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Abstract. Most existing learning to rank methods neglect query-sensitive information while producing functions to
estimate the relevance of documents (i.e., all examples in the training data are treated indistinctly, no matter the query
associated with them). This is counter-intuitive, since the relevance of a document depends on the query context (i.e.,

the same document may have different relevances, depending on the query associated with it). In this paper we show
that query-sensitive information is of paramount importance for improving ranking performance. We present novel
learning to rank methods. These methods use rules associating document features to relevance levels as building blocks
to produce ranking functions. Such rules may have different scopes: global rules (which do not exploit query-sensitive

information) and query-level rules. Firstly, we discuss a basic method, RE-GR (Relevance Estimation using Global
Rules), which neglects any query-sensitive information, and uses global rules to produce a single ranking function.
Then, we propose methods that effectively exploit query-sensitive information in order to improve ranking performance.

The RE-SR method (Relevance Estimation using Stable Rules), produces a single ranking function using stable rules,
which are rules carrying (almost) the same information no matter the query context. The RE-QR method (Relevance
Estimation using Query-level Rules), is much finer-grained. It uses query-level rules to produce multiple query-level
functions. The estimates provided by such query-level functions are combined according to the competence of each
function (i.e., a measure of how close the estimate provided by a query-level function is to the true relevance of the
document). We conducted a systematic empirical evaluation using the LETOR 4.0 benchmark collections. We show that
the proposed methods outperform state-of-the-art learning to rank methods in most of the subsets, with gains ranging
from 2% to 9%. We further show that RE-SR and RE-QR, which use query-sensitive information while producing

ranking functions, achieve superior ranking performance when compared to RE-GR.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information Search and Retrieval; I.2.6 [Artificial
Intelligence]: Learning to Rank

Keywords: Competence, Ranking, Stability

1. INTRODUCTION

The ultimate goal of ranking methods is to achieve the best possible ranking performance for the problem
at hand. Recently, a body of empirical evidence has emerged suggesting that methods that learn to rank offer
substantial improvements in enough situations to be regarded as a relevant advance for applications that depend
on ranking. The conventional approach to this learning taskis to assume the availability of examples (i.e., a
training data with document features and the correspondingrelevance to specific queries), from which learning
functions can be learned. When a new query is given, the relevance of documents retrieved for this query
are estimated according to the learned function (i.e., thisfunction gives a score to a document indicating its
relevance to the query).

There are countless paradigms and strategies for devising learning to rank methods. Such methods usu-
ally rely on machine learning techniques, such as neural networks[Burges et al. 2005], genetic program-
ming[de Almeida et al. 2007] and support vector machines [Yue et al. 2007]. The use of association rules
has also shown to be valuable for learning ranking functions[Veloso et al. 2008]. The basic idea is to exploit
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combinations of document features which are truly associated with relevant/irrelevant documents. In this case,
the ranking function is essentially a set of rulesX −→ r, where each rule indicates an association between a set
of document featuresX and a relevance levelr. These rules are extracted from the training data and then their
predictions are combined in order to estimate the relevanceof documents.

In the simplest case, query-sensitive information is neglected while rules are extracted from the training data.
Specifically, cross-query and intra-query documents1 are treated indistinctly while extracting rules. Such rules
are calledglobal rules, and they naturally lead to a single ranking function. While this function truly reflects
the relationship between document features and relevance levels, query-context still provides additional and
important information for the sake of relevance estimation. Thus, taking query-sensitive information into
account while extracting rules from the training data may bea way of improving ranking performance.

In this paper we look at the problem of learning ranking functions from the perspective of query. We intro-
duce the concept ofquery-level rules, which have the formq ∧ X −→ r, whereq represents the query context.
Query-level rules capture query-sensitive information bydistinguishing cross-query documents from intra-
query documents, that is, only intra-query documents are considered while extracting query-level rules. We
use query-level rules to findstable rules. The predictions performed by stable rules do not change much across
different queries. Thus, their predictions are consideredvery reliable. Further, we also exploit query-level rules
to produce multiple (query-level) ranking functions.

We observed that, very often, some particular query-level functions provide extremely accurate relevance
estimates for specific documents (i.e., the estimate is veryclose to the true relevance). On the other hand, the
same functions also provide extremely poor estimates for other documents. While this implies that there is no
query-level function that can be safely used in isolation toestimate the relevance of all documents, this also
indicates that there is an optimal matching between documents and query-level functions. Obviously, knowing
this optimal matching would enable the assignment of specific functions to specific documents, and hopefully,
ranking performance would be drastically boosted. This would be great, except that the optimal matching is
unknown.

Fortunately, we further observed that there is a domain for which a certain query-level function is competent
(i.e., a set of documents, which often exhibit certain features, for which the function usually provides accu-
rate relevance estimates). This notion of competence makespossible to approximate the matching between
documents and query-level functions. With such approximation, estimates of each query-level function can be
combined in a way that maximizes the accuracy of the relevance estimation for each document.

1.1 Contributions

The specific contributions of this paper are summarized as follows:

—We show that query context is valuable information for the sake of improving ranking performance. We
introduce stable rules, which are rules that express (almost) the same information, no matter the query. These
rules are particularly interesting because they tend to be very reliable. We also introduce query-level rules,
which capture query-sensitive information in order to produce query-level functions. Relevance estimates
provided by different query-level functions are combined according to the competence of each query-level
function, resulting in a hybrid ranking function.

—We look at the problem of learning ranking functions from theperspective of query. We propose learning to
rank methods which are based on stable rules (RE-SR), and query-level rules (RE-QR).

—A deep evaluation of these methods, using the LETOR 4.0 benchmark, revealed that producing document-
specific ranking functions is, most of the times, beneficial.We show that the RE-QR method, which com-
bines query-level functions according to their competence, outperforms all baselines in most of the subsets
used, with gains in terms of MAP ranging from 2% to 9%.

1Cross-query documents are those associated with different queries. Intra-query documents are those associated with thesame query. In
Table I on Section 3,d1 andd2 are intra-query documents, whiled1 andd4 are cross-query documents.
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1.2 Organization

Related work is discussed in the next section. In Section 3 wediscuss the RE-GR basic method, which produces
a single ranking function using global rules. In Section 4 wepropose the RE-SR method (which produces
a single ranking function using stable rules), and the RE-QRmethod (which produces multiple query-level
functions using query-level rules). In Section 5 we demonstrate the effectiveness of the proposed methods
through a systematic set of experiments. Finally, in Section 6 we conclude the paper.

2. RELATED WORK

Many prior efforts have been devoted to exploit machine learning techniques in order to improve ranking
performance. Particularly noteworthy contributions include [Matveeva et al. 2006; Gao et al. 2005; Yue et al.
2007; Trotman 2005; Joachims 2002; Liu et al. 2007; Qin et al.2007; Xu and Li 2007; Burges et al. 2005; Cao
et al. 2007; Tsai et al. 2007; Cao et al. 2006; Xia et al. 2008; Cohen et al. 2008; Xu et al. 2008; Geng et al.
2008; Qin et al. 2008; Veloso et al. 2008; Qin et al. 2008].

According to Cao et al. [Cao et al. 2007], current learning torank methods fall into three categories: (i) point-
wise, (ii) pair-wise and (iii) list-wise approaches. In thepoint-wise approach [Nallapati 2004; Veloso et al.
2008], each training example is composed of a document and its corresponding relevance relative to a query.
The learning process tries to map document features into relevance estimates. In the pair-wise approach [Burges
et al. 2005; Freund et al. 2003; Joachims 2002; Tsai et al. 2007], each example is composed of pairs of
documents and the preference relation among them. In this case, the goal is to classify each pair into correctly
or incorrectly ranked categories. Finally, in the list-wise approach [Cao et al. 2007; Xu and Li 2007], a list of
documents are used as examples. A function is learned, and then used to sort documents.

Most of the existing learning to rank methods are designed under the conventional assumption that there is
a single distribution governing the relationship between inputs (i.e., documents) and outputs (i.e., relevance).
In practice, however, this is not a realistic assumption, mainly because the relevance of documents retrieved
for different queries (i.e., cross-query documents) are interpreted in different ways (i.e., a document which
is relevant for a given query, may be not relevant for anotherquery). Attempts to exploit query-sensitive
information include [Veloso et al. 2008], where the authorsproposed to use query terms in order to produce
improved ranking functions. While query terms may carry valuable information, different queries may share the
same terms, and thus query terms are not appropriate to definequery-context (i.e., similar documents retrieved
for queries that share terms, are still cross-query documents, and thus they may have very different relevances).
The necessity to employ different ranking functions depending on the query was also pointed in [Geng et al.
2008]. Further analysis about the use of query-sensitive information was presented in [Cohen et al. 2008].

In this paper we are also interested in learning to rank methods that exploit query-sensitive information
while estimating the relevance of documents. The proposed methods differ significantly from existing ones.
They are based on stable rules and query-level rules. Predictions performed by stable rules are very reliable,
and are shown to improve ranking performance. Predictions performed by query-level rules are combined in
a way that maximizes the accuracy of the estimates for each document. The proposed methods are intuitive
(easily understood using a set of illustrative examples), but also extremely effective, as will be shown in the
experiments.

3. LEARNING TO RANK USING GLOBAL RULES

In our context, the task of learning to rank is defined as follows. We have as input thetraining data(referred
to asD), which consists of a set of records of the form< q, d, rd >, whereq is a query,d is a document
(represented as a list ofm attribute-values or features{f1, f2, . . . , fm}), andrd is the relevanceof d to q.
Attributes include BM25, Page Rank, and many other documentproperties. The relevance of a document
draws its values from a discrete set of possibilities (e.g.,r0, r1, . . ., rk). The training data is used to build
functions relating features of the documents to their corresponding relevance. Thetest set(referred to asT )
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consists of records< q, d, ? > for which only the queryq and the documentd are known, while the relevance
of d to q is unknown. Ranking functions learned fromD are used to estimate the relevance of such documents
to the corresponding queries.

Ranking functions exploit the relationship between document features and relevance levels. This relationship

can be represented by association rules. We denote asR a rule-set composed of rules of the form{fj∧. . .∧fl
θ
−→

ri}. These rules can contain any mixture of the available features in the antecedent and a relevance level in the
consequent. The strength of the association between antecedent and consequent is measured by a statistic,θ,
which is known asconfidence[Agrawal et al. 1993] and is simply the conditional probability of the consequent
given the antecedent.

3.1 Demand-Driven Rule Extraction

The search space for rules is huge, and thus, computational cost restrictions must be imposed during rule
extraction. Typically, a minimum support threshold (σmin) is employed in order to select frequent rules (i.e.,
rules occurring at leastσmin times inD) from which the ranking function is produced. This strategy, although
simple, has some problems. Ifσmin is set too low, a large number of rules will be extracted fromD, and often
most of these rules are useless for estimating the relevanceof documents inT (a rule{X −→ ri} is only useful
to estimate the relevance of documentd ∈ T if the set of featuresX ⊆ d, otherwise the rule is meaningless to
d). On the other hand, ifσmin is set too high, some important rules will not be included inR, causing problems
if some documents inT contain rare features (i.e., features occurring less thanσmin times inD). Usually, there
is no optimal value forσmin, that is, there is no single value that ensures that only useful rules are included
in R, while at the same time important rules are not missed. The method to be proposed next deals with this
problem by extracting rules on a demand-driven basis.

Demand-driven rule extraction is delayed until a set of documents is retrieved for a given query inT . Then,
each individual documentd in T is used as a filter to remove irrelevant features and examplesfrom D. This
process produces a projected training data,Dd, which is obtained after removing all attribute-values notpresent
in d. Then, a specific rule-set,Rd extracted fromDd, is produced for each documentd in T .

LEMMA 3.1. All rules extracted fromDd (i.e.,Rd) are useful to estimaterd.

Proof:. Since all examples inDd contain only attribute-values that are present ind, the existence of a rule
{X −→ ri} ∈ Rd, such thatX * d, is impossible.�

THEOREM 3.2. The number of rules extracted fromDd increases polynomially with the number of distinct
attribute-values inD, no matter the value ofσmin.

Proof:. Let n be the number of distinct attribute-values inD. Obviously, the number of all rules is exponen-
tial in n (i.e., O(2n) rules). However, since an arbitrary documentd ∈ T contains at mostl attribute-values
(with l ≪ n), then any rule matchingd (i.e., an useful rule) can have at mostl attribute-values in its antecedent.
That is, for any rule{X −→ ri}, such thatX ⊆ d, |X | ≤ l. Consequently, forσmin ≈ 0, the number of possible
rules matchingd is k × (l +

(

l
2

)

+ . . . +
(

l
l

)

) = O(2l) ≪ O(nl), wherek is the number of distinct relevances.
Thus, the number of useful rules increases polynomialy inn. Since, according to Lemma 1, only useful rules
are extracted fromDd, then the number of rules extracted for all documents inT is O(|T | × nl). �

3.2 Relevance Estimation using Global Rules

In order to estimate the relevance of a documentd, it is necessary to combine all rules inRd. Our strategy

is to interpretRd as a poll, in which each rule{X
θ
−→ ri} ∈ Rd is a vote given by a set of featuresX for

relevance levelri. Votes have different weights, depending on the strength ofthe association they represent
(i.e.,θ). The weighted votes for relevance levelri are summed and then averaged (by the total number of rules
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in Rd that predict relevance levelri), forming the score associated with relevanceri for documentd, as shown
in Equation 1 (whereθ(X → ri) is the valueθ assumes for rule{X −→ ri}):

s(d, ri) =

∑

θ(X −→ ri)

| Rd |
, whereX ⊆ d (1)

Therefore, for a documentd, the score associated with relevanceri is given by the averageθ values of the
rules inRd predictingri. The likelihood ofd having a relevance levelri is obtained by normalizing the scores,
as expressed bŷp(ri|d), shown in Equation 2:

p̂(ri|d) =
s(d, ri)

k
∑

j=0

s(d, rj)

(2)

Finally, the relevance of documentd is estimated by a linear combination of the likelihoods associated with
each relevance level, as expressed by the ranking functionrank(d), which is shown in Equation 3:

rank(d) =
k

∑

i=0

(

ri × p̂(ri|d)
)

(3)

The value ofrank(d) is an estimate of the true relevance of documentd (i.e.,rd) usingp̂(ri|d). This estimate
ranges fromr0 to rk, wherer0 is the lowest relevance andrk is the highest one. Thus, bothrank(d) andrd

assume values in the same range. Relevance estimates are used to produce ranked lists of documents. This is
the strategy adopted by RE-GR.

Example.Table I shows an example whereD contains three queries. For each query, three documents are
retrieved, and each document is represented by three attributes− PageRank, BM25 andtf (in our experiments
we represented a document using many more attributes, but for simplicity we restricted this example to only
three attributes). Document features were obtained by discretizing these attributes (for this example, the bound-
aries of the intervals are merely illustrative). Suppose wewant to estimate the relevance ofd10. In this case,
the original training data is projected according tod10. resulting inDd10

, which is shown in Table II.

The following 4 rules are extracted fromDd10
:

(1) tf=[0.28-0.45]−→ r=0 (θ = 1.00)
(2) BM25=[0.36-0.55]−→ r=0 (θ = 0.50)
(3) BM25=[0.36-0.55]−→ r=1 (θ = 0.50)
(4) BM25=[0.36-0.55]∧ tf=[0.28-0.45]−→ r=0 (θ = 1.00)

The predictions of these rules are combined according to Equations 1 and 2, in order to producêp(ri|d10).
Finally, according to Equation 3,rank(d10)=0.37. Following the same process, we obtainrank(d11)=0.54
andrank(d12)=0.24.

4. LEARNING TO RANK USING STABLE AND QUERY-LEVEL RULES

Cross-query documents are usually interpreted in different ways, according to the query associated with them.
A document which is considered relevant for a certain query,may have similar documents that are not con-
sidered relevant for other queries. In this section we take query-context into account while extracting rules, in
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Retrieved Documents
Query id PageRank BM25 tf rd

d1 [0.85-0.92] [0.36-0.55] [0.23-0.27] 1
q1 d2 [0.74-0.84] [0.36-0.55] [0.23-0.27] 1

d3 [0.74-0.84] [0.56-0.70] [0.46-0.61] 0
d4 [0.93-1.00] [0.36-0.55] [0.46-0.61] 0

D q2 d5 [0.85-0.92] [0.56-0.70] [0.62-0.76] 1
d6 [0.74-0.84] [0.36-0.55] [0.28-0.45] 0
d7 [0.74-0.84] [0.22-0.35] [0.12-0.22] 0

q3 d8 [0.65-0.73] [0.56-0.70] [0.46-0.61] 0
d9 [0.85-0.92] [0.71-0.80] [0.46-0.61] 1

d10 [0.51-0.64] [0.36-0.55] [0.28-0.45] 0
T q4 d11 [0.85-0.92] [0.00-0.21] [0.46-0.61] 1

d12 [0.74-0.84] [0.56-0.70] [0.46-0.61] 0

Table I. Training Data and Test Set.

id PageRank BM25 tf rd

d1 − [0.36-0.55] − 1
Dd10

d2 − [0.36-0.55] − 1
d4 − [0.36-0.55] − 0
d6 − [0.36-0.55] [0.28-0.45] 0

Table II. Training Data projected according tod10.

order to improve ranking performance. The extracted rules (which are called query-level rules) have the form
{q ∧ X −→ ri}, whereq represents the query context. In the following sections we will discuss how to exploit
query-level rules to find stable rules, and how we use query-levels rules to estimate the relevance of documents.
For the discussion that follows we need to define query-context.

Definition 4.1. Query-Context: The context of a queryq is the set of all documents retrieved for this query.

4.1 Relevance Estimation using Stable Rules

A rule {X −→ ri} is said to be stable if the association betweenX andri does not change much across different
query contexts.

Definition 4.2. Rule Stability: A rule{X −→ ri} is stable, if:

∀qj , |θ(X −→ ri) − θ(qj ∧ X −→ ri)| ≤ φmin

The lowerφmin is, the more stable is the rule. Stable rules are particularly important because their predic-
tions tend to be very reliable. We denote asRφ the rule-set composed of stable rules. In order to estimate the
relevance of documentd, φ-stable rules are combined according to Equation 4. Then, Equations 2 and 3 are
used to estimaterd. This is the strategy adopted by RE-SR.

s(d, ri) =

∑

θ(X −→ ri)

| Rφ
d |

, whereX ⊆ d (4)
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Example.Suppose we want to estimate the relevance ofd11. If φmin=0.05, thenRφ
d11

is composed of the
following rules:

(1) PageRank=[0.85-0.92]−→ r=1 (θ=1.00,φ=0.00)
(2) PageRank=[0.85-0.92]∧tf=[0.46-0.61]−→ r=1 (θ=1.00,φ=0.00)

The predictions of these rules are combined in order to produce the function̂p(ri|d11), according to Equa-
tion 4. Finally, according to Equation 3,rank(d11)=1.00. Following the same process, we obtainrank(d10)=0.00.
No stable rules can be extracted fromD12, and, in this case, global rules are used to produce the ranking func-
tion.

4.2 Relevance Estimation using Query-Level Rules

A single ranking function,̂p(ri|d), is not likely to reflect the true relationship between documents and their
relevances. This is because the relevance of documents is not draw from a single distribution, but rather,
from several different distributions, depending on the context of each query. In this section we directly use
query-level rules to produce multiple query-level functions. Such functions take into account query-sensitive
information, as shown in Equations 5, 6 and 7:

s(q, d, ri) =

∑

θ(q ∧ X −→ ri)

| Rd |
, whereX ⊆ d (5)

p̂(ri|d, q) =
s(q, d, ri)

k
∑

j=0

s(q, d, rj)

(6)

rank(q, d) =

k
∑

i=0

(ri × p̂(ri|d, q)) (7)

Example.Suppose we want to estimate the relevance ofd12. The projected training data ford12 (i.e.,Dd12
)

is shown in Table III. The following 15 query-level rules areextracted fromDd12
:

(1) q1 ∧ BM25=[0.56-0.70]−→ r=0 (θ=1.00)
(2) q1 ∧ tf=[0.46-0.61]−→ r=0 (θ=1.00)
(3) q1 ∧ PageRank=[0.74-0.84]−→ r=1 (θ=0.50)
(4) q1 ∧ PageRank=[0.74-0.84]−→ r=0 (θ=0.50)
(5) q1 ∧ PageRank=[0.74-0.84]∧ BM25=[0.56-0.70]−→ r=0 (θ=1.00)
(6) q1 ∧ BM25=[0.56-0.70]∧ tf=[0.46-0.61]−→ r=0 (θ=1.00)
(7) q1 ∧ PageRank=[0.74-0.84]∧ tf=[0.46-0.61]−→ r=0 (θ=1.00)
(8) q2 ∧ BM25=[0.56-0.70]−→ r=1 (θ=1.00)
(9) q2 ∧ PageRank=[0.74-0.84]−→ r=0 (θ=1.00)
(10) q2 ∧ tf=[0.46-0.61]−→ r=0 (θ=1.00)
(11) q3 ∧ PageRank=[0.74-0.84]−→ r=0 (θ=1.00)
(12) q3 ∧ BM25=[0.56-0.70]−→ r=0 (θ=1.00)
(13) q3 ∧ BM25=[0.56-0.70]tf=[0.46-0.61]−→ r=0 (θ=1.00)
(14) q3 ∧ tf=[0.46-0.61]−→ r=0 (θ=0.50)
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Query id PageRank BM25 tf rd

q1 d2 [0.74-0.84] − − 1
d3 [0.74-0.84] [0.56-0.70] [0.46-0.61] 0
d4 − − [0.46-0.61] 0

Dd12
q2 d5 − [0.56-0.70] − 1

d6 [0.74-0.84] − − 0
d7 [0.74-0.84] − − 0

q3 d8 − [0.56-0.70] [0.46-0.61] 0
d9 − − [0.46-0.61] 1

Table III. Training Data projected according tod12.

(15) q3 ∧ tf=[0.46-0.61]−→ r=1 (θ=0.50)

Different query-level functions may provide different relevance estimates for the same document. For in-
stance,rank(q1, d12)=0.35,rank(q2, d12)=0.50, andrank(q3, d12)=0.36. This suggests that different query-
level functions are only able to accurately estimate the relevances of certain documents. The optimal matching
between functions and documents is valuable information. In the following we present an approach to estimate
such matching. We start by defining the ranking competence ofa function. Then, we discuss how to separate
documents that are competently ranked by a function from documents that are not.

Definition 4.3. Ranking Competence: The ranking competence of a function, which is denoted as∆(q, d),
is defined as:

∆(q, d) = |rank(q, d) − rd| (8)

The competence of a function with respect to a documentd, is essentially the discrepancy between the esti-
mated relevance ofd (i.e.,rank(q, d)) and the true relevance ofd (i.e.,rd). A query-level functionrank(qa, d)
is more competent than functionrank(qb, d) if ∆(qa, d) < ∆(qb, d).

The competence of a query-level function is novel information which may be used to enhance the original
training data,D. Specifically, for each documentd ∈ D, it is informed from which query-context it is produced
the most competent function for this document. This information is obtained by estimating the relevance of
each document inD. This process results in an enhanced training data, denotedasD∗. Initially, D∗ is empty.
At each iteration, documentd ∈ D along with the context of the most competent query-level function with
regard tod are inserted intoD∗. The process continues until all documents inD are inserted intoD∗, as shown
in Table IV.

Retrieved Documents Query
id PageRank BM25 tf Context

d1 [0.85-0.92] [0.36-0.55] [0.23-0.27] q3

d2 [0.74-0.84] [0.36-0.55] [0.23-0.27] q1

d3 [0.74-0.84] [0.56-0.70] [0.46-0.61] q3

d4 [0.93-1.00] [0.36-0.55] [0.46-0.61] q2

D∗ d5 [0.85-0.92] [0.56-0.70] [0.62-0.76] q2

d6 [0.74-0.84] [0.36-0.55] [0.28-0.45] q3

d7 [0.74-0.84] [0.22-0.35] [0.12-0.22] q2

d8 [0.65-0.73] [0.56-0.70] [0.46-0.61] q1

d9 [0.85-0.92] [0.71-0.80] [0.46-0.61] q3

Table IV. Enhanced Training Data. The last column denotes the most competent query-level function.
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Matching Documents and Functions.The enhanced training data,D∗, can be exploited to approximate the
matching between documents and query-level functions. Specifically, instead of directly extracting rules of the
form {X −→ ri}, we first extract rules of the form{X −→ qi} (i.e., the antecedent is a set of document features
and the consequent is a query context). These rules are used to approximate the matching between documents
and functions, according to Equations 9 and 10 (wheren is the number of queries inD). The higher̂p(qi|d) is,
the higher is the likelihood of∆(qi, d) being low (i.e., it is likely that the function produced using documents
associated with queryqi will competently estimaterd).

s(d, qi) =

∑

θ(X −→ qi)

| Rd |
, whereX ⊆ d (9)

p̂(qi|d) =
s(d, qi)

n
∑

j=0

s(d, qj)

(10)

Hybridization based on Competence.A hybrid function is a combination of two or more query-levelfunc-
tions. Such a combination involves finding the appropriate parameters, so that the estimate provided by the
resulting function minimizes|rank(d)− rd|. The matching between documents and query-level functions(i.e.
Eq. 10) can be used as parameter, as shown in Equation 11.

rank(d) =

k
∑

i=0

(

ri ×

n
∑

j=0

(

p̂(ri|d, qj) × p̂(qj |d)
))

(11)

The basic idea is to weigh the estimates provided by different query-level functions according to the likeli-
hood of competence of each of these functions. Intuitively,if a query-level function is likely to provide accurate
estimates to a document, then such estimates will be heavilyweighted. This is the strategy adopted by RE-QR.

Example.Suppose we want to estimate the relevance of documentd12. The first step, in this case, is to
extract rules of form{X −→ qi} fromD∗

d12
. According to Equations 9 and 10,p̂(q1, d12)= 0.26,p̂(q2, d12)=0.21,

and p̂(q3, d12)=0.53. Then, query-level rules of the form{q ∧ X −→ ri} are extracted fromD∗

d12
. Finally,

according to Equation 11,rank(d12)=0.27. Following the same process, we obtainrank(d10)=0.00, and
rank(d11)=0.48.

5. EXPERIMENTAL EVALUATION

In this section we empirically analyze the proposed learning to rank methods, RE-GR, RE-SR, and RE-QR. We
first present the collections employed in the evaluation, and then we discuss the effectiveness of the methods in
these collections.

5.1 The LETOR Benchmark

LETOR [Liu et al. 2007] is a benchmark for research on learning to rank, released by Microsoft Research Asia2.
It makes available seven subsets (OHSUMED, TD2003, TD2004,HP2003, HP2004, NP2003 and NP2004).
Each subset contains a set of queries, document features, and the corresponding relevance judgments. Features
cover a wide range of properties, such as term frequency, BM25, PageRank, HITS etc. In order to conduct five-
fold cross validation, each subset is arranged in five folds,including training, validation and test data. Ranking
performance is evaluated using NDCG@× (normalized discounted cumulative gain), P@× (precision), and

2LETOR Web page: http://research.microsoft.com/users/LETOR/
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MAP (mean average precision) measures. A detailed explanation of these measures can be found in [Liu et al.
2007]. For RE-GR and RE-SR, pre-processing involved only the discretization of attribute-values inD [Fayyad
and Irani 1993]. For RE-QR, pre-processing also involved the creation ofD∗.

5.2 Baselines

Our evaluation is based on a comparison against state-of-the-art learning to rank methods such as R-SVM [Yue
et al. 2007], FRank [Tsai et al. 2007], R-Boost [Freund et al.2003], SVMMAP[Joachims 2002], AdaRank[Xu
and Li 2007], and ListNet[Cao et al. 2007]. The ranking performance for these methods are also available at
the LETOR Web page.

5.3 Results

All experiments were performed on a Linux PC with an Intel Core 2 Duo 1.63GHz and 2GBytes RAM. Val-
idation set was used to select appropriate parameters. For RE-GR, RE-SR and RE-QR, we setσmin=10−10.
For RE-SR we setφmin=0.10. Parameters for the baselines can be found in the LETORWeb page.

How accurate are the proposed methods? How effective are theproposed methods when compared to other
learning to rank methods?

Tables V, VI, VII, and VIII show MAP numbers for all subsets. The result for each trial is obtained by averaging
partial results obtained from each query in the trial. The final result is obtained by averaging the five trials. We
conducted two sets of significance tests (t-test) on each subset. The first set of significance tests was carried on
the average of the results for each query. The second set of significance tests was carried on the average of the
five trials.

In five, out of seven subsets, RE-QR was the best overall performer, demonstrating the effectiveness of
exploiting query-sensitive information. RE-GR and RE-SR showed to be effective in most of the subsets, being
(together with RE-QR) the best performers in the NP2003 subset. In most of the subsets, all proposed methods
achieved superior ranking performance when compared to thebest baseline. The only exceptions occurred in
HP2003 and HP2004 subsets, where AdaRank was the best performer. Still, the gains in performance provided
by RE-QR range from 7% (relative to FRank in NP2003) to 48% (relative to FRank in TD2003). RE-SR
outperformed RE-GR in the OHSUMED, TD2003, HP2003 and HP2004 subsets, but RE-GR showed to be
superior in the remaining subsets. This is because TD2004, NP2003 and NP2004 subsets contains only few
stable rules, hurting the performance of RE-SR.

OHSUMED
Trial RE-GR RE-SR RE-QR R-SVM AdaRank

1 0.352 0.366 0.369 0.304 0.344
2 0.463 0.469 0.465 0.447 0.446
3 0.460 0.460 0.469 0.465 0.469
4 0.521 0.535 0.540 0.499 0.514
5 0.482 0.475 0.490 0.453 0.471

Avg 0.456 0.460 0.465 0.433 0.449

Table V. MAP numbers for OHSUMED subset. Worst and best baselines are also shown. Best results, including
statistical ties, are shown in bold.

We also evaluated the proposed methods in terms of precisionand NDCG. Figure 1 shows precision numbers
obtained from the execution of the proposed methods. Due to lack of space, only the best baseline is shown
for comparison. RE-QR and RE-SR improved the precision at the first positions (they are always the best
performer at P@1). Precision in the subsequent positions are similar to the precision achieved by RE-GR.
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TD2003 TD2004
Trial RE-GR RE-SR RE-QR FRank ListNet RE-GR RE-SR RE-QR SVMMAP R-Boost

1 0.169 0.178 0.171 0.113 0.192 0.213 0.221 0.219 0.185 0.247
2 0.293 0.304 0.327 0.297 0.325 0.276 0.256 0.279 0.192 0.281
3 0.365 0.381 0.403 0.155 0.381 0.285 0.277 0.283 0.201 0.241
4 0.394 0.394 0.382 0.211 0.275 0.267 0.249 0.275 0.211 0.238
5 0.219 0.201 0.216 0.238 0.202 0.276 0.273 0.283 0.235 0.299

Avg 0.288 0.292 0.300 0.203 0.275 0.263 0.255 0.268 0.205 0.261

Table VI. MAP numbers for TD2003 and TD2004 subsets. Worst and best baselines are also shown.

HP2003 HP2004
Trial RE-GR RE-SR RE-QR FRank AdaRank RE-GR RE-SR RE-QR R-Boost AdaRank

1 0.717 0.722 0.709 0.674 0.715 0.666 0.678 0.671 0.621 0.674
2 0.808 0.839 0.834 0.804 0.855 0.756 0.770 0.763 0.618 0.678
3 0.737 0.762 0.744 0.737 0.801 0.806 0.812 0.818 0.637 0.848
4 0.762 0.762 0.774 0.684 0.752 0.635 0.645 0.641 0.611 0.648
5 0.755 0.749 0.769 0.648 0.732 0.627 0.624 0.639 0.638 0.762

Avg 0.756 0.767 0.766 0.709 0.771 0.696 0.706 0.706 0.625 0.722

Table VII. MAP numbers for HP2003 and HP2004 subsets. Worst and best baselines are also shown.

NP2003 NP2004
Trial RE-GR RE-SR RE-QR FRank R-Boost RE-GR RE-SR RE-QR R-Boost ListNet

1 0.695 0.702 0.701 0.591 0.685 0.592 0.594 0.585 0.550 0.550
2 0.676 0.674 0.679 0.645 0.666 0.648 0.652 0.659 0.559 0.659
3 0.670 0.661 0.682 0.673 0.711 0.870 0.877 0.873 0.609 0.739
4 0.751 0.738 0.746 0.769 0.733 0.611 0.602 0.649 0.531 0.728
5 0.748 0.762 0.756 0.642 0.743 0.650 0.633 0.657 0.570 0.684

Avg 0.708 0.707 0.712 0.664 0.707 0.675 0.672 0.685 0.564 0.672

Table VIII. MAP numbers for NP2003 and NP2004 subsets. Worstand best baselines are also shown.

NDCG numbers are shown in Figure 3. Again, RE-SR and RE-QR showed some improvements at the first
positions, and a performance which is similar to the one achieved by RE-GR in the subsequent positions. RE-
QR outperformed the best baselines in five (out of seven) subsets. AdaRank showed to be the best performer
in HP2003 and HP2004 subsets.

How is competence distributed among different query-levelfunctions?

Figure 2 shows the domain of competence of each query-level function using the OHSUMED subset. Lighter
colored regions indicate documents in the x-axis for which relevances were competently estimated by the
corresponding query-level function in the y-axis (i.e.,∆(q, d) is low). Darker colored regions, on the other
hand, indicate documents for which relevances were not competently estimated by the corresponding query-
level function (i.e.,∆(q, d) is high). We divided the documents in three graphs, according to their relevance.
As expected, some query-level functions are competent in estimating the relevance of relevant documents,
while others are competent in estimating the relevance of irrelevant documents. Some functions are also able
to competently estimate the relevance of both relevant and irrelevant documents. RE-QR is likely to avoid
poor estimates, since it takes into account the competence of each query-level function. Thus, RE-QR take
advantage from selecting appropriate regions of each query-level function.
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Fig. 1. Precision numbers. Only the best baseline is shown.

How fast are the proposed methods?

The computational efficiency of the proposed methods was evaluated through the average execution time per
query, that is, the average processing time spent in extracting rules fromD (orD∗) and estimating the relevance
of all documents retrieved for a query. Table IX shows the execution times for each subset. RE-GR is usually
the fastest method, since it only extracts global rules fromD. Processing query-sensitive information incurs
some overhead. Specifically, RE-SR has to perform the additional process of selecting stable rules from the
set of all global rules. RE-QR has to perform the additional process of extracting rules of the formX −→ qi

in order to approximate the competence of query-level functions. These overheads make RE-SR and RE-QR
slower than RE-GR. However, the magnitude of that increase in execution time is almost imperceptible for the
final user. We also compared the execution times of the proposed methods against R-SVM and ListNet, and
we found that the proposed methods are also competitive in terms of computational efficiency.
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Fig. 2. Left− Documents with relevance 0. Middle− Documents with relevance 1. Right− Documents with
relevance 2.

Method
Subset RE-GR RE-SR RE-QR R-SVM ListNet

OHSUMED 0.10 0.12 0.14 0.13 0.19
TD2003 1.15 1.22 1.27 1.12 1.34
TD2004 1.31 1.39 1.47 1.33 1.75
HP2003 0.93 1.00 1.03 0.99 1.12
HP2004 1.27 1.35 1.41 1.37 1.51
NP2003 0.88 0.92 0.97 0.95 1.10
NP2004 1.13 1.21 1.26 1.21 1.33

Table IX. Execution time (per query) in seconds.

6. CONCLUSIONS

In this paper we propose novel learning to rank methods usingassociation rules for the sake of relevance
estimation. The first method (RE-SR) is based on the concept of stable rules, which are rules able to perform
very trustworthy predictions. The other proposed method (RE-QR) is much finer-grained. It takes into account
the query context extracting query-level rules in order to produce a hybrid ranking function by the combination
of multiple query-level functions. In fact, each query-level function has a particular domain of competence,
being able to provide highly accurate relevance estimates for certain documents.

Experimental results, obtained using the LETOR 3.0 benchmark, indicate that our methods outperform all
state-of-the-art learning to rank methods in most of the subsets, with gains in terms of MAP ranging from 7%
to 48%. Results obtained by the execution of RE-QR lead us to conclude that improved ranking performance
is obtained by exploiting domains of competence in order to produce hybrid functions. Thus, as future work,
we intend to move forward by investigating how to provide hybrid ranking functions using multiple learning to
rank approaches according to their domains of competence. Further, we also intend to investigate the reasons
for variations in ranking performance depending on the characteristics of the collections.
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