
Evaluation of Conditional Preference Queries

Fabíola S.F. Pereira, Sandra de Amo

Universidade Federal de Uberlândia, Brazil

deamo@ufu.br

fabfernandes@comp.ufu.br

Abstract. The need for incorporating preference querying in database technology is a very important issue in a
variety of applications ranging from e-commerce to personalized search engines. A lot of recent research work has
been dedicated to this topic in the artificial intelligence and database fields. Several formalisms allowing preference

reasoning and specification have been proposed in the AI domain. On the other hand, in the database field the interest
has been focused mainly in extending standard SQL with preference facilities in order to provide personalized query
answering. More precisely, the interest in the database context focuses on the notion of top-k preference query and

on the development of efficient methods for evaluating these queries. A top-k preference query returns k data tuples
which are the most preferred according to the user’s preference hierarchy. Of course, top-k preference query answering is
closely dependent on the particular preference model underlying the semantics of the operators responsible for selecting
the best tuples. In this paper, we consider the conditional preference queries (cp-queries) where preferences are specified

by a set of rules expressed in a logical formalism. We propose the algorithms BNL∗∗ and R-BNL∗∗ for evaluating the
top-k cp-queries and implement them in the core of the PostgreSQL query processor. An extensive set of experiments
demonstrates the efficiency of our method for computing the most preferred tuples according to the user’s preferences.
We also show the need to integrate the new Select-Best and SelectK-Best operators into a database system, rather

than translating them into standard SQL queries.

Categories and Subject Descriptors: H. Information Systems [H.2 Database Management]: H.2.3 Languages—Query

Languages

Keywords: conditional preferences, preference queries, query evaluation, top-k queries

1. INTRODUCTION

Recently, a lot of interest arose in the artificial intelligence and database communities concerning the
topic of preference elicitation, modeling and reasoning. In fact, due to the huge amount of information
users are faced up to daily, the development of formalisms for preference specification and reasoning
as well as tools allowing to cope with real user preferences turn out to be essential tasks in AI and
DB fields. A lot of work has been done in this area so far by researchers in both communities. From
a AI point of view, the interest is centered mainly in developing powerful mechanisms for preference
reasoning [Boutilier et al. 2004; Brafman et al. 2006; Wilson 2004]. On the other hand, database
researchers are concerned specially in developing preference query languages with high declarative
and expressive power for personalized database applications [Kießling and Köstler 2002; Chomicki
2003; Hristidis et al. 2001; Koutrika et al. 2006]. In this context, the interest is essentially focused in
enhancing standard query languages with a new operator enabling to return the most preferred tuples
according to a given preference ordering.

The skyline queries introduced in [Borzsonyi et al. 2001] and more generally, the pareto preference
queries [Kießling and Köstler 2002; Preisinger and Kießling 2007; Preisinger et al. 2006] are examples
of queries enhanced with a Best constructor returning the most preferred tuples. In [de Amo and
Ribeiro 2009], we introduced the preference query language CPref-SQL allowing to express a larger

We thank to the Brazilian Research Agencies CNPq and CAPES for supporting this work.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010, Pages 503–518.

504 · F. S. F. Pereira and S. de Amo

class of user preferences, which we called conditional preference queries. Conditional preference queries
(cp-queries for short) involve a more sophisticated notion of preference between tuples. Cp-queries
differ from the skyline queries [Borzsonyi et al. 2001] and the more general pareto queries [Papadias
et al. 2005; Yiu and Mamoulis 2007; Kießling and Köstler 2002] mainly on the following aspect: local
preferences over attribute values are not absolute, that is, they depend on how other attributes are
instantiated.

In [de Amo and Ribeiro 2009], a Select-Best operator has been proposed in this new database
preference context as well as the algorithm BNL∗ to evaluate it. The main goal of this initial work was
to introduce the new query language and a first method for evaluating it. No implementation of BNL∗

has been proposed then. In this paper we propose the algorithm BNL∗∗ for evaluating the Select-

Best operator. As the former BNL∗ algorithm, BNL∗∗ follows a Block Nested Looping strategy, but
differs from BNL∗ in the way it performs the dominance test between two tuples.

As it was pointed out by different authors [Yiu and Mamoulis 2007; Hristidis et al. 2001; Papadias
et al. 2005], the size of the set of the most preferred tuples cannot be controlled by the user. Con-
sequently, two drawbacks arise immediately: (1) The preference rules specified by the users may be
too restrictive, and so the set of the most preferred tuples may contain very few tuples. It would
be interesting to provide mechanisms allowing to relax the user requirements in order to produce the
second most preferred tuples, and so on; (2) In some cases, the preference rules are too permissive,
and so the set of the most preferred tuples may be as large as the entire dataset. Consequently the
user will be faced up with a huge set of answers and will have to examine them in order to select
those which he regards as more relevant. In order to save the user this burden, it would be useful to
provide an operator which can produce a set of tuples which is reasonably interesting to the user and
whose size he can control.

In [Hristidis et al. 2001], the top-k queries have been introduced in a particular preference context,
where the tuples are ranked using a score function f , and a tuple t is said to be more preferred to
a tuple t′ if and only if f(t) > f(t′). So, the top-k queries return the k tuples with higher scores.
This approach is not always feasible in practice, since it depends on the user’s good will in providing
the tuples’ scores. In [Papadias et al. 2005], the top-k dominating queries have been introduced, in
the context of pareto queries, where the preference relation between tuples depends on the intrinsic
characteristic of the data (the attribute values of each tuple) instead of an external score function.
The top-k dominating queries return the set of tuples dominating the largest number of tuples in the
dataset. It is important to emphasize that top-k queries and top-k dominating queries are different
concepts and so may return different answers.

In this paper, we introduce the top-k conditional preference queries (top-k cp-queries) and the
SelectK-Best operator for evaluating these queries. SelectK-Best combines the functionalities of
the Top-N operator of [Carey and Kossman 1997] with a ranking strategy based on a topological sort
of the set of tuples, according to the preference hierarchy. The following motivating example aims at
illustrating our notion of top-k conditional preference queries.

A Motivating Example

A top-k cp-query incorporates the usual hard constraints (declared inside the WHERE clause) as well
as soft constraints specified by a set of preference rules (cp-rules for short). We present below a typical
example of such a query.

Example 1.1 Let us suppose we are given a database relation MOVIES storing information about
movies with attributes T (for Title), G (for Genre), D (for Director), Y (Year (decade)) and A (Actor).
The following statements express my preferences about movies: (1) I prefer those movies produced
in the 90’s rather than those produced in the 80’s, if both belongs to the same category (genre);
(2) For Woody Allen’s films (wa) of the same genre and decade, I prefer those staring the actress
Charlotte Rampling (cr) than those staring Mia Farrow (mf); (3) For the comedies produced in the

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 505

80’s I prefer those directed by Joel Cohen (jc) than those directed by Woody Allen (wa); (4) For the
movies produced in the 80’s I prefer dramas to comedies.

I would like to list 4 titles of the films which most fulfill my wishes among those stored in the
database, but I don’t want romances to figure in my list. The corresponding top-k cp-query is:

CREATE PREFERENCES MyPrefs FROM MOVIES AS
Y=90 > Y=80 [T,D,A] AND
IF D=wa THEN A=cr > A=mf [T] AND
IF G=comedy and Y=80 THEN D=jc > D=wa [T,A] AND
IF Y=80 THEN G=drama > G=comedy [T]

SELECT T FROM MOVIES
WHERE G <> romance

ACCORDING TO PREFERENCES (4, MyPrefs)

In this query, the hard constraint is G <> romance and the soft constraints are given by the
rules MyPrefs. Note that the parameter K = 4 also appear inside the clause ACCORDING TO
PREFERENCES, since it is part of the soft constraint expressed by the preference rules. In general,
if K is not specified the most preferred tuples will be returned. Notice that each rule r declared inside
the CREATE PREFERENCES statement is followed by a list of attributes within square brackets.
This declaration establishes a necessary condition for two tuples to be compared, namely: t1 and t2
can be compared using a rule r if t1[X] = t2[X] for each attribute not appearing in the corresponding
list inside square brackets. For the attributes outside brackets, the ceteris paribus (all else being
equal) semantics of [Boutilier et al. 2004] is considered. Notice for instance that in the first rule, the
attribute G does not appear between brackets. This means that in order to compare two tuples t1
and t2 they both must coincide in the attribute G (category), following the condition established in
statement (1). Thus, the declaration of a set of attributes between brackets gives more flexibility to
the preference order semantics.

The evaluation of the SelectK-Best involves the evaluation of the most preferred tuples first.
This task is achieved by the Select-Best operator. The semantics of this operator is the same as
the winnow operator of [Chomicki 2003], returning the tuples which are not dominated by others.
It is well known that such an operator does not enhance the expressive power of SQL, since it can
be expressed in relational algebra [Chomicki 2003], by means of a re-writing procedure responsible to
translate preference queries into a standard SQL-compliant query, after proper creation of a temporary
relation [Kießling and Köstler 2002]. So, a first approach to implement the cp-queries is simply by
translating them into a SQL query.

On the other hand, an explicit definition of Select-Best enables us to separate preference issues
from the other aspects of the query, allowing to design specific and efficient algorithms to implement
this operator. Following this line, the most common approach for preference evaluation in database
systems is the on-top approach [Chan et al. 2005a; 2005b; Preisinger and Kießling 2007; Preisinger
et al. 2006; Lin et al. 2007; Yiu and Mamoulis 2007; 2009]. In this approach the preference operator
is evaluated as a user-defined function and its evaluation is completely separated from the database.
So, it does not interact with the other internal operations involved in the SQL query execution plans
(selections, joins, projections). The advantage of this approach relies on its simplicity. Nevertheless,
its efficiency is not guaranteed, since it does not interact with the internal execution plan and so,
cannot be treated by the query optimizer.

A more efficient approach for preference evaluation is the built-in approach where the algorithms
for preference evaluation are implemented in the core of the database system. This approach has
been used in several recent works dedicated to the preference evaluation topic [Borzsonyi et al. 2001;
I.F.Ilyas et al. 2004] and its efficiency over the on-top approach is undoubtedly proved. Indeed, as

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

506 · F. S. F. Pereira and S. de Amo

far as preference queries are concerned, the design of efficient evaluation methods are essential in
real-world applications, where users are often not disposed to wait a longtime for an answer. For
that reason, in this paper we chose to follow the built-in approach for evaluating the top-k cp-queries.
We present the algorithms BNL∗∗ and R-BNL∗∗ (Ranked BNL∗∗) to evaluate the Select-Best and
SelectK-Best operators respectively as well as their implementations inside the PostgreSQL query
processor.

Main Contributions. The main contributions of this paper can be summarized as follows: (1)
The introduction of the top-k conditional preference queries (top-k cp-queries); (2) The design of the
algorithms BNL∗∗ and R-BNL∗∗ for evaluating cp-queries and top-k cp-queries respectively; (3) The
implementation of both algorithms in the core of the PostgreSQL database system (4) an exhaustive
set of experiments comparing top-k cp-queries implemented according to our built-in approach and
their standard SQL counterpart.

Organization of the Paper. This paper is organized as follows. In Section 2, we discuss some
related work. In Section 3, we briefly present the logic formalism introduced in [Wilson 2004] for
specifying and reasoning with conditional preferences which constitutes a necessary background for
our work. We also present in this section the syntax and semantics of the core CPref-SQL algebra
which extends the relational algebra with the Select-Best and SelectK-Best operators. Section
4, we present the algorithms BNL∗∗ and R-BNL∗∗ for evaluating the CPref-SQL operators Select-

Best and SelectK-Best respectively. In Section 5, we present and discuss the experimental results,
comparing our built-in approach for top-k cp-query evaluation and the approach using standard SQL
queries. Finally, in Section 6 we conclude the paper and discuss our future work.

2. RELATED WORK

Preference Modeling and Reasoning. The research literature on preference modelling, reasoning
and eliciting is extensive. The approach of CP-Nets [Boutilier et al. 2004] uses a very simple graphical
model which captures users qualitative conditional preference over tuples, under a ceteris paribus
semantics. The approach of TCP-Nets [Brafman et al. 2006] generalizes the CP-Nets by introducing
the ability of expressing absolute and relative importance of object attributes. In this paper, we use the
approach introduced in [Wilson 2004] for specifying soft constraints inside a CPref-SQL query. This
approach uses a logical framework for expressing conditional preference statements. It generalizes the
CP-Nets, by relaxing the ceteris paribus semantics and allowing more expressiveness, and is orthogonal
to TCP-Nets.

Extensions of SQL with Preference Support. In the database area, the problem of enhancing
well-known query languages with preference features has been tackled in several recent and important
work in the area. A pioneer work concerns the skyline operator introduced in [Borzsonyi et al. 2001].
In [Chomicki 2003], a simple logical framework is proposed for expressing preferences by preference
formulae. These formulae are incorporated into the Relational Algebra and into SQL, through the
operator winnow parameterized by a preference formula. [Kießling and Köstler 2002] introduced
Preference SQL which extends SQL with some built-in base preference constructors and a pareto
accumulation and a prioritized accumulation constructors. The optimizer uses an efficient rewriting
procedure which transforms preference queries into standard SQL queries.

The work presented in [Endres and Kießling 2006] is close to ours in the sense that it also proposes
a bridge between the treatment of preferences in the AI and DB communities, by transforming the
TCP-Net queries of [Brafman et al. 2006] into preference database queries. No algorithm for selecting
the best tuples has been proposed neither in [Endres and Kießling 2006] neither in further work (to
the best of our knowledge).

Algorithms for Preference Query Evaluation. The topic of preference query evaluation has been
extensively studied in the literature, in the context of pareto and skyline queries. In [Borzsonyi et al.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 507

2001], the basic BNL (block-nested loop) algorithm has been introduced for evaluating skyline queries.
Other skyline algorithms have also been presented in this paper, using B-trees and R-trees indexing.
In [Chomicki 2003], the algorithm SFS (sort-filter-skyline) has been proposed which outperforms the
BNL algorithm for skyline queries evaluation. It explores the idea of sorting the tuples according to
a score function. It is known that for any monotone score function f : Tuples → R, if p ∈ Tuples
maximizes f then p is a skyline point (most preferred). For more details on skyline with presorting,
see [Chomicki et al. 2005].

In [Chan et al. 2005a], the algorithm BNL+ for pareto query evaluation was introduced. In this
more general setting, the domain of the attribute values are partially ordered 1. In [Preisinger et al.
2006], the authors proposed the algorithm BNL++ for pareto query evaluation in a particular case,
where the ordering over the attribute domains is a weak order2. This implies nice properties in the
better-than graph, which are not verified in the general setting of the algorithm BNL+ of [Chan et al.
2005a]. Due to these nice properties, BNL++ is able to identify some important pruning conditions
in the better-than graph, which results in a far better performance when compared to the BNL and
BNL+ algorithms. Further improvements of the BNL algorithm, in the context of pareto queries
evaluation, were achieved in [Chan et al. 2005b] (algorithms BBS+, SDC and SDC+).

The algorithm BNL∗ we proposed in [de Amo and Ribeiro 2009] for evaluating the Select-Best

operator in the context of cp-queries follows the lines of the BNL algorithm and uses the technique
introduced in [Agrawal et al. 1989] for transitive closure evaluation. This algorithm has not been
implemented. The algorithm BNL∗∗ we propose in the present paper follows the lines of the BNL
algorithm as well. In this second proposal, it is coupled with a Datalog Program responsible for
effectuating the dominance test between two tuples.

Top-k Queries. The topic of introducing user control in order to bound the answer set has been
treated in the pioneer work of [Carey and Kossman 1997], in the context of the Top N queries. A Top
N query returns the first N tuples according to the ordering they appear in the database. In [Hristidis
et al. 2001] the top-k queries have been introduced in a quantitative preference model setting, that
is, where preference betweeen tuples is expressed by a score function defined over the dataset. The
top-k dominating queries have been introduced in [Papadias et al. 2005] as an extension of the skyline
queries of [Borzsonyi et al. 2001] which were originally designed to return the most preferred tuples,
without any user control on the size of the result. A top-k dominating query returns the k tuples which
dominated the maximum amount of tuples in the database. This concept is orthogonal to the skyline
and pareto queries, as well as to our cp-queries. In [Papadias et al. 2005] the authors propose the
algorithm BBS (Branch and Bound Skyline) based on nearest-neighbor search on multidimensional
access methods for evaluating the top-k dominating queries. In [Yiu and Mamoulis 2007; 2009], a
set of algorithms are introduced for top-k dominating queries which significantly outperforms the
algorithm BBS of [Papadias et al. 2005].

3. CONDITIONAL PREFERENCE QUERIES

This section aims at presenting the CPref-SQL query language with support to conditional preferences.
First of all, we introduce the preference model underlying CPref-SQL in Section 3.1, as presented in
[de Amo and Ribeiro 2009]. After that, in Section 3.2 we introduce the preference algebra underlying
the language, focusing on the new operator SelectK-Best , that is proposed in this paper.

3.1 The Preference Model

We start by briefly presenting the main concepts and results of [Wilson 2004] concerning a logical
formalism for specifying and reasoning with preferences. Let R(A1, A2, ..., An) be a relational schema.

1In the more specific case of the skyline queries, the domain of the attribute values are totally ordered.
2A strict partial order ≻ over a set C is called a weak order if it satisfies the antitransitivity property: for all a, b, c ∈ C,
if a 6≻ b and b 6≻ c then a 6≻ c.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

508 · F. S. F. Pereira and S. de Amo

For each attribute A ∈ R, let dom(A) be the finite set of values of A (the domain of A). The set
Tup(R)= dom(A1) × dom(A2) × ... × dom(An) is the set of all possible tuples over R.

Let L be a set of statements of the form ϕ: u → (A = a) > (A = a′)[W], where u is a formula
(Ai1 = a1) ∧ ... ∧ (Aik = ak), with Aij ∈ R − {A} and aj ∈ dom(Aij) for all j ∈ {1, ..., k}, a, a′ ∈
dom(A), and W ⊆ R − {A,Ai1 , ..., Aik}. Such statements are called conditional preference rules or
cp-rules for short. The formula u is called the condition of the cp-rule ϕ. The set of attributes
appearing in u is denoted by Attr(u). A conditional preference theory (cp-theory) over R is a finite
set of statements of L.

A conditional preference theory Γ over R induces a preference ordering over Tup(R) as follows:

Definition 3.1 (Preference order) Let ϕ : u → (A = a) > (A = a′)[W] ∈ Γ. Let t = (b, c, a,w)
and t’ = (b, c, a′,w’) ∈ Tup(R), where b is a tuple over Attr(u) satisfying the formula u, c is a tuple
over R − (Attr(u)∪W ∪{A}), w and w’ are tuples over W . We say that t is preferred to t’ according
to ϕ. The set of pairs of tuples (t, t’) where t is preferred to t’ according to ϕ is denoted by >ϕ. We
denote by >Γ the transitive closure of the binary relation

⋃
ϕ∈Γ >ϕ.

For each cp-rule ϕ the induced preference order >ϕ has a ceteris paribus (“everything else equal”)
semantics with respect to the attributes in R− ({A} ∪W). That is, tuples having different values for
attributes not in R − (W ∪ {A}) are incomparable according to >ϕ.

Example 3.1 Let MOVIES = {T,G,D, Y,A} as in Example 1.1 and let us consider the instance
of MOVIES described in Figure 1. For this relation, for instance, we have dom(G) = {c (comedy),
a (action), d (drama)}, dom(D) = {wa (Woody Allen),jc (Joel Cohen), jm (James Cameron)},
dom(Y) = {‘80’, ‘90’, ‘00’}, dom(A) = {mf (Mia Farrow), bp (Bill Paxton), cr (Charlotte Rampling),
...}. The cp-theory Γ = {ϕ1, ϕ2, ϕ3, ϕ4} expresses the user preferences of Example 1.1:

ϕ1: (Y = 90) > (Y = 80)[{T,D,A}],
ϕ2: (D = wa)→ (A = cr) > (A = mf)[{T}],
ϕ3: (G = c) ∧ (Y = 80)→ (D = jc) > (D = wa)[{T,A}].
ϕ4: (Y = 80)→ (G = d) > (G = c)[{T}].

TITLE GENRE YEARS DIRECTOR ACTOR

t1 Titanic drama 90 James Cameron Bill Paxton
t2 Stardust Memories drama 80 Woody Allen Charlotte Rampling
t3 New York Stories drama 80 Woody Allen Mia Farrow
t4 A Midsummer Night’s Sex Comedy comedy 80 Woody Allen Mia Farrow
t5 Crimewave comedy 80 Joel Coen Louise Lasser
t6 Avatar action 00 James Cameron Zoe Saldana

Fig. 1. An instance of relation MOVIES

The order induced on MOVIES by the cp-theory Γ is illustrated by the better-than-graph of Figure
2(a). In this figure, an arrow from t to t′ means that t > t′ (arrows obtained by transitive closure are
not shown in the figure). Note for instance that t1 > t2 according to rule ϕ1, t2 > t3 due to rule ϕ2,
and t1 > t3 by transitivity.

Conditional preference order versus Pareto preference order. From Definition 3.1 we can
infer two important facts: (1) each individual rule ϕ induces an ordering over the tuples where
local preferences over the attribute values of the tuples are not absolute, that is, they depend on
how other attributes are instantiated; (2) in order to test if two tuples t = (a1, a2, ..., an) and t′ =
(b1, b2, ..., bn) are comparable according to a cp-theory Γ = {ϕ1, ..., ϕk}, say t ≻Γ t

′, we must verify if
there exists a subset of Γ′ ⊆ Γ, Γ′ = {ψ1, ..., ψm}, and tuples s1, ..., sm−1 such that t >ψ1

s1, s1 >ψ2

s2, ... , sm−1 >ψm
t′

On the other hand, the pareto preference ordering � underlying the original skyline queries [Borzsonyi
et al. 2001], their generalized forms of [Papadias et al. 2005; Yiu and Mamoulis 2007] and the pareto
queries of [Chan et al. 2005a; 2005b; Kießling and Köstler 2002; Preisinger et al. 2006] is defined as

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 509

Fig. 2. (a) The better-than-graph for relation MOVIES. (b) The dependency graph of cp-theory Γ. (c) Execution plan
for a CPref-SQL block.

follows: t � t′ if there exists i ∈ {1, ..., n} such that ai > bi and for all j 6= i aj 6> bj . Notice that in
this case, the local preferences over the attribute values of the tuples are absolute: we compare values
of the ith attribute of t with the values of the corresponding ith attribute of t′.

Unlike pareto preference order, the preference order induced by a cp-theory is not necessarily a
strict partial order. As discussed in point (2) above, the conditional preference order is obtained by
taking the transitive closure of the union of the preference orders specified by each rule individually.
The result may be inconsistent, that is, it can be inferred that “I prefer X better than X” ! In fact,
>Γ may contain a pair (t, t), that is, >Γ does not necessarily satisfy irreflexibility. That is not the
case with the skyline and pareto queries: The result of pareto accumulation of weak orders over the
attribute domains is a strict partial order over the set of tuples (see [Chomicki 2003] for the proof).
So, consistency issues have to be carefully taken into account when dealing with cp-queries, since
irreflexivity of the preference ordering is not a desirable situation in a database context.

Consistency of a cp-theory. We say that a cp-theory Γ is consistent if and only if the induced
order >Γ is irreflexive. In [Wilson 2004], a sufficient condition for ensuring consistency of a cp-theory
is given. This condition involves testing the acyclicity of the dependency graph associated to the
cp-theory and its local consistency. The dependency graph G(Γ) = (V,E) associated to a cp-theory
Γ is defined as follows: V = {A | A is an attribute appearing in Γ}, E = {(A,B) | there exists a
cp-rule ϕ ∈ Γ such that A and B appear respectively in the left side and right side of ϕ or A and
B appear respectively in the right side and inside the brackets of ϕ}. For instance, the dependence
graph associated to our running example 3.1 is depicted in Figure 2(b). The issue of reasoning with
preferences (namely, the design of methods for testing rules consistency and methods for deducing
other preference relations from a base set of preference rules) is out of the scope of this paper. A
comprehensive study on this topic can be found in [Wilson 2004]. In this paper, we will suppose our
cp-theories are consistent. We have implemented the consistency test proposed in [Wilson 2004] in
order to guarantee that only consistent cp-rules may be specified by the CREATE PREFERENCES
statement. For more details about the consistency test algorithm and its complexity see [Wilson 2004].

In what follows, for the sake of simplifying the notation, we will omit the symbol Γ in the preference
ordering notation >Γ, assuming that cp-theory Γ is known in the context.

3.2 The CPref-SQL Query Language

In this section we introduce an algebraic operator that selects from a given relation the set of the top-k
tuples according to a given cp-theory Γ. We denote this operator by SelectK-BestΓ(K,R) or simply
SelectK-Best(K,R) where Γ is known in the context. Intuitively, SelectK-BestΓ(K,R) returns the
set of K tuples having the minimum number of tuples above them in the preference hierarchy. Besides
this new operator, our algebra includes also the Select-Best operator we introduced in [de Amo and

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

510 · F. S. F. Pereira and S. de Amo

Ribeiro 2009], which returns the most preferred tuples (those which are not dominated by others).

In order to define rigorously the semantics of the SelectK-Best operator, we introduce the notion
of level of a tuple t (denoted l(t)) according to cp-theory Γ.

Definition 3.2 (Levels) Let Γ be a cp-theory over the relational schema R(A1, ..., Am), r a database
instance over R and t a tuple ∈ r. The level of t (denoted l(t)) according to Γ is inductively defined
as follows:

if there is no t′ ∈ r such that t′ > t, we define l(t) = 0.

otherwise l(t) = max {l(t′) | t′ > t}+ 1 2

SelectK-Best(K, r) returns the set of K tuples with the smallest levels.

Example 3.2 Let us consider the relation MOVIES depicted in Figure 1 and the cp-theory Γ given
in Example 3.1. The preference ordering enforced by this cp-theory over the tuples in MOVIES is
depicted in the better-than-graph of Figure 2(a). We have: l(t1) = l(t5) = l(t6) = 0, l(t2) = 1,
l(t3) = max{l(t2), l(t1)}+ 1 = 2, l(t4) = max{l(t1), l(t2), l(t3), l(t5)}+ 1 = 3.

SelectK-Best(4,MOVIES) = {t1, t5, t6, t2}, SelectK-Best(2,MOVIES) = {t1, t5}. We remark
that l(t5) = l(t6) = 0, but t6 is not considered in the answer, since it comes after t5 in the relation
MOVIES.

Note that SelectK-Best(0,MOVIES) = ∅ and Select-Best(MOVIES) = {t1, t5, t6} which is the
set of the most preferred tuples, those which are not dominated. 2

It is easy to show that if t > t′ then l(t) < l(t′). The reverse implication does not hold3.

The CPref-SQL query language is an extension of the standard SQL with the two new preference
constructors Select-Best and SelectK-Best. The simple query block of CPref-SQL is given below.
Notice that hard and soft conditions are incorporated into a unique simple query block.

SELECT <attribute-list>

FROM <tables>

WHERE <where-conditions> (% hard conditions)
ACCORDING TO PREFERENCES [K] <list-of-cprules> (% soft conditions)
GROUP BY <attribute-list>

ORDER BY <attribute-list>

The parameter <list-of-cprules> inside the clause ACCORDING TO PREFERENCES is a list of cp-rules
declared in the forme IF ... THEN ..., each rule separated by the boolean connective AND. These
rules may be declared inside a CREATE PREFERENCES command (as illustrated in our running example
1.1). The canonical execution plan associated to a CPref-SQL block (without aggregate constructors)
is shown in Figure 2(c). σ, π and 1 denote the usual relational algebra operators Selection, Projection,
and Join respectively.

Definition 3.3 (Top-k cp-query) A top-k cp-query is a CPref-SQL query containing the
ACCORDING TO PREFERENCES clause. 2

We have implemented the consistent test proposed in [Wilson 2004] in order to prevent the user to
declare an inconsistent set of cp-rules. So, only consistent set of rules are allowed as parameter for
the ACCORDING TO PREFERENCES clause. The parameter K is a non-negative integer and is optional.
If K is not provided, the query is evaluated using the Select-Best operator and returns the set of
most preferred tuples, without specifying the size of this set. If K ≥ 0 is given, then the evaluation

3In fact, the reverse implication holds iff the preference ordering > is a weak order, which is not the case for the
preference ordering induced by a cp-theory.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 511

uses the SelectK-Best operator. For instance, the top-k cp-query (Definition 3.3) of Example 1.1
executed over the relation MOVIES depicted in Figure 1 returns {t1, t5, t6, t2} (according to the
better-than-graph illustrated in Figure 2(a)).

4. THE ALGORITHMS BNL∗∗ AND R-BNL∗∗

In this section we present the algorithms BNL∗∗ and R-BNL∗∗ for implementing the operators Select-

Best and SelectK-Best respectively. As remarked in Section 1, the new operators do not increase
the expressive power of SQL, since they can be translated into a SQL query. As a matter of fact, any
operator designed to produce the non-dominated tuples can be expressed in SQL ([Chomicki 2003]).
However, unlike the skyline queries and the pareto queries which can be expressed in the standard
SQL-92, our cp-queries goes beyond the expressive power of classical relational algebra, necessarily
involving recursion in its specification. That is due to the transitive closure operation involved in the
definition of the preference ordering associated to a cp-theory (this operation is not needed in the
skyline and pareto queries as explained in Section 3.1). The SQL:99 command corresponding to the
top-k cp-query of our running example 1.1 is described below.

CREATE OR REPLACE VIEW Rules (T, G, Y, D, A, tit, gen, yea, dir, act) AS

(SELECT * FROM MOV IES M, MOV IES M1

WHERE M.G=M1.G and M.Y=90 and M1.Y=80)

UNION

(SELECT * FROM MOV IES M, MOV IES M1

WHERE M.Y=M1.Y and M.G=M1.G and M.D=wa and M1.D=wa and M.A=cr and M1.A=mf)

UNION

(SELECT * FROM MOV IES M, MOV IES M1

WHERE M.G=comedy and M1.G=comedy and M.Y=80 and M1.Y=80 and M.D=jc and M1.D=wa)

UNION

(SELECT * FROM MOV IES M, MOV IES M1

WHERE M.G=drama and M1.G=comedy and M.Y=80 and M1.Y=80 and M.D=M1.D and M.A=M1.A);

WITH RECURSIVE Recursion (tit, gen, yea, dir, act, T, G, Y, D, A) AS (

(SELECT * FROM Rules)

UNION

(SELECT M.T, M.G, M.Y, M.D, M.A, R.T, R.G, R.Y, R.D, R.A

FROM Rules M, Recursion R

WHERE M.tit=R.tit and M.gen=R.gen and M.yea=R.yea and M.dir=R.dir and M.act=R.act))

SELECT * FROM MOV IES WHERE G <> romance

EXCEPT

SELECT R.T, R.G, R.Y, R.D, R.A FROM Recursion R;

4.1 The algorithm BNL∗∗

Before presenting the algorithm BNL∗∗, we will discuss one essential point of its code, the dominance
test. The Dominance Problem is stated as follows: Given a cp-theory Γ over a relational schema
R = (A1, ..., An) and two tuples t1 and t2 over R, decide if t1 >Γ t2. We remind that t1 may
dominate t2 because this is directly inferred from a particular cp-rule in Γ, or because this is inferred
by transitivity. The dominance test establishes a preference order between t1 and t2 (see Definition
3.1).

Thus, we implemented a Datalog Program which is responsible for executing the dominance test.
The program is built in the following way:

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

512 · F. S. F. Pereira and S. de Amo

(1) for each cp-rule r ∈ Γ: Ai1 = a1 ∧ ... ∧ Aik = ak → Aj = b1 > Aj = b2[Aj1 , ..., Ajm], we associate
a Horn clause pr:

pref(x1, ..., xn, y1, ..., yn) ← xi1 = a1, yi1 = a1, ..., xik = ak, yik = ak, xj = b1, yj = b2, xk1 =
yk1 , ..., xkl

= ykl
,

where j 6∈ i1, ..., ik, the sets {j, i1, ..., ik}, {j1, ..., jm}, {k1, ..., kl} are disjoints and their union is
{1, ..., n}.

(2) we consider two last Horn clauses, responsible for the transitive closure:

dom(x1, ..., xn, y1, ..., yn)← pref(x1, ..., xn, y1, ..., yn)
dom(x1, ..., xn, y1, ..., yn)← pref(x1, ..., xn, z1, ..., zn), dom(z1, ..., zn, y1, ..., yn)

The test “t1 = (a1, ...an) >Γ t2 = (b1, ..., bn) ?” is achieved by executing the goal ←
dom(a1, ..., an, b1, ..., bn). In order to simplify the dominance test, one can project the tuples t1 and
t2 over a set V of attributes as follows: Let Γ = {ϕ1, ..., ϕp}, and for each j ∈ {1, ..., p} let Wj be the
set of attributes between brackets in ϕj . Let V = Attr(R) -

⋂p
1 Wj . Let t′1 = t1[V], t′2 = t2[V]. Then,

it is easy to see that t1 >Γ t2 iff t′1 >Γ t′2, since for each j ∈ {1, ..., p} the values of the attributes
A ∈Wj are not taken into account when comparing t1 and t2 using the cp-rule ϕj .

Let us illustrate the dominance test in our running example:

Example 4.1 Let Γ be the cp-theory of Example 3.1. We have W1 ∩W2 ∩W3 ∩W4 = {T,D,A} ∩
{T} ∩ {T,A} ∩ {T} = {T}. So V = {G,D, Y,A}. Let us consider the tuples t2 and t4 of
relation MOVIES of Figure 1. So, it suffices to compare t2[V] and t4[V] by asking the goal
dom(drama, 80, wa, cr, comedy, 80, wa,mf) to the Datalog Program associated to Γ:

pref(g1, y1, d1, a1, g2, y2, d2, a2)← g1 = g2, y1 = 90, y2 = 80

pref(g1, y1, d1, a1, g2, y2, d2, a2)← d1 = ’wa’, d2 = d1, a1 = ’cr’, a2 = ’mf ’, g1 = g2, y1 = y2

pref(g1, y1, d1, a1, g2, y2, d2, a2)← g1 = ’comedy’, g2 = g1, y1 = 80, y2 = y1, d1 = ’jc’, d2 = ’wa’

pref(g1, y1, d1, a1, g2, y2, d2, a2)← y1 = 80, y2 = y1, g1 = ’drama’, g2 = ’comedy’, d1 = d2, a1 = a2

dom(g1, y1, d1, a1, g2, y2, d2, a2)← pref(g1, y1, d1, a1, g2, y2, d2, a2)

dom(g1, y1, d1, a1, g2, y2, d2, a2)← pref(g1, y1, d1, a1, g3, y3, d3, a3), dom(g3, y3, d3, a3, g2, y2, d2, a2)

The answer is ‘yes’. 2

The algorithm BNL∗∗ implementing the Select-Best is presented in Figure 3. The main procedure
MostPref(r) returns the most preferred tuples of the relation r. We note that BNL∗∗ employs the
Block Nested Looping strategy of the BNL algorithm of [Borzsonyi et al. 2001]. The essential part
of the algorithm is the dominance test. The dominance test is invoked in each “dominated by” and
“dominates” calls of the procedure MostPref (r). Let us illustrate the execution of BNL∗∗ over our
MOVIES instance r given in Figure 1. In order to illustrate all the stages of the algorithm (specially
when the buffer is full), we suppose that the in-memory page W can store only two tuples.

t1 is inserted into W , by step 7. So, W = {t1}.
t2 is dominated by t1 ∈W . So, t2 is discarded, by step 5.
t3 is dominated by t1 ∈W . So, t3 is discarded, by step 5.
t4 is dominated by t1 ∈W . So, t4 is discarded, by step 5.
t5 is incomparable with t1 ∈W . So, t5 is inserted into W , by step 7: W = {t1, t5}.
t6 is incomparable with t1, t5 ∈W . Since W is full, F = {t6}, by step 7.
By step 8: S := W , W := ∅ and F = {t6} is the new input. The execution returns to Step 4.
t6 is inserted into W , by step 7.
By step 8: S := S ∪W and F = ∅.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 513

MostPref(r) :
Input: a set r of tuples
Output: A set S containing the most preferred tuples of r

1: Clear the in-memory page W and the temporary table F
2: make r the input
3: while the input is not empty do

4: for all tuple t in the input do

5: if t is dominated by a tuple in W then ignore t
6: if t dominates some tuples in W then elminate the dominated tuples and insert t into W
7: if t is incomparable with all tuples in W then insert t into W if there is room, otherwise add t to F

8: insert in S the tuples of W which were added there when F was empty
9: make F the input, clear the temporary table

10: return S

Fig. 3. Algorithm BNL∗∗

By step 9: F = ∅ is the new input.
As the input is empty, the execution stops and returns S = {t1, t5, t6}.

So the most preferred tuples are t1, t5, t6.

4.2 The algorithm R-BNL∗∗

The SelectK-Best operator is implemented by the algorithm R-BNL∗∗ (Ranked BNL∗∗), through
the procedure Top(r,K). The algorithm is described in Figure 4. Remark that R-BNL∗∗ produces
the most preferred tuples of relation r by calling Top(r,−1).

Top(r,K) :
Input: a set r of tuples, a number K ≥ −1
Output: For K = −1: a set S containing the most preferred tuples of r

For K ≥ 0: a set S containing the K top-k less dominated tuples of r

1: if K = −1 then

2: S = MostPref (r)
3: else if K = 0 then

4: S = ∅
5: else if K > 0 then

6: S′ = topK(r)
7: S = ∅
8: currentLevel = 0
9: while |S| < K and |S| < |S′| do

10: for every tuple t in S′ do

11: if l(t) = currentLevel then //l(t) = max({l(s) | s ∈ MorePref(t)}) + 1
12: S = S ∪ {t}

13: currentLevel = currentLevel + 1

14: return S

Fig. 4. Algorithm R-BNL∗∗

topK(r) :

1: Clear the in-memory page W and the temporary table F
2: make r the input
3: while the input is not empty do

4: for all tuple t in the input do

5: for all tuple t′ in W do

6: if t is dominated by t′ then add t′ into MorePref(t)
7: if t dominates t′ then add t into MorePref(t′)

8: insert t into W if there is room, otherwise add t to F

9: insert in S the tuples of W
10: make F the input, clear the temporary table

11: return S

Fig. 5. Algorithm topK

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

514 · F. S. F. Pereira and S. de Amo

Let us first illustrate the execution of Top(r,4), where r is given in Figure 1. Again, we suppose
that the in-memory page W can store only two tuples. At step 4, the procedure topK(r) is called.
Notice that the dominance test is also invoked for each “dominated by” and “dominates” calls from
procedure topK (r). It is responsible for evaluating the list MorePref(ti) of each tuple ti in the input
r. MorePref(ti) is the list of all tuples tj ∈ r that dominates ti, i.e., MorePref(ti) = {tj ∈ r | tj > ti}.
After obtaining the lists MorePref(ti) for each ti ∈ r, the second step of the algorithm scans r to get
the K tuples with lowest levels (top-k less dominated). Remind (see Definition 3.2) that the level of
a tuple ti is computed as:
l(ti) = 0, for MorePref(ti) = ∅
l(ti) = max({l(tj) | tj ∈ MorePref(ti)}) + 1, for MorePref(ti) 6= ∅

At step 6, the procedure topK(r) is called. Its execution is described below.

t1 is inserted into W , by step 8. So, W = {t1}.
t2 is dominated by t1 ∈W . So, by step 6, MorePref(t2) = [t1] and W = {t1, t2} at step 8.
t3 is dominated by t1, t2 ∈W . So, by step 6, MorePref(t3) = [t1, t2]. Since W is full, F = {t3} at
step 8.
t4 is dominated by t1, t2 ∈W . So, by step 6, MorePref(t4) = [t1, t2]. By step 8, F = {t3, t4}.
t5 is incomparable with t1, t2 ∈W . So, by step 8, F = {t3, t4, t5}.
t6 is incomparable with t1, t2 ∈W . So, by step 8, F = {t3, t4, t5, t6}.
By step 9: S := W .
By step 10: W := ∅ and F = {t3, t4, t5, t6} is the new input. The execution returns to step 4.
t3 is inserted into W , by step 8. So, W = {t3}.
t4 is dominated by t3 ∈W . So, by step 6, MorePref(t4) = [t1, t2, t3] and W = {t3, t4} at step 8.
t5 dominates t4. So, by step 6, MorePref(t4) = [t1, t2, t3, t5]. Since W is full, F = {t5}, by step 8 .
t6 is incomparable with t3, t4 ∈W . So, F = {t5, t6} at step 8.
By step 9: S := S ∪W .
By step 10: W := ∅ and F = {t5, t6} is the new input. The execution returns to step 4.
t5 is inserted into W , by step 8.
t6 is incomparable with t5 ∈W . So, by step 8, W = {t5, t6}.
By step 9: S := S ∪W .
By step 10: F = ∅ is the new input.
Since the input is empty, S := {t1, t2, t3, t4, t5, t6} with their respective MorePref lists.

The next steps of the execution of Top(r,4) are illustrated below.

At step 6, S′ = {t1, t2, t3, t4, t5}, at step 7 S = ∅ and at step 8 currentLevel = 0.
level of t1 is computed, by step 11. So, l(t1) = 0 = currentLevel and S = {t1}, by step 12.
By step 11, l(t2) is computed: l(t2) = max(l(t1)) + 1 = 1. So, l(t2) 6= currentLevel.
By step 11, l(t3) is computed: l(t3) = max(l(t1), l(t2)) + 1 = 2. So, l(t3) 6= currentLevel.
By step 11, l(t4) is computed: l(t4) = max(l(t1), l(t2), l(t3), l(t5)) + 1 = 3 6= currentLevel.
l(t5) = 0 = currentLevel, by step 11. So, S = {t1, t5}, by step 12.
By step 11, l(t6) is computed: l(t6) = 0 = currentLevel and, by step 12: S = {t1, t5, t6}.
currentLevel = 1 at step 13. The execution returns to step 9.
At step 11, l(t2) = 1 = currentLevel. So, S = {t1, t5, t6, t2}, by step 12.
As |S| = K = 4, by step 9, the execution stops and returns S = {t1, t5, t6, t2}.

5. EXPERIMENTAL RESULTS

All the experiments have been performed on a 2.2GHz AMD Turion X2 Ultra Dual-Core PC, with
4GB of main memory, running Linux. We have used psql as front-end to PostgreSQL 8.4, connecting
to the server on a local host, to handle the queries. The source code of CPref-SQL can be downloaded
from http://www.lsi.ufu.br/downloads/cprefsql/.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 515

5.1 Experimental Environment

Datasets. The experiments have been performed using the TPC-H benchmark4. TPC-H is a specific
benchmark for ad-hoc querying workloads. Its schema consists of eight tables modelling a typical
retail environment. Tables such as customer, supplier, part and partsupp contain information about
items that retail companies buy from their suppliers and sell to their customers, while nation and
region are small tables containing only a few rows. These tables amount to about 15% of the total
database. The two largest tables, lineitem and orders contribute to the remaining 85% of the total
database size.

The TPC-H benchmark provides a dataset generator (dbgen) which creates tuples in the tables of
the TPC-schema, based on a scale factor SF5. The size of the tables, excepting tables nation and
region is proportional to the scale factor. The datasets used in our experiments were generated with
SF = 0.001, 0.005, 0.01, 0.05 and 0.1. Thus, the sizes of our datasets are 1MB, 5MB, 10MB, 50MB
and 100MB, respectively. The default database (DB-DEF) has size of 10MB.

Queries. We have adapted the benchmark queries to the preference context in order to use them
in our experiments. This adaptation has been achieved by using the following criteria: (a) removal of
aggregate functions since they are not supported by our current implementation of the Select-Best

and SelectK-Best operators; (b) insertion of the preference clause (ACCORDING TO PREFER-
ENCES) and (c) changes on the terms of the WHERE clause in order to vary the reduction factor
of the selection operation. The benchmark queries Q3, Q5, Q10 and Q18 we have considered in the
experiments enabled an expressive variation on the number of rows submitted to the preference oper-
ator. More precisely: 215, 2333, 5756 and 10606 tuples for queries Q3, Q5, Q10 and Q18 respectively.
Query Q5 was taken as the default one.

Preferences. The preference rules have been built by taking into account two main features:
the number of rules and the depth level. The antecedents of the preference rules considered in the
experiments are a boolean composition of two atomic formulas, that is, the rules are of the form
(A = a ∧ B = b → ...). The number of rules used in the experiments varies from 2 to 40 rules.
The depth level involves the interaction between the preference rules through transitive closure. For
instance, let Φ = {ϕ1, ϕ2}, where ϕ1: A = a1 ∧ C = c1 → B = b1 > B = b2 [E] and ϕ2 :
C = c1 ∧ D = d1 → B = b2 > B = b3 [E]. The depth level of Φ is 2, since the maximum length
of a path induced by the cp-rules is 2. A path induced by cp-rules is a preference order over tuples
induced by the composition of two or more cp-rules. Here, this path has the format (a1,b1,c1, d1,X) >
(a1,b2,c1, d1, Y) > (a1,b3,c1, d1, Z). The depth level of the cp-theories we have used in our experiments
varies from 1 to 6 levels.

The default cp-theory (prefDEF) has 6 rules and depth level 2. All the cp-theories were built over
the attributes of the eight tables of the TCP-H schema we considered.

Buffer Size. For queries execution, we have also taken into account the available main memory
buffer of the DBMS, which varied from 1MB to 28MB (the maximum allowed by the operational
system). The default size has been taken as 8MB.

5.2 Performance and Scalability

We have tested the performance and scalability of the Select-Best operator by comparing the top-k
cp-queries and their corresponding translations into standard SQL with recursion. We have also tested
the SelectK-Best operator by varying the K parameter in the ACCORDING TO PREFERENCES
clause of the benchmark queries. For this latter test, we did not compare the queries with their SQL

4http://www.tpc.org/tpch/
5The SF factor specifies the database size. For instance, if SF=1 then the size of the eight tables constituting the
dataset is 1GB.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

516 · F. S. F. Pereira and S. de Amo

counterpart, since the translation is rather cumbersome and the comparison tests would not bring
more information than that already obtained by testing the Select-Best operator (where K = -1).

Performance analysis. In Figure 6(a), we present the results of the experiments comparing the
performances of CPref-SQL and SQL when executing the query Q5, with 8MB of available main
memory. All the cp-rules have depth level 2 and the number of rules of the cp-theories considered
varies from 2 to 40 rules. Note that the performance of the SQL query decreases as the number of
rules increases. This can be explained as follows: as the number of rules increases more tuples can be
compared. So, the number of tuples returned by the MostPref procedure decreases (i.e. the possibility
for two tuples to be incomparable and both be most preferred is lower). If the most preferred tuples
fit into the window W of the MostPref procedure (see Figure 3), the algorithm terminates in one or
two iterations and so its complexity is O(n), where n is the size of the input. That is not the case
with the translated SQL query, involving a Join between the tables Rules and Recursion.

In Figure 6(b), we illustrate the behaviour of query executions when varying the depth level of the
cp-theories. This feature has a high impact on the performance of the translated query. As the depth
level increases, the table Recursion has more tuples, and so the performance of SQL Q5 decreases
(due to the Join operation between Rules and Recursion). As the recursion level and, consequently
the depth level increases, the performance of SQL decreases.

The preference features considered in Figures 6(a) and 6(b) show that the performances of SQL
and CPref-SQL depend on the selectivity factor of the rules, that is, the number of tuples returned by
the MostPref procedure. The number of rules and the depth level of the theory have a considerable
negative impact on SQL performance. On the other hand, the performance of CPref-SQL has not
been affected by varying these two parameters.

Fig. 6. Performance results

In Figure 6(c) we can see how the amount of available main memory affects the performance of

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Evaluation of Conditional Preference Queries · 517

the preference queries executions. We have varied the size of the main memory buffer from 1MB (1%
of the size of the database) to 28MB (this is the default RDBMS value and greater than 100% of
the size of the default database DB-DEF (10MB)). Clearly, the performance of the CPref-SQL query
presented a larger oscillation with respect to the available buffer, due the fact that the MostPref
procedure is directly affected by the size of the window W . Note that from 8MB on, the execution
time of CPref-SQL is nearly constant, since the most preferred tuples fit in main memory (inside the
window W).

We also tested the performance of top-k cp-queries by varying the parameter K (the desired amount
of preferred tuples) as shown in Figure 6(d). The performance of the R-BNL∗∗ is pratically unchanged
for different values of K > 0, since on average the algorithm scans only the half part of the relation
in order to obtain the K most preferred tuples. As expected, the performance is better for K = −1,
since for K > 0 the algorithm needs extra time to process the different levels.

Scalability results. Figure 7(a) shows how both SQL and CPrefSQL queries scale when the size
of the database increases from 1MB to 100MB. Again, we notice that CPref-SQL is more efficient
than SQL. Clearly, the amount of most preferred tuples affects the behaviour of the queries. As this
amount increases, the performance of the SQL query decreases in a larger rate than the one of the
CPref-SQL query.

In Figure 7(b) we can see the behaviour of both query languages when varying the reduction factor
of the WHERE clause, that is the number of tuples directly submitted to the preference operator
(after the join and selection operations according to the canonical execution plan showed in Figure
2(c). As mentioned before, queries Q3, Q5, Q10 and Q18 return 215, 2333, 5756 and 10606 tuples
respectively when executed over the default database DB-DEF (10MB) without the preference clause.
The performance of CPref-SQL is far better than SQL performance. For instance, for query Q18
CPref-SQL executes 12 times faster than SQL. Note that as the number of tuples submitted to the
preference operator increases, the performance of SQL drastically decreases. This is not the case for
CPref-SQL. Its performance decreases in a very low rate.

Fig. 7. Scalability results

6. CONCLUSION AND FURTHER WORK

In this paper we have introduced the top-k cp-queries allowing user preferences to be taken into account
in the query answering process. We proposed the algorithms BNL∗∗ and R-BNL∗∗ for evaluating these
queries and implemented them in the core of the PostgreSQL query processor. Our experiments showed
a considerable better performance and scalability of our operators with respect to their corresponding
translation into standard SQL. Of course, a lot of work remains to be done. We intend to follow
four directions of research in the future, namely: (1) Improving the performance of the dominance
test. The complexity of BNL∗∗ is O(n2(n3 + n2.m)), where n is the size of the input relation r and

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

518 · F. S. F. Pereira and S. de Amo

m is the number of rules in the cp-theory. As n >> m, then this complexity is O(n5). In fact, the
dominance test (as implemented in BNL∗∗) has a high impact on the complexity of the algorithm.
The complexity of the MostPref procedure is O(n2.f(n,m)) in the worst case, where O(f(n,m)) is the
complexity of the dominance test. In our implementation of the dominance test, f(n,m) = n3 +n2.m.
We intend to employ more efficient techniques to implement the transitive closure. (2) Design of
index-based algorithms for evaluating the top-k cp-queries. (3) Incorporating aggregate operations in
the CPref-SQL block. (4) Implementing the algorithms under the approach on-top and compare the
performance with the built-in approach proposed in this paper.

REFERENCES

Agrawal, R., Borgida, A., and Jagadish, H. Efficient management of transitive relationships in large data and
knowledge bases. SIGMOD Record 18 (2): 253–262, 1989.

Borzsonyi, S., Kossmann, D., and Stocker, K. The skyline operator. In Proceedings of the International Conference
on Data Engineering. Washington, USA, pp. 412–430, 2001.

Boutilier, C., Brafman, R., Hoos, H., and D.Poole. Cp-nets: A tool for representing and reasoning about
conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21 (1): 135–191, 2004.

Brafman, R., Domshlak, C., and Shimony, S. E. On graphical modeling of preference and importance. Journal of
Artificial Intelligence Research 25 (1): 389–424, 2006.

Carey, M. and Kossman, D. On saying "enough already" in sql. SIGMOD Record 26 (2): 219–230, 1997.

Chan, C.-Y., Eng, P.-K., and Tan, K.-L. Efficient processing of skyline queries with partially-ordered domains. In
Proceedings of the International Conference on Data Engineering. Washington, USA, pp. 190–191, 2005a.

Chan, C.-Y., Eng, P.-K., and Tan, K.-L. Stratified computation of skylines with partially-ordered domains. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. New York, USA, pp. 203–214,
2005b.

Chomicki, J. Preference formulas in relational queries. ACM Trans. on Database Systems 28 (4): 427–466, 2003.

Chomicki, J., Godfrey, P., Gryz, J., and Liang, D. Skyline with presorting: Theory and optimizations. In
Proceedings of the Intelligent Information Systems Conference. Gdansk, Poland, pp. 595–604, 2005.

de Amo, S. and Ribeiro, M. R. Cpref-sql: A query language supporting conditional preferences. In Proceedings of
the Annual ACM Symposium on Applied Computing. Honolulu, USA, pp. 1573–1577, 2009.

Endres, M. and Kießling, W. Transformation of tcp-net queries into preference database queries. In Proceedings
of the Multidisciplinary Workshop on Advances in Preference Handling. Riva del Garda, Italy, pp. 23–30, 2006.

Hristidis, V., Koudas, N., and Papakonstantinou, Y. Prefer: A system for the efficient execution of multi-
parametric ranked queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
Santa Barbara, USA, pp. 259–270, 2001.

I.F.Ilyas, Aref, W., and Elmagarmid, A. Supporting top-k join queries in relational databases. The VLDB
Journal 13 (3): 207–221, 2004.

Kießling, W. and Köstler, G. Preference sql - design, implementation, experiences. In Proceedings of the Inter-
national Conference on Very Large Data Bases. Hong Kong, China, pp. 990–1001, 2002.

Koutrika, G., Simitsis, A., and Ionnadis, Y. Précis: The essence of a query answer. In Proceedings of the
International Conference on Data Engineering. Atlanta, USA, pp. 69–78, 2006.

Lin, X., Yuan, Y., Zhang, Q., and Zhang, Y. Selecting stars: The k most representative skyline operator. In
Proceedings of the IEEE International Conference on Data Engineering. Istambul, Turkey, pp. 86–95, 2007.

Papadias, D., Tao, Y., Fu, G., and Seeger, B. Progressive skyline computation in database systems. ACM Trans.
Database Syst. 30 (1): 41–82, 2005.

Preisinger, T. and Kießling, W. The hexagon algorithm for pareto preference queries. In Proceedings of the
Multidisciplinary Workshop on Advances in Preference Handling. Vienna, Austria, 2007.

Preisinger, T., Kießling, W., and Endres, M. The bnl++ algorithm for evaluating pareto preference queries.
In Proceedings of the Multidisciplinary Workshop on Advances in Preference Handling. Riva del Garda, Italy, pp.
114–121, 2006.

Wilson, N. Extending cp-nets with stronger conditional preference statements. In Proceedings of the National
Conference on Artifical Intelligence. San Jose, California, pp. 735–741, 2004.

Yiu, M. L. and Mamoulis, N. Efficient processing of top-k dominating queries on multi-dimensional data. In
Proceedings of the International Conference on Very Large Data Bases. Vienna, Austria, pp. 483–494, 2007.

Yiu, M. L. and Mamoulis, N. Multi-dimensional top-k dominating queries. The VLDB Journal 18 (3): 695–718,
2009.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

