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Abstract. Workflows are scientific abstractions used in the modeling of scientific experiments. High performance
computing environments such as clusters and grids are often required to run the experiments. Cloud computing is

starting to be adopted by the scientific community. However, the cloud environment is still incipient in collecting and
recording retrospective workflow provenance. This article presents an approach to capturing distributed provenance
metadata from cloud-based scientific workflows. The approach was implemented through an evolution of the Matrioshka

architecture that was refactored for cloud environments. Preliminary results show that provenance metadata captured
from the virtual components running at the cloud can aid scientists to manage and reproduce their large scale in silico
experiments.

Categories and Subject Descriptors: H. Information Systems [H.3. Information storage and retrieval]: Databases
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1. INTRODUCTION

Over the last years the e-Science field has evolved in a fast pace. Most of existing e-Science exper-
iments deal with large volumes of data [Hey and Tansley 2009]. These experiments are also called
in silico experiments [Taylor et al. 2007]. Frequently these experiments need to be executed in High
Performance Computing (HPC) environments, such as clusters, grids [Kesselman and Foster 1998]
and more recently, clouds [Vaquero et al. 2009]. Clouds are already being adopted as a new computa-
tional environment for scientific applications [Hoffa et al. 2008]. Clouds present several advantages for
e-Science, specially the elasticity and the availability of resources. In other words, if scientists need
more resources (machines or storage, for example), they just have to request that resources to the
cloud provider and they will be available. Due to those characteristics, many scientists are already
moving their experiments from local and private environments to the cloud [Hey and Tansley 2009;
Hoffa et al. 2008; Matsunaga et al. 2008].

In silico experiments are represented by a chain of activities where each activity is mapped to
an executable code (a program or a script), creating a coherent flow of data and controls, where
the output of a specific activity is the input of the next activity in the flow. This flow of activities
is named Scientific Workflow. Over the last years, scientific workflows became a de facto standard
for modeling in silico scientific experiments [Mattoso et al. 2010]. Scientific workflows declaratively
capture the activities of a scientific experiment and the dependencies between them. Such activities are
represented as components (e.g., command line programs) that define the computations that should
take place. This data flow can be managed in an ad-hoc way, but it is more adequately handled
by complex engines called Scientific Workflow Management Systems (SWfMS) [Taylor et al. 2007],
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which offer a computational support for a scientist to define, execute, and monitor scientific workflows
either locally or in remote environments. There are many types of SWfMS such as Kepler [Altintas
et al. 2004], and VisTrails [Callahan et al. 2006], each one with powerful graphical interfaces and
mechanisms to represent and execute scientific workflows. However, none of these systems offer cloud
support, even those that are focused on HPC support, such as Pegasus.

The focus of this article is on the execution phase of scientific workflow life cycle [Mattoso et al.
2010]. To be considered as “scientific” by the community, a scientific experiment has to be able
to be reproduced under the same conditions, even in different environments. In fact, descriptors
associated to the workflow such as its definition, consumed and produced data during the execution
are fundamental issues to consider the experiment valid, consistent and reproducible by a third party
[Freire et al. 2008; Cruz et al. 2008]. This category of descriptors is called provenance metadata.
Provenance (also referred as lineage or pedigree) represents the ancestry of an object [Freire et al.
2008]. Provenance of an object, such as a data product, contains information about the process used
to derive the object, in this case the data related to the scientific workflow. It provides important
documentation that is essential to preserve the data, to determine their quality and authorship, and
to reproduce as well as to interpret and validate the associated scientific results generated by large
scale scientific experiments.

We can find in literature some approaches that aim at capturing and managing provenance metadata
in distributed environments. However, most of these approaches are focused on clusters and grids.
One example is Matrioshka [Cruz et al. 2008]. Matrioshka aims at capturing and providing provenance
metadata of scientific experiments executed in those environments. Although Matrioshka is a step
forward to collect provenance metadata from distributed environments, it was initially designed for
clusters and grids, not clouds. Clouds present specific characteristics such as virtualization of resources,
access methods, and so on.

This article proposes an approach for the problem of capturing distributed provenance metadata in
cloud environments. It describes the adaptation and effective use of the Martrioshka architecture when
capturing provenance metadata in workflows executed in distributed cloud environments. In addition,
it also presents a model for storing specific cloud provenance metadata. This article also presents a case
study in the domain of Text Mining (TM) modeled and executed in SWfMS VisTrails. The provenance
model was extended to comprise cloud specific metadata and to follow the Open Provenance Model
(OPM) recommendation [Moreau et al. 2008] which proposes an agnostic representation of provenance.
The chosen environment for running the experiments present in this article was the IBM cloud1 and
all components were developed using Java 1.5. and IBM DB2 9.7 for database support.

This article is organized in four sections besides this introduction. Section 2 briefly describes the
concepts of cloud computing and provenance. It also discusses related work. Section 3 presents the
Matrioshka architecture extended for cloud environments. Section 4 introduces and analyzes the case
study of a scientific workflow for TM process. Finally, Section 5 concludes the article and points to
some future work.

2. CLOUD COMPUTING AND PROVENANCE

Cloud computing has emerged as a platform for large scale data intensive computation. Its ability
to provide a flexible and on-demand computing infrastructure with large scalability enables the dis-
tribution of the processing among a large number of computing nodes. According to [Foster et al.
2008] detailed the key differences between grids and clouds, defining the cloud computing as “an in-
frastructure of computing, provided on demand, which provides communication and control, being
served by a network, in a shared and dynamically scalable way” [Hoefer and Karagiannis 2010] classify

1IBM http://www.ibm.com/cloud-computing/us/en/
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and describe the key characteristics of cloud environments according to an e-Science perspective. One
advantage of using clouds on scientific experiments is to provide scientists with access to a wide variety
of resources without having to acquire and configure the computing infrastructure. Examples of in
silico experiments adapted to clouds are: the Sloan Digital Sky Survey project and Berkeley Water
Center [Hey and Tansley 2009]. Another feature common to these projects is the use of scientific
workflows and SWfMS.

Consequently, with the execution of workflows in clouds arises the need to collect provenance meta-
data in cloud environments, it is necessary to ensure the reproducibility of these experiments. With-
out this metadata, the experiment, its evaluation and reproduction is compromised. For example,
generally an execution in cloud environments occurs transparently to the scientist, i.e., the cloud
infrastructure behaves like a “black box”. Therefore it is critical to scientists to know what the pa-
rameters that have been used and what data products were generated in each execution of a given
workflow. The capture and management of provenance metadata in distributed environments still
pose an open question [Freire et al. 2008; Mattoso et al. 2010]. For example, in a cloud, the more
data needs to be transmitted through the Internet the more susceptible to failure they are. This way,
cloud environments, similarly to grids and clusters, need to capture and store provenance metadata.
For this reason, the approach described in this article stores the provenance metadata in the cloud
itself and they can be recovered afterwards.

To the best of the authors’ knowledge, none of the existing cloud environments offer native sup-
port to collect provenance and any other means to store provenance metadata produced by in silico
experiments. However, there are some works that highlight the importance of the subject. For in-
stance, [Muniswamy-Reddy et al. 2009], where the authors discuss some alternatives to storage of
provenance using cloud computing services offered by Amazon EC22 and using the PASS system. The
PASS system is also a system that collects and stores provenance from distributed environments, but
they are intensely involved in the collection of provenance on the generated files, unlike Matrioshka,
which collects provenance metadata about processes and the execution environment, archiving them
in a provenance repository. PASS proposes using three specific architectures using storage structures
native to the Amazon EC2, Simple Storage Service (S3), SimpleDB and Simple Queuing Service
(SQS).

3. CAPTURING DISTRIBUTED PROVENANCE METADATA ON THE CLOUD

This section describes the proposed approach to capture and store provenance metadata generated by
scientific workflows running on cloud environments. The original proposal of Matrioshka was focused
on overcoming some limitations of existing SWfMS in relation to metadata collection from distributed
sources. Matrioshka acts as an additional layer operating regardless of the SWfMS used to enact a
scientific workflow. This novel approach aims to minimize the possibility of silos of isolated provenance
metadata, that is, it enables scientists to bind the provenance metadata collected from the distributed
execution environment in a single database schema.

3.1 Matrioshka Architecture

The architecture developed by Cruz et al. [Cruz et al. 2008], was conceived to operate on clusters
and grid environments and operated de-coupled from SWfMS, therefore, using native services from
those environments, for example, process schedulers, queue managers, among others. Thus, it does
not support features provided by a cloud computing environment, such as elasticity of resources, vir-
tualization, and independence of location, among others. Matrioshka was now refactored to operate
independently of the infrastructure provided by cloud providers. The architecture is composed of sev-
eral components: Provenance Broker, Provenance Eavesdrop and Provenance Repository. To operate

2AMAZON EC2 http://aws.amazon.com/ec2/
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satisfactorily in the cloud it is necessary not only to change its former database schema, but also
to extend its functionality by adding two new components: Dispatcher that operates locally within
the SWfMS orchestrating the workflow and the Execution Broker that operates on the cloud. The
architecture is depicted in Figure 1. Each one of these components is detailed as follows.

The Provenance Broker component is responsible for receiving the provenance metadata descrip-
tors captured by provenance gathering mechanisms, i.e., the descriptors related to the execution of
workflow activities on the cloud environment, The Provenance Broker stores the provenance on the
metadata repository. When the execution of some activity of the workflow occurs in the cloud, the
components Provenance Broker and Provenance Eavesdrop are invoked by the Dispatcher component
that operates at the SWfMS layer. The Provenance Broker receives the data submitted by the Dis-
patcher and them the metadata captured by the Provenance Eavesdrop on the cloud . Upon receiving
these metadata, the Provenance Broker persists in a data schema stored in the cloud. The Provenance
Eavesdrop component performs the task of collecting the metadata generated by the activities and
also the ones produced at the remote execution environment. The Broker and Eavesdrop are remote
components and that works with heterogeneous metadata produced by the cloud virtual instances,
such metadata can be generated from various sources, i.e., running processes, files or operational
information used or produced by the running virtual instances. The metadata repository stores not
only the data associated with the executions of the scientific workflow, but also the metadata collected
by the components. The provenance data schema is depicted in Figure 2.

The Dispatcher is a component that is executed at the local layer and should be included in the
definition of the scientific workflow as an ordinary task. The Dispatcher sends remote calls of a given
local activity to the Execution Broker, which invokes the activity at a given virtual instance on the
cloud. The scientific program invoked by the Execution Broker must have been already installed at
the virtual instances in which the scientist must have right access. Using the Dispatcher component,
the scientist may set the parameters for accessing and using the virtual instances, such as your
login/password, number of instances to be used, name of programs to be executed, input data and
input parameters of the remote programs, among others. These parameters are stored in a manifest file
in XML. The manifest contains specifications to access settings to instances of the cloud, it also may
host information about the experiment itself. The manifest has the advantage of being technologically
agnostic in terms of operating systems. Moreover, it also represents a set of metadata associated with
retrospective provenance [Freire et al. 2008] execution of an activity of a workflow in the cloud.

The Execution Broker is a component that triggers the execution of remote activity at cloud virtual
instances and when the execution is completed, returns the control to the Dispatcher component so,
the workflow may continue the execution of other local activities. Figure 1 presents a conceptual
representation of the Matrioshka architecture refactored for the cloud environments. The exchange of
messages between the local environment and the cloud instances are performed using a secure tun-
neling, that uses the SSH protocol, allowing data and metadata transfer from inbound and outbound
remote activities.

3.2 Provenance Schema

The provenance data schema is based on [Cruz et al. 2010] but encompasses cloud specific features, such
as the concepts of virtualization and elasticity of resources, billing and service usage metering (i.e., pay
per use). This schema allows a scientist to query data about the workflow, the cloud provider and users
involved with the execution of an in silico experiment. Moreover, by using instances with different
configurations, a scientist must know in which instance data products of workflow activities were
generated, what were the processing conditions, which resources were consumed, software versions
used, among others. The new schema takes into account the latest recommendation from OPM
(version 1.1). OPM aims at facilitating the interoperability of metadata that comes from heterogeneous
environments and expresses the causal relationships between Processes, Agents and Artifacts in the
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Fig. 1. The Matriohska Architecture adapted to cloud environments

existing workflows. OPM is a reference model that is not directly instanced into a database schema.

Several changes were performed on the original data schema because we had some descriptors related
to cluster and grid environments, such as cluster nodes, processors and details of jobs. Besides, there
was no correlation with the OPM specification. However, when we moved the schema to the cloud
environment, many of these metadata lost their meaning. For example, the concept of node is replaced
by virtual machines (virtual instances) made available by providers and each instance can be different
from another with regard to hardware and software configurations.

The provenance data schema is represented as a UML class diagram in Figure 2, and it is the
result of an initial survey [Cruz et al. 2009] about which provenance metadata have to be captured
by different provenance gathering mechanisms. The data model consists of four main parts (colored
to ease the understanding): (i) elements that represent the processes which are distributed in the
instances of the cloud, for example, workflow activities (light blue), (ii) elements that represent the
scientists responsible to workflow execution (light red); (iii) elements that represent the artifacts and
the computational resources used in a given workflow execution, and finally (light orange), (iv) ele-
ments representing information related to the temporality of the workflow and its activities execution
(light green).

The schema followed the recommendation of the OPM, the classes CloudOutput and CloudInstance
correspond to conceptual representation of an OPM-artifact, having the same semantics, for example,
i.e., both represent structures in digital computing systems (parameters, databases, files, instances,
images, etc.). The class CloudActivity is mapped as an OPM-Process. A process represents one or
more actions that operate on artifacts or produce new artifacts. The classes CloudUser and Cloud-
Provider represent an OPM-Agent. An agent is the element that catalyzes, enable, control or affect
the execution of a given process. The classes CloudUserWorkflow, CloudUserInstance and CloudAc-
tivityInstance are OPM-Roles. A role determines and correlates the function of an agent or an artifact
in a given process. Finally, the CloudExecution class represents the moment of execution of a process
on the cloud.

4. CASE STUDY: TEXT MINING SCIENTIFIC WORKFLOW

Text Mining (TM) is a process that aims to find hidden knowledge from texts and present it in a
concise way. Thus, we can view TM as a key component for e-Science, and it is composed by three
major phases that are named pre-processing, mining and post-processing.
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Fig. 2. Matriohska provenance data schema (colors and numbers represents the different parts of the schema) adapted
from [Cruz et al. 2008]

The pre-processing phase is responsible to prepare the raw text for mining. Once the objective for
the TM process is known, the text collection must be assembled. The input collection normally has
noisy and unnecessary data. The source text collection must be then cleaned and prepared. Stop
words removal [Dragut et al. 2009] and stemming [Korenius et al. 2004] are classical examples of
pre-processing tasks.

The mining phase is the main phase of the entire TM process. It is the responsible to deriving
patterns and models from pre-processed data. The mining phase is divided into many tasks also
named mining tasks. Typical text mining tasks include, among others, text categorization, text
clustering, concept/entity extraction, and document summarization[Fan et al. 2006].

The post-processing phase is responsible for preparing the patterns and models generated by the
mining step for evaluation and visualization. The post-processing phase is divided in many functions
also called post-processing functions. Each one of these functions performs a different role on the
post-processing phase. TM poses as an interactive and iterative process. The TM phases may be
adapted and re-executed as many times as needed. For example, to evaluate a model generated by the
mining phase may be necessary to re-execute the entire mining phase in order to tune some parameters
of a determined algorithm. This way, a new result is generated and the scientist may compare the
two approaches.

Since this is a first viability study using a cloud environment, the workflow of TM was not entirely
executed. The main focus of this study was to execute the pre-processing phase of the workflow that
prepares data to be mined. The TM scientific workflow was modeled by [Oliveira et al. 2008] using
VisTrails SWfMS and executed on the IBM cloud as presented in Figure 3. The collected provenance
data is stored by a DB2 instance also hosted on the IBM cloud. The executed workflow has three main
activities: data cleaning (stop word removal), word counting and generation of frequency table (which
contains the relation words x document). When the execution finishes, the output is a CSV file that
contains all frequencies off all processed collections. This file is generated on the virtual machines and
transferred a posteriori to the scientists’ desktop.

By executing this case study we could test the distributed execution of TM workflows on the
cloud and capture important provenance metadata associated to these executions. This metadata
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Fig. 3. Text Mining Workflow modeled in the SWfMS VisTrails adapted from [Oliveira et al. 2007]

Fig. 4. Provenance metadata captured in the TM workflow execution on IBM cloud

includes IDs of data products consumed and produced in the course of the workflow executions,
and ids of the virtual machines used to execute these workflows (IP-v4 address). In addition, it
was possible to identify the instance and the type of database management system that stores the
provenance metadata. All users were also identified and associated to the workflow execution in
the provenance schema. In this first case study the TM workflow processed 100 documents in PDF
format. This collection was distributed among five instances (virtual machines) on the IBM cloud.
In each instance were uploaded 20 PDF documents. Figure 4 presents an excerpt of the captured
retrospective provenance metadata by Matrioshka components. It is important to highlight that this
type of provenance metadata cannot be captured with the aid of existing SWfMS.

IP-v4 addresses of the cloud instances are captured in the CloudInstance entity. All information
related to produced and consumed data products in the user directory are found in the CloudOutput
entity. Due to space restrictions in this article, the rest of the captured metadata was suppressed.
Only the most significant and representative metadata were presented. Based on these metadata it is
possible for the scientist to discover, for example, in which Virtual machines are stored the generated
data products related to a specific execution of a scientific workflow.

5. CONCLUSIONS

Cloud computing presents an innovative alternative for running experiments based on scientific work-
flows that require distributed computing environments, primarily because of elasticity and high avail-
ability of resources. However, at the moment SWfMS provide no specific support to the execution
of workflows on the clouds, especially when dealing with distribution of the activities and with the
collection and storage of provenance metadata. This article describes how the Matriohska architec-
ture was used to collect provenance metadata of scientific workflows executed in cloud environments.
Moreover, we present a novel data schema that follows the OPM recommendation.

Despite being a work in progress, our initial results are promising. We are able to capture an
initial set of metadata that could not be collected by existing provenance mechanisms offered by
local SWfMS. As future work, we will evaluate the scalability of our solution and also will verify the
performance overhead of the architecture. Moreover, further studies will be promoted to allow the
integration between the data schema presented on Figure 2 with the provenance data schema offered
by (local) SWfMS.
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