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Abstract. In this paper, a new indexing and similarity search method based on dynamic selection of pivots is
presented. It uses Sparse Spatial Selection (SSS) for the initial selection of pivots. In order to the index suits itself to
searches, we propose two new selection policies of pivots. The proposed structure automatically adjusts to the region

where most of searches are made. In this way, the amount of distance computations during searching is reduced. The
adjustment is done using the policy of “the best candidate” for the incoming pivot selection, and the policy of “the least
discriminating” for the outgoing pivot selection.
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1. INTRODUCTION

The digital age creates a growing interest in finding information in large repositories of unstructured
data that contain textual data, multimedia, photographs, 3D objects and strings of DNA, among
others. In unstructured data repositories it is more useful a similarity search than an exact search.
The similarity search problem can be formalized through the concept of metric space: given a set of
objects and a distance function between them, which measures how different they are, the objective
is to retrieve those objects that are similar to a given one. In order to improve objects retrieval, an
index can be used, because an index structure allows fast access to objects. There are several types of
indexes proposed for metric spaces that have differences such as how they are explored or how they
store the information.

We present a new indexing and similarity searching method based on dynamic selection of pivots.
The proposed method is dynamic because it can be applied to an initially empty database that grows
over time. The method is adaptive because it is not necessary to preset the number of pivots to be
used because the algorithm selects pivots as necessary to self-adapt it to space complexity. To select
the initial pivots of the index, the Sparse Spatial Selection (SSS) method ([Pedreira and Brisaboa
2007; Brisaboa et al. 2006]) is applied. The proposed improvement consists on implementing new
policies of incoming and outgoing pivots, in order to the index suits itself to searches, to dynamic
collections, and to secondary memory. Hence, we present a method that improves the SSS through
the use of these two new policies.

The rest of the paper is structured as follows: Section 2 presents basic concepts and describes the
problem of pivots selection. Section 3 presents the proposed method, and Section 4 shows experimental
results. Finally, conclusions are presented.
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2. BASIC CONCEPTS

A metric space(X, d) consists of a universe of valid objects X and a distance function

d : X ×X → R
+ defined among them, which satisfies the properties: strictly positiveness d(x, y) > 0,

symmetry d(x, y) = d(y, x), reflexivity d(x, x) = 0 and triangular inequality d(x, y) ≤ d(x, z)+d(z, y).
A finite subset DB of X, with |DB| = n, is the set of elements where searches are performed. The
definition of distance function depends on the type of objects. A subclass of metric space is a vector

space, where the most used distance function is: Ls((x1, . . . , xk), (y1, . . . , yk)) =
(

∑k

i=1 |xi − yi|
s
)

1

s

.

If s = 2, it is the Euclidean distance. The dimensionality of a vector space is the number of com-
ponents of each vector. Although general metric spaces do not have an explicit dimensionality, they
have an intrinsic dimensionality, following the same idea as in vector spaces. The efficiency of search
methods is worse in spaces with a higher intrinsic dimensionality [Chávez et al. 2001].

In metric databases, queries of interest can be range search and k-nearest neighbors search. Given
a query q and a radius r, the first one retrieves objects that are at a distance less or equal than r:
{u ∈ DB/d(u, q) ≤ r}. The second one retrieves the k objects closest to q, that is: A ⊆ DB such
that |A| = k and ∀u ∈ A, v ∈ DB − A, d(q, u) ≤ d(q, v). The basic implementation is to compare
each object with the query. The problem is that, in general, the evaluation of the distance function
has a very high computational cost, making this search inefficient for large collections. Hence, the
main goal of most search methods is to reduce the number of distance function evaluations. Building
an index and using the triangular inequality, objects can be discarded without comparing them with
the query. There are two types of search methods: clustering-based and pivots-based [Chávez et al.
2001]. The first one splits the metric space into a set of equivalence regions, each of them represented
by a cluster center. During searches, whole regions are discarded depending on the distance from
the cluster center to the query. Pivot-based algorithms select a set of objects as pivots. An index is
built by computing distances from each database object to each pivot. Searching then computes the
distances from the query q to each pivot, and discards some objects using triangular inequality and
distances precomputed during the index-building phase. The papers [Chávez et al. 2001; Zezula et al.
2006; Samet 2005] have a good compilation of these search methods.

Pivots selection affects the search method efficiency in metric space. The location of each pivot with
respect to the others determines the ability to exclude elements without directly comparing them with
the query. Most pivots-based search methods select pivots randomly. Also, there are no guidelines to
determine the optimal number of pivots, which depends on the specific collection. There are several
heuristics for pivots selection. For example, pivots are objects that maximize the sum of distances
among them in [Micó et al. 1994]; and several selection strategies based on an efficiency criterion to
determine whether a given set of pivots is more efficient than another set of the same size in [Bustos
et al. 2001]. The conclusion is that good pivots are far away from each other and from the rest
of objects. In [Pedreira and Brisaboa 2007] the Sparse Spatial Selection (SSS), which dynamically
selects a set of pivots well distributed throughout the metric space, is presented based based on the
idea that pivots dispersed on the space discard more objects during the search. When an object is
inserted into the database, it is selected as a new pivot if it is far enough from other pivots. A pivot
is far enough from another if it is at a distance greater than or equal to M × α, in which M is the
maximum distance between any two objects and α is a constant parameter that influences the number
of selected pivots (with optimal experimental values around 0.4). We present an improving to Sparse
Spatial Selection method, implementing new policies for selecting incoming and outgoing pivots from
the index. Also the index suits itself to searches after it was adapted to the metric space. Besides,
this proposal generates a number of pivots based on the intrinsic dimensionality of the space.

3. PROPOSED METHOD

We present a new indexing and similarity searching method based on dynamic selection of pivots.
This method is dynamic because it can be applied to an initially empty database that grows over
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time; and it is adaptive because it is not necessary to preset the number of pivots to be used since the
algorithm selects pivots to self-adapt the index to the space complexity. SSS is applied to select the
initial pivots of the index. Then, as time passes and searches are performed, we apply new policies for
selecting pivots in order to eliminate those least discriminating pivots from the index, and to select
objects as candidate pivots to put them into the index. In this way, we can adapt dynamically the
index to searches performed during a given time.

3.1 Initial construction of the index and growth of the collection

Let (X, d) be a metric space, where DB ⊆ X is the database. Let M be the maximum distance between
objects (M = max{d(x, y)|x, y ∈ X}). The value of M depends on metric space features, and in many
practical cases it can be obtained without processing all objects in the collection. For example, in a
vector space, M can be inferred from the maximum/minimum values of each vectors component. Also,
if M is not known in advance, its value can be estimated. Although in SSS method it is not necessary
to state in advance the amount of pivots to use, we set the value of α at the beginning. Parameter
α is a value that depends on the features of objects. Experimentally, we conclude as [Pedreira and
Brisaboa 2007] concludes that α should be between 0.35 and 0.40, depending on the dimensionality
of the collection. Method efficiency is the same for all values of α in this interval. We can also see
that when α > 0.40, number of evaluations of distance functions takes higher values in spaces of high
dimensionality. This is because increasing the value of α implies that the number of pivots decreases,
and this has a stronger effect in spaces of higher dimensionality.

Let the collection of elements be initially empty. The first object x1 inserted into the database is
the first pivot p1. When the second (or new) object is inserted in the database, its distance to all
pivots that are already in the index is calculated. If these distances are all greater than or equal
to M × α, this object is added to the set of pivots. Thus, the set of pivots does not have to be
selected randomly because pivots are chosen as the database grows. Then, distances from the new
pivot against to all database objects are calculated and stored. The next pseudocode summarizes the
pivot selection process. Pivots that were selected for the initial index are far apart (over M × α), so
all the selected pivots will not be too close to each other. Forcing the distance between two pivots
to be greater or equal than M × α, ensures that they are well distributed in the space. For many
authors, this is a desirable feature of the set of pivots.

The number of pivots depends on the initial dimensionality of the space. When the construction
begins, the number of pivots should grow fast in the index, but it will be stabilized when the database
grows. The following method, InitPivots(), also builds the index and it stores the distances between
each database object and all pivots.

1. InitPivots(DB:Database, d:function, M:distance, α:double) {

2. Pivots ← {x1}, where x1 ∈ DB

3. FOR ALL xi ∈ DB DO {

4. IF (∀p ∈ Pivots, d(xi, p) ≥M × α)

5. THEN Pivots ← Pivots ∪ {xi}
6. END IF

7. } END FOR ALL

8. }

9. Output: the Pivots set.

3.2 Exchange of Pivots in the Index

Given a query (q, r), the distances of q toward all pivots are calculated. By applying triangular in-
equality, all elements xi ∈ DB such that |d(xi, pj) − d(pj , q)| > r for any pivot pj are discarded.
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Nondiscarded objects define the list of candidates, {u1, u2, . . . , ul} ⊂ DB, and they should be com-
pared directly against the query. Given an element e ∈ DB, if max1≤j≤k |d(q, pj)− d(e, pj)| > r, then
e is outside the query range. So, pivot pj discriminates this object e. With searches, statistics of
discrimination of each pivot and the fact that an element is part of search results are stored.

Selection policy for the Outgoing Pivot. Considering objects discriminated by several pivots
and a set of B queries, we define the percentage of discrimination for a pivot pi as [%Disc(pi)] =
Disc(pi)
(B×n) , where Disc(pi) is the amount of items that pi discriminates and (B ×n) represents the total

of possible discriminations. Then, pi is a bad pivot when [%Disc(pi)] < 1
k

where 1
k

is an experimental
threshold, which is proposed as a constant that depends on the number of pivots in the index. If
[%Disc(pi)] < 1

k
, we can say that pi is very little relevant to discriminate, at least with these B

searches. Then, pi is selected as a victim and it could be replaced in a future. After B searches the
pivot with lower [%Disc(pi)] is determined. If it is less than a threshold of tolerance with value T , it
is replaced. A 10% of tolerance given by T = 1

(1.1×k) , where k is the current number of pivots in the

index, is used to stabilize the algorithm, and it was evaluated experimentally. The next pseudocode
shows that after a pivot is defined as the “least discriminating pivot”, it is available for exchanging
using ChangePivot() method. The incoming pivot is provided by GetPivot() method. When a pivot
is replaced, all distances between the incoming pivot and all elements of the database are recalculated.
The complexity of changing a pivot is n × θ(distance_function). If discrimination percentage is not
less than T , nothing is done.

1. ApplySelectionPolicyOutgoing() {

2. IF (min1≤j≤k disrimine [j] < 1
(1.1×k)

) THEN{

3. OutgoingPivot ← GetPivot();

4. ChangePivot();

5. GenerateIndex();

6. } END IF

7. }

Selection policy for the Incoming Pivot. To choose which object becomes a pivot, the policy
is to propose “the candidate pivot” using statistical data of database elements obtained from queries.
If an object e ∈ DB is frequently present in the list of candidates, we can consider that it is difficult
to discriminate with the current pivots, and e will be a candidate pivot. This implies that if this
element is selected as pivot, in future searches it will improve the percentage of discrimination around
the region that surrounds it. Also it adapts automatically pivots to the region where most searches
are made. This transforms the index into a dynamic structure, achieving its main objective: to reduce
distance computations in searches. The following pseudocode shows the implementation of this policy.

1. GetPivot(DB:Database, Stats:array[ ]) {

2. Candidate ← NULL, maxCurrentStats ← 0;

3. FOR ALL e ∈ DB DO {

4. IF (Stats(e) > maxCurrentStats) THEN {

5. Candidate ← e;

6. maxCurrentStats ← Stats(e);
7. } END IF

8. } END FOR ALL

9. RETURN Candidate

10. }

11. Output: element Candidate and array Stats with the time that DB

elements are included in the list of candidates.
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Table I. Number of pivots selected in vector spaces of dimension 8, 10, 12, 14.

dim.
n, size of the collection (x 10

3 )

10 20 30 40 50 60 70 80 90 100

8 11 12 12 12 13 13 14 14 15 16

10 13 18 20 20 21 21 21 21 21 22

12 25 28 28 31 32 34 34 34 34 34

14 38 47 53 60 60 61 63 66 69 69

Table II. Efficiency in synthetic metric spaces.

Method
dim = 8 dim = 10 dim = 12 dim = 14

#P #DE #DR #P #DE #DR #P #DE #DR #P #DE #DR

SSS 17 17994 6141634 24 26391 6393097 34 35721 6623490 60 62976 6915951

Proposal 15 15737 6394202 23 24380 6657667 33 34686 6717067 44 45683 7025895

4. EXPERIMENTAL RESULTS

For experimentation, two classes of metric spaces were used: synthetic and real spaces.

Synthetic Spaces: Several sets of synthetic random points in vector spaces of dimension 8, 10,
12 and 14, and Euclidean distance function are used. The database contains 100,000 objects, and
range query retrieves 0.02% of database elements. Our proposal creates a dynamic amount of pivots
depending on the space dimensionality, and not on the amount of database objects. For experiments,
in order to achieve a uniform and distant distribution of pivots in the space, α = 0.5 was set. This
value of α was chosen from experimental results showed later (Figures 1 and 2). Table I shows the
number of pivots depending on the collection size. As it is noted, the number of pivots grows very
quickly with insertions of the first objects in the collection, and then continues to grow but in a slower
degree until it stabilizes. So, with few elements inserted, the number of pivots depends on the number
of database elements. Already with a great amount of elements inside, the set of current pivots covers
all the space. Also the number of pivots in the index increases as dimension of the space increases.

To analyze the efficiency of the index for searching a database with 10,000 objects, 1,000 queries and
dimensionalities 8, 10, 12 and 14, are used. 20 periods were run and information from all periods was
averaged. For each dimension, the amount of pivots used in the index (#P ), the amount of distance
functions evaluated (#DE), and the amount of discriminations carried out (#DR), were recorded.
Results are compared against SSS because our method intends to improve it. Table II shows that
the number of pivots (#P ) used with our proposal is always lower than in the SSS implementation,
highlighting a great difference in dim = 14 with 16 pivots less. In the remaining dimensions, the
difference is little but it remains at most 2 pivots less in our favour. This is an important result
for our proposal because the pivots selection strategy of SSS presents a similar efficiency to other
more complex methods and the number of pivots that it selects is close to the optimal number for
other strategies. The number of evaluations (#DE) for our proposal always remains below and,
in general, with a uniform linear growth when the size increases. Except in dim = 14, where SSS
shows a slight growth with the amount of reviews with a difference of about 17,000 reviews, in other
dimensions the difference never exceeds 3,000. As results exposed in [Pedreira and Brisaboa 2007],
the number of evaluations of the distance function in SSS is always around to the best result obtained
with pivot selection techniques and strategies proposed in [Bustos et al. 2001]. So, our proposal has
a number of evaluations similar to the best results obtained in previous works, even using a smaller
number of pivots, which clearly implies space saving. Besides, our proposal obtains a greater number
of discriminations by pivots (#DR) in all dimensions. This is because, with time, the proposal
makes an adjustment of pivots, and they make better discrimination reducing the amount of distance
computations at query time. Thus, it shows that both selection policies of pivots are good and
maintain the index dynamism.
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Fig. 1. Number of pivots selected by parameter α.

The value of parameter α determines the number of pivots, values between 0.35 and 0.40 are
recommended, depending on the dimensionality of the space [Pedreira and Brisaboa 2007]. Here we
decided to use values of α from 0.32 to 0.54, in order to evaluate the number of pivots in the index,
since a rise in α represents a reduction in the number of pivots and this is noted better in spaces of
higher dimension.

Figure 1 shows that for all dimensions the number of pivots varies with α, with some local max-
imum/minimum and large amplitude in greater dimensions. After α = 0.5, the number of pivots
decreased, as it is expected. According to these results it seems to be better to use a high α, but this
is not correct since this will increase the number of distance function evaluations at re-indexing time
because the index will have more pivots. Figure 2 shows the number of distance evaluations varying
α. In all dimensions there is a consistent behaviour: when α increases the number of evaluations
decreases. This is because when distance between pivots increases, the required distance function
evaluations decrease. Uniform behaviour is because values of 20 periods were averaged: early periods
have largest number of evaluations and with passing of periods, pivots were adapting themselves to
searches. Also, our proposal achieves more discrimination when α increases because with passing of
periods pivots are better adjusted since more elements are discriminated, so the number of distance
computations decreases and searches are improved.

Real Metric Space: A database of 4000 images (photographs in black and white, people front and
side), each one represented by a vector of dimension 25 and Euclidean distance function were used. A
random subset of 400 images was used as queries. Values of 10 periods were averaged. The amount
of pivots used (#P ), the amount of discriminations carried out (#DR), the number of distance
evaluations (#DE), and the construction cost (#CI) were recorded. Values of α were between 0.32
and 0.54, increasing in steps of 0.02. Results are shown in Table III.

The value of α determines the number of pivots in the index (#P ) and this impacts on the amount
of distance function evaluations when the index is built (#CI). When α increases the number of
evaluations of distance function (#DE) decreases fast because the amount of pivots (#P ) decreases.
For this image space the number of pivots in the index decreases rapidly until α = 0.5. So, we decided
to use this value for α. The number of discriminations (#DR) carried out by pivots decreases slowly
when α increases. This behaviour validates the proposal since it is similar to results from synthetic
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Fig. 2. Distance function evaluations according to α.

Table III. Efficiency in real metric spaces varying parameter α.

α 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

#P 104 73 57 42 29 27 20 15 13 10 9 7

#DR 85372 67032 65010 46418 51561 46511 49117 51371 51716 38975 37017 30549

#DE 37748 55158 56700 75011 68891 73857 71356 68854 67918 81546 79939 89456

#CI 477491 335065 258794 191035 133278 121529 89279 68271 59560 47351 42662 34119

metric spaces. Also, after α = 0.48 the number of discriminations decreases. Unlike in the synthetic
metric space, there was an increase in the number of distance evaluations (#DE) when α increases.

This is because, in theory, increasing the distance between pivots should reduce distance function
evaluations. This value increases because they are averaged over 10 periods of training. Also, the
training set is not as representative as in synthetic metric space, because images are very different.

Figure 3 shows a query photo and the first results. Here we observe the good performance of the
implementation, since in the first 3 images on the right side we get a near perfect match with a
distance less than 4. This lets us know that we are making best use of the distance function between
elements of the metric space. Also, we can see that the following resulting images are similar, but
have more differences (e.g. the amount of hair in front of the face, the percentage of face in the image
and even the orientation of the person’s head).

5. CONCLUSIONS

This paper presents a new indexing and similarity search method based on a dynamic selection of
pivots. One of its most important features is that it uses SSS for the initial selection of pivots because
it is an adaptive strategy that chooses pivots that are well distributed in the space to achieve greater
efficiency. Two new pivots selection policies are presented in order that the index suits itself to
searches when it is adapted to the metric space. The proposed structure automatically adjusts to
the region where most of searches are made to reduce the amount of distance computations during
searches. This is done using the policy of “the best candidate” for the incoming pivot selection, and the
policy of “the least discriminating” for the outgoing pivot selection. Performance of this proposal was
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(a) Query photo (b) Results and distances

Fig. 3. Search results in photographs.

evaluated in synthetic and real spaces. Results show that our proposal has a number of evaluations
better or similar to the best results obtained in previous works, even using a smaller number of pivots,
which clearly implies space saving. We can conclude that in our proposal the index makes a greater
number of discriminations at search time by a better use of historical information from previous
searches with the two policies set out, with respect to SSS. Also, both selection policies of pivots
maintain index dynamism. As future work we plan to implement algorithms specially designed for
secondary memory, considering not only the number of distance evaluations but also the number of
I/O operations. An improvement to selection policies would be to use a data warehouse for training
the index with historical search data. An interesting idea to work is trying to identify nested metric
spaces [Pedreira and Brisaboa 2007] and apply the proposal presented here in each of them, using
different values for parameter α at an early stage to identify subspaces with high values of α in order
to obtain a small amount of pivots, and a second stage implementing our proposal in each subspace.
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