed of: (i) a First Operand that represents a text, element or attribute node, and it is
characterized by the non-temporal keywords of the query; (ii) a Temporal Operator that represents a
temporal relation (as explained before) between first and second operands; and a (iii) Second Operand

that express the time. A second operand can be a Simple Instant, a Simple Interval or a Composite

Interval. A Simple Instant is characterized by using a point in time. For instance, 13/11/2010 and
2008. A Simple Interval is a period in the time and is characterized by using two simple instants,
representing the initial and the final instant of a period. For instance, [15/03/2009, 20/05/2010].

A Composite Interval is a period characterized by a shift from the current date. It is composed
of a Reserved Word, a Granularity and optionally a Value. A Reserved Word indicates the direction
of the displacement in time, a Granularity defines the time unit used, and the Value specifies how
many time units the displacement should be done. If the value is not given in the query, then 1 is
considered as default value. We specified three reserved words to temporal query structure: (i) Next,

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



478 · E. Manica, C. F. Dorneles and R. Galante

Fig. 5. Classification of temporal queries

which starts the displacement in the current date and advances n time units; (ii) Last, which ends
the displacement in the current date and returns n-1 time units; and (iii) Current, which covers
the current period according to a given granularity. For example, the expression “current month”
represents a period that starts in the first day of the current month and ends in the last day of the
current month.

4.2 Processing Temporal Queries

In this section, we describe an overview of our proposal for querying temporal data on conventional
XML keyword search engines.

4.2.1 Indexing. Generally speaking, the indexing processing stores the temporal values, which have
been previously normalized to a common format. This common format has been defined for allowing a
faster and consistent access to the documents during the execution of a temporal query. The temporal
indexing process has five steps, as presented in Figure 6, which are described below.

Fig. 6. Steps of the Indexing Process

Step 1: Identifying Temporal Paths. The main objective in this step is the disambiguation of
data formats through the path behavior. It is done by clustering temporal expressions occurrences
according to the paths that contains them. As examples of temporal paths, we present in Table
IV some temporal paths extracted from XML documents. Each temporal path is associated with
its temporal expressions, which are the node values, a type and a format. For instance, the last
path contains two temporal expressions 03/05/2007 and 24/11/2007. Analyzing only the temporal
expression 03/05/2007 we can not discover its format, but analyzing all temporal expressions of the
path we can find out that the format for all temporal expressions of this path is DMY4, because there
is no format ambiguity for the temporal expression 24/11/2007 belonging to this path.

Temporal Path Temp. Expression Type Format

/clinic/vaccine/when/day 01, 15 DAY D
/clinic/vaccine/when/month 01, 1 MONTH M
/clinic/vaccine/when/year 1998, 2000 YEAR Y4
/clinic/hospitalization/patient/departure 03/05/2007, 24/11/2007 DATE DMY4

Table IV. Examples of Temporal Paths.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 479

Step 2: Identifying Fragmented Instants. The second step of the indexing processing is to identify all
fragmented instants. A fragmented instant is composed of temporal nodes that are children of the same
parent node of different, but complementary, types. These temporal nodes must have values of the
following domains: YEAR, MONTH and DAY (optional). In the following example, we can identify
one fragmented instant:

<person>

<born_year>1980</born_year>

<born_month>05</born_month>

<born_day>29</born_day>

</person>

Step 3: Identifying Temporal Intervals. The third step executed in the indexing processing is the
identification of temporal intervals. A temporal interval is identified when a XML fragment has two
temporal nodes (or fragmented instants) that are children of the same node where the behavior of
these paths implies in the value of one of them being always less than the value of other. A temporal
interval can have fragmented instants that are grandson of a same node and children of nodes with
different tags. The following XML fragments present, respectively, examples about a simple temporal
interval (a) and two fragmented temporal intervals (b) and (c):

(a)

<event>

<begin>2010-10-05</begin>

<end>2010-10-08</end>

</event>

(b)

<event>

<begin>

<year>2010</year>

<month>10</month>

<day>05</day>

</begin>

<end>

<year>2010</year>

<month>10</month>

<day>08</day>

</end>

</event>

(c)

<event>

<begin_year>2010</begin_year>

<begin_month>10</begin_month>

<begin_day>05</begin_day>

<end_year>2010</end_year>

<end_month>10</end_month>

<end_day>08</end_day>

</event>

Step 4: Normalizing Temporal Expressions. The fourth step executed in the indexing processing is
simple and relates to the normalization of all temporal expressions identified in the XML documents.
This procedure consists in to normalize the temporal expressions to a common format. As an example,
if a temporal path has a type DATE and format XXX, it means that the format is undefined. In this
case, each temporal expression in this path is normalized to six distinct values, in order to consider
all possible formats: DMY2, MDY2, Y2MD, Y2DM, MY2D and DY2M.

Step 5: Indexing Temporal Expressions. Temporal intervals and temporal instants, which do not
compose a temporal interval, are stored in the same index structure. They are indexed as a normalized
temporal period, so a temporal instant is stored as a period that starts and finishes in the same instant.
Each stored period points to a XML node. We adopt the data model from XSeek, using the concept
of Dewey Label in order to represent XML nodes. When the indexed value is composed of values
from more than one XML node (a fragmented instant, for example), it points to the XML node that
represents the lowest common ancestor of these nodes.

We also create another index we call ClosestTemporalNode, which returns the ids of the temporal
closest nodes of a given node, as well as the distance between them. We use the follow distance
formula:

distance = (levelm − levellca) + (levelnt − levellca)

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



480 · E. Manica, C. F. Dorneles and R. Galante

where levelm is the level of the given node, levellca is the level of the lowest common ancestor node
between the given node and the candidate temporal node and levelnt is the level of the candidate
temporal node.

Article

Journal
Issue

Article
Date

Month Day

04 03

Year

2010

Article
Title

Cardiac
...

Journal
Title

JAD ...

Volume

4

PubDate

Year Month Day

2010 06 15

Article

...

Journal
List

Journal
Issue

...

0

0.0 0.1

0.1.0 0.1.1

0.1.0.0

0.1.0.0.0

0.1.0.1
0.1.1.0

0.1.2

0.1.2.0

0.1.3 0.1.4

0.1.0.1.0 0.1.0.1.1 0.1.0.1.2

0.1.0.1.0.0 0.1.0.1.1.0 0.1.0.1.2.0

0.1.3.0 0.1.3.1 0.1.3.2

0.1.3.0.0 0.1.3.1.0 0.1.3.2.0

Article

Journal
Issue

Article
Date

Month Day

04 03

Year

2010

Article
Title

Cardiac
...

Journal
Title

JAD ...

Volume

4

PubDate

Year Month Day

2010 06 15

Article

...

Journal
List

Journal
Issue

...

0

0.0 0.1

0.1.0 0.1.1

0.1.0.0

0.1.0.0.0

0.1.0.1
0.1.1.0

0.1.2

0.1.2.0

0.1.3 0.1.4

0.1.0.1.0 0.1.0.1.1 0.1.0.1.2

0.1.0.1.0.0 0.1.0.1.1.0 0.1.0.1.2.0

0.1.3.0 0.1.3.1 0.1.3.2

0.1.3.0.0 0.1.3.1.0 0.1.3.2.0

Fig. 7. XML Example

For instance, considering the example presented in Figure 7 that contains 2 temporal nodes
(ArticleDate and PubDate). The distance between ArticleTitle and ArticleDate is 2 and
the distance between ArticleTitle and PubDate is 3, then the closest node to ArticleTitle is
ArticleDate. To avoid the need to compare each XML node with all temporal nodes, we just con-
sider as candidates temporal nodes those nodes belonging to the same entity of the given node. We use
the entity identification defined by XSeek, that infers that a node represents an entity if it corresponds
to a *-node in the DTD. Though these inferences do not always hold, they provide good heuristics in
the absence of the E-R model. When the schema information is not available, we infer the schema
based on data summarization, similar as [Deutsch et al. 1999; Yu and Jagadish 2006]. According to
XSeek heuristics, JournalIssue and Article are entities. Therefore, ArticleTitle belongs to the
entity Article, once that it is its descendant and the unique temporal node belonging to this entity
is ArticleDate, and then it is the temporal node related to ArticleTitle.

It is important to note that the predefined logics used, in the steps 2 and 3, to identify fragmented
instants and temporal intervals assume a simplified vision of the XML data model. This is because
our focus is data-oriented XML, which are structured and usually exported from a relation database,
such as DBLP and Lattes.

4.2.2 Two Phase Interceptor. In this section, we briefly describe the Two Phase Interceptor (TPI)
that has been defined to handle with the temporal expression of the queries. The TPI has two steps:
one extracts the temporal predicate of the queries and the other treats it. Figure 8 illustrates both
steps (numbers (1) and (2)) of the TPI architecture. Figure 8 also shows the indexing module that
creates temporal (explained before) and conventional indexes.

When the user poses a temporal query into a conventional XML search engine, the TPI intercepts
the query (first step in the figure - (1)) to extracts the temporal predicate (Temporal Predicate

Extraction step in the figure), and the rest of the query (which represents all non-temporal keywords)
is sent to the conventional XML search engine, which computes the matches for the rest of the query
(Keywords Matching). Meanwhile, TPI identifies the temporal relation by analyzing the temporal
predicate, which is performed in the Temporal Predicate Mapping step. From that, the temporal
predicates are matched with the temporal values indexed to the temporal nodes closest to the query
(Temporal Predicate Matching step). The processor finds in the index structures the temporal
nodes closest to each match of each keyword. After, it chooses the nodes with shortest distance. For

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 481

Fig. 8. Detailed Two Phase Interceptor (TPI) module

instance, considering the XML fragment presented in Figure 7, for the query “ArticleTitle PubDate

intersect 2005”, the temporal node closest to ArticleTitle is ArticleDate with distance 2 and the
temporal node closest to PubDate is itself with distance 0, then the temporal node closest to the query is
PubDate. For the query “ArticleTitle JournalTitle intersect 2005” the temporal node closest
to ArticleTitle is ArticleDate with distance 2 and the temporal node closest to JournalTitle is
PubDate with distance 2, so ArticleDate and PubDate are the temporal nodes closest to the query.
After finding the temporal nodes closest to the query, the processor chooses just the nodes that satisfy
the temporal predicate. The second interception (second step in the figure - (2)) happens when the
matches of the temporal predicate are sent to the traditional search engine, which are appended to
the non-temporal matches. Finally, the following steps are performed by conventional XML keyword
search engine without any intervention.

5. EXPERIMENTS

In this section, we describe the experiments we have performed in order to evaluate the effectiveness
of our approach. We have run the experiments using two implementation: (i) the XSeek as originally
implemented, which we consider our baseline; and (ii) an extension of XSeek, in which we inserted the
Two Phase Interceptor module (TPI). For clarity, in this section, the original implementation of XSeek
is called baseline, and our proposal of extension is called TPI. We have compared our approach with
a conventional XML search engine because we have not found an XML search engine with temporal
treatment, and the approaches presented in the related work use structured languages, which always
retrieval all and only desired results, because of the expressiveness of structured languages.

In order to analyze the results of experiments, we have evaluated them under the following aspects:
(i) recall; (ii) precision; (iii) F1-measure; (iv) query processing; and (v) query scalability. Recall,
precision and F1-measure are well known quality measure metrics in IR community [Baeza-Yates and
Ribeiro-Neto 1999]. In the query processing aspect we evaluated the time the system has expended on
executing the queries. Finally, the scalability is calculated in terms of the number of query keywords,
and in terms of the interval size used as second operand.

Since TPI differs from the baseline on handling the temporal part of query, for both tests, time
processing and scalability, we compare just the time to perform it. In this way, we compute in TPI
the time for mapping the temporal predicate and the time for finding matches for it. In the baseline,
we compute the time to find matches to the keywords that compose the temporal instant given, for
instance, in query “country name 10 01 1948” we compute the time to find the matches to the keywords
“10”, “01” and “1948”.

5.1 Setup

We have used Java 1.6 for our implementation and the experiments have been performed on a 2GHZ
Intel Core 2 Duo running Ubuntu 9.10, with 3GB of main memory and 120GB of disk space (7200rmp).

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



482 · E. Manica, C. F. Dorneles and R. Galante

Data Sets. We have tested three real XML data sets, Mondial, Pubmed and Lattes.

—Mondial3 is a world geographic database integrated from CIA World Factbook, TERRA database,
among other sources. For our experiments, we have used a 1.8MB document, 4 temporal paths, 0
fragmented instants, 0 temporal intervals, 3247 temporal nodes indexed, and 105178 XML nodes
indexed.

—Pubmed4 is a free digital archive of biomedical and life sciences journal literature. The data set we
have used in our experiments is an XML data set obtained as a result from the query “alzheimer’s
disease pathology prevention” submitted to Pubmed. The experiments have been run over a 2.6MB
document, 6 temporal paths, 2 fragmented instants, 0 temporal intervals, 2362 temporal nodes
indexed, and 72590 XML nodes indexed.

—Lattes5 contains all the curriculums of Brazilian researchers, which are stored in a centralized
database that is hosted in a Federal Government funding agency. The experiments have been
executed over a subset of this data set with 6.9MB, 73 temporal paths, 22 fragmented instants, 22
temporal intervals, 6996 temporal nodes indexed, and 214546 XML nodes indexed.

We have tested 32 queries for each data set, created by 4 users. For each query the user filled out
the query goal in natural language, the keyword query for our proposal (TQuery) and the keyword query
for a conventional XML search engine (CQuery). In the following examples, we can observe one query
for each dataset, respectively, for Mondial, Pubmed and Lattes data sets:

Query Goal: Return the countries whose independence occurred between 2000 and 2002

TQuery: country name indep_date intersect [2000, 2002]

CQuery: country name indep_date 2000 2001 2002

Query Goal: Return the articles published in 2009

TQuery: articletitle pubdate equal 2009

CQuery: articletitle pubdate 2009

Query Goal: Return the research projects that finishes in 2000

TQuery: RESEARCH-PROJECT finishes 2000

CQuery: RESEARCH-PROJECT FINAL-YEAR 2000

We submitted the TQuery for TPI, CQuery for baseline and used the query goal to manually create
queries in the structured XML language XQuery in order to discover the desired data.

5.2 Search Quality

In order to measure the search quality, we have evaluate whether desired data, obtained through queries
in XQuery manually created according to the query goals described by users in natural language, are
present in the results. We have used precision, recall, and F1-measure metrics. Recall measures the
percentage of the desired data that are output. Precision measures the percentage of the output data
that are desired. F1-measure is the weighted harmonic mean of recall and precision, where recall and
precision are evenly weighted. Figure 9 presents recall, precision and F1-measure averaged for all
queries in each dataset.

TPI improves significantly (p-value of T-test < 0.05) the recall, the precision and the F1-measure
for temporal queries in all data sets, except the recall of Mondial dataset (p-value of T-test = 0.16).
That is because baseline treats the temporal expressions the same way that other keywords while
TPI applies the temporal constraint just in the temporal nodes closest to the query, supports several
temporal operators and granularities, uses the behavior of the temporal path in order to disambiguate
the format and identifies fragmented instants and temporal intervals. In Mondial dataset there is no

3http://www.cs.washington.edu/research/xmldatasets/
4http://www.ncbi.nlm.nih.gov/sites/entrez
5http://lattes.cnpq.br/

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 483

88
% 94
%

57
% 74

% 77
% 93

%

0%
20%
40%
60%
80%

100%

Mondial Pubmed Lattes

Recall

Baseline TPI

(a)

5 6
%

8 8
%

4 4
%

7 7
%

4 2
%

8 0
%

0%
20%

40%
60%

80%
100%

Mondial Pubmed Lattes

Precision

Baseline TPI

(b)

68
%

91
%

50
%

75
%

54
%

86
%

0%
20%

40%
60%

80%
100%

Mondial Pubmed Lattes

F1-measure

Baseline TPI

(c)

Fig. 9. Recall, Precision and F1-measure averaged for all queries of each dataset

statistical significant difference between the recall of the TPI and the recall of the baseline because this
dataset does not contain any fragmented instants or temporal intervals. Nevertheless, TPI improves
significantly the precision and the F1-measure in this dataset because Mondial has several nodes with
numeric value which are not temporal nodes, such as inflation, total_area and population. The
baseline considers these nodes as matches for the temporal expressions of the query.

TPI has obtained the largest value in F1-measure in the Lattes dataset. It has happened because
Lattes contains several temporal intervals. This is a feature that affects the recall of conventional
XML search engines since they are not able to identify that 2007 is a valid value for a temporal
node whose initial year is 2006 and final year is 2008. Moreover, they do not have knowledge that a
temporal node with an open interval (in this case, the final year is open) means that the information
is currently valid. This feature also affects the precision of conventional XML search engines. For
instance, the query “RESEARCH-PROJECT INITIAL-YEAR 2002”, whose goal is to return the research
projects that started in 2002, returns both the research projects whose INITIAL-YEAR is equal to
2002, considering INITIAL-YEAR as a predicate and the research projects whose FINAL-YEAR
is equal to 2002, considering INITIAL-YEAR as a desired return node. In TPI, the query would be
“RESEARCH-PROJECT starts 2002”, which apply the temporal constraint just on the INITIAL-YEAR
of the research project, once TPI is able to identify and to treat temporal intervals.

In a preliminary experiment, we have tested the application of the temporal constraint in any
temporal node, but this procedure dramatically decreases the precision. We agree that in some
situations the more relevant nodes may be far from a given keyword. But, we have adopted the
strategy of applying the temporal constraint in the temporal nodes closest to the query. However,
we report to the user which temporal paths the temporal constraint was applied. If the user is not
satisfied with the results, so it is possible to visualize all temporal paths ranked in proximity order
with the query keywords. Together with each temporal path, a keyword is presented so that the user
must use it in the query to ensure that the temporal constraint will be applied in that temporal path.

Baseline and TPI have had recall and precision averaged for all queries affected by some queries that
do not return any significant value due to an erroneous inference of the return nodes. This behavior
has happened mainly in Pubmed dataset. For example, there is an element title referring to the
title of the journal and an element articletitle referring to the title of the article. In some queries,
users have used the keyword title in order to return the title of the article, so it was inferred that
the user wanted the title of the journal and no article title was returned. In the query “country name

government republic indep_date last 3 decades”, whose goal is to return the country names
whose government is republic and its independence occurred in the last 3 decades, some countries
whose government is not republic was returned when “Republic” is a part of their name, such as
Czech Republic. These problems are inherent of the XML search engine used. It is important to
note that our approach is independent of XML search engine used. We also emphasize that even in
these cases, TPI always applies the temporal restriction on the correct node. A detected problem in
TPI is the identification of return nodes, which is not the focus of this work.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



484 · E. Manica, C. F. Dorneles and R. Galante

5.3 Time processing

Figure 10 presents the time processing averaged for all queries in each dataset. Although TPI adds
a new layer to the search engine querying processing, what normally increases the time processing,
in Pubmed and Lattes datasets, the time processing cost was lower. This is due to the fact that in
queries having keywords that represent periods as second operand, the query for the baseline needs
to contain one temporal expression for each instant, then the baseline needs to traverse the index
for each temporal expression. On the other hand, in queries with instant as second operand, where
just one temporal expression is posed in the query, the time processing cost of TPI has been lower
too. This is justified by the fact that TPI searches for matches of temporal predicate in an index
that contains only values of temporal nodes, while the baseline looks for matches of keywords that
compose the temporal instant in all XML nodes.

3 9
7

9 8
5

4 7
7

3 7
4

7 1
6

5 3
0

0

200

400

600

800

1000

Mondial Pubmed Lattes

Time (ms)

Baseline TPI

Fig. 10. Time to handle the temporal part of query

In Mondial data set, TPI has had a worst result on those queries that have a simple instant as
second operand. In this case, some keywords have several matches (because of the dataset structure)
and, as we can see in the next section, the processing time of TPI increases linearly when the number
of matches for a query increases. For instance, country is a child element of mondial and an attribute
of city, border, province, members, located, etc.

5.4 Scalability

For testing scalability, we have used only the Pubmed data set over two parameters: query size and
interval size.

Number of Keywords: the experiments have been performed using those queries with an increas-
ing number of non-temporal keywords, a constant temporal operator and a second operand. We have
defined two different cases. In the first case (Figure 11(a)), all keywords have the same number of the
matches (720), while in second case (Figure 11(b)), all queries have the same number of the matches
(720), i.e., for a query having 1 non-temporal keyword, this keyword has 720 matches and a query with
8 non-temporal keywords, each keyword has 90 matches. Furthermore, for both cases, all keywords
refer to the same temporal node and have the same distance from this node. We define eight queries
to be tested, from “ArticleTitle intersect 2010” to “ArticleTitle Language Affiliation

Abstract Pagination Journal AuthorList PublicationTypeList intersect 2010”. Queries
performed in the baseline do not have the explicit temporal operator intersect.

In the second case, the processing time, of both approaches, is constant when the number of the
keywords increases, keeping constant the total number of matches. In the first case, the processing
time of the baseline is constant while the processing time of TPI increases linear when the number
of matches increases. This is because the baseline only finds matches to temporal expression on the
XML document, while TPI analysis all other keywords matches to identify the temporal node closest
to the non-temporal keywords.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



Supporting Temporal Queries on XML Keyword Search Engines · 485

(a) (b) (c)

Fig. 11. Scalability on the PubMed

Interval Size: the experiments have been performed using those queries with an increasing in-
terval size, a constant number of non-temporal keywords, and a constant number of matches for
each non-temporal keyword. All keywords refer to the same temporal node and have the same dis-
tance from this node. We have defined eight queries to be tested, from “ArticleTitle Language

intersect [2000,2000]” to “ArticleTitle Language intersect [2000,2007]” in TPI and from
“ArticleTitle Language 2000” to “ArticleTitle Language 2000 2001 ... 2006 2007” in the
baseline. As we can see (Figure 11(c)), the processing time of TPI is constant while the processing
time of baseline is linear when the interval size increases. It happens because, for any interval size, TPI
requires the same structure, while the baseline requires one temporal expression as keyword for each
instant of the interval. For example, the query “ArticleTitle Language intersect [2000,2002]”,
executed over TPI, must be written with three temporal expressions as keywords in the baseline:
“ArticleTitle Language 2000 2001 2002”. Therewith, baseline needs to traverse the conventional
index for each instant (2000, 2001 and 2002) while TPI traverses the temporal index only once. TPI
and baseline traverse the conventional index for each non-temporal keyword.

In summary, TPI has an improved search quality compared with our baseline (XSeek) by intercept-
ing the query and performing the special treatment to the temporal predicate. The processing time
overhead, for this treatment, is reasonable. TPI scales well (constant) when the query size and the
interval size increase and it scales reasonable (linear) when the number of query matches increases.

5.5 Discussion

We have empirically shown that TPI keeps the overall system performance and significantly improves
the retrieval quality. Then, we believe that our method contributes to practical use. This is because,
TPI performs a special treatment of temporal information present at the queries and the XML doc-
uments contents. Besides the advantage of allowing several temporal operators, some reserved words
and different granularities, our proposal also differs from conventional XML keyword search engines
once that takes into account the values pattern in the XML paths to decide if a node is temporal
or not, to identify fragmented instants and temporal intervals. Other proposals (conventional XML
keyword search engines) treat the temporal expressions the same way that other keywords, i.e., each
text node that contains that keyword is considered a match, including dates, prices, codes, heights, or
any other numeric value. Moreover, they just consider each isolated value for computing the matches
for the temporal expressions without format disambiguation and there is no fragmented instant and
temporal interval identification.

TPI does not recover always all and only desired results as extensions of temporal structured
languages presented in related work, however these structured languages require that the user learn a
complex query language and needing a large prior knowledge of the structure of the underlying data
while keyword search is a user-friendly information discovery technique that has been extensively
studied for text [Bhalotia et al. 2002; Hristidis et al. 2006; Liu and Chen 2007].

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



486 · E. Manica, C. F. Dorneles and R. Galante

6. CONCLUSIONS

In this paper, we highlight the problem of supporting temporal queries on conventional XML keyword
search engines describing an analysis on web searches logs and proposing an implementation that
executes an interception in a XML search engine processor. We have analyzed how the temporal
predicates are used in temporal queries in order to create a temporal predicate classification. In order
to identify temporal information in the XML documents, we used the behavior of the paths and some
heuristics to perform path disambiguation, fragmented instant and temporal interval identification.
We have executed some experiments over three real XML data sets that show our proposal improves
significantly the precision of the XSeek for temporal queries. In this paper, we only treat queries of
temporal selection, where the user uses temporal expressions to restrict the query results. As future
work we intend to support queries of temporal output, where the user is interested in discovering when
a given event occurred. For instance, “When did Brazil win the World Cup?” or “for how long ...”.

REFERENCES

Allen, J. F. Maintaining knowledge about temporal intervals. Communications of the ACM 26 (11): 832–843,
November, 1983.

ANNIE. Open source information extraction, 2009. <http://www.aktors.org/technologies/annie/>.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. Modern Information Retrieval. ACM Press / Addison-Wesley, 1999.

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S. Keyword searching and browsing

in databases using banks. In Proceedings of the International Conference on Data Engineering. San Jose, USA, pp.
431–440, 2002.

Cohen, S., Mamou, J., Kanza, Y., and Sagiv, Y. Xsearch: A semantic search engine for xml. In Proceedings of the

International Conference on Very Large Data Bases. Berlin, Germany, pp. 45–56, 2003.

Deutsch, A., Fernández, M. F., and Suciu, D. Storing semistructured data with STORED. In Proceedings of

the ACM SIGMOD International Conference on Management of Data Conference. Philadelphia, USA, pp. 431–442,
1999.

Gao, D. and Snodgrass, R. T. Temporal slicing in the evaluation of xml queries. In Proceedings of the International

Conference on Very Large Data Bases. Berlin, Germany, pp. 632–643, 2003.

Graells, E. and Baeza-Yates, R. A. Evolution of the chilean web: A larger study. In Proceedings of the Latin

American Web Conference. Vila Velha, Brazil, pp. 108–114, 2008.

Guo, L., Shao, F., Botev, C., and Shanmugasundaram, J. XRANK: ranked keyword search over xml documents.
In Proceedings of the ACM SIGMOD International Conference on Management of Data Conference. San Diego,
USA, pp. 16–27, 2003.

GUTime. Adding TIMEX3 tags, 2009. <http://www.timeml.org/site/tarsqi/modules/gutime/index.html>.

Hristidis, V., Koudas, N., Papakonstantinou, Y., and Srivastava, D. Keyword proximity search in xml trees.
IEEE Transactions on Knowledge and Data Engineering 18 (4): 525–539, 2006.

Li, Y., Yang, H., and Jagadish, H. V. NaLIX: A generic natural language search environment for xml data. ACM

Transactions on Database Systems 32 (4): 30:1–30:44, 2007.

Liu, Z. and Chen, Y. Identifying meaningful return information for xml keyword search. In Proceedings of the ACM

SIGMOD International Conference on Management of Data Conference. Beijing, China, pp. 329–340, 2007.

Mendoza, M. and Baeza-Yates, R. A. A web search analysis considering the intention behind queries. In Proceedings

of the Latin American Web Conference. Vila Velha, Brazil, pp. 66–74, 2008.

Nunes, S., Ribeiro, C., and David, G. Use of temporal expressions in web search. In Proceedings of the European

Conference on Information Retrieval. Glasgow, UK, pp. 580–584, 2008.

Rizzolo, F. and Vaisman, A. A. Temporal xml: modeling, indexing, and query processing. The VLDB Journal 17 (5):
1179–1212, 2008.

Tyler, S. K. and Teevan, J. Large scale query log analysis of re-finding. In Proceedings of the International

Conference on Web Search and Web Data Mining. New York, USA, pp. 191–200, 2010.

Wang, Y., Zhu, M., Qu, L., Spaniol, M., and Weikum, G. Timely YAGO: harvesting, querying, and visualiz-
ing temporal knowledge from wikipedia. In Proceedings of the International Conference on Extending Database

Technology. Lausanne, Switzerland, pp. 697–700, 2010.

Xu, Y. and Papakonstantinou, Y. Efficient keyword search for smallest lcas in xml databases. In Proceedings of the

ACM SIGMOD International Conference on Management of Data Conference. Baltimore, USA, pp. 537–538, 2005.

Yu, C. and Jagadish, H. V. Schema summarization. In Proceedings of the International Conference on Very Large

Data Bases. Seoul, Korea, pp. 319–330, 2006.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.


