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Abstract. This article proposes an architecture for integrating a relational database management system (DBMS)
with a distributed hash table (DHT). Systems developed based on this architecture provide functionalities of DHTs, such
as scalability, decentralization and fault tolerance, combined with a high level query language provided by a DBMS.
The main component of this architecture is the storage engine, responsible for implementing the interface between
an SQL query processor and a DHT. We have implemented a system based on the MySQL DBMS and the Bamboo
DHT, and conducted an experimental study to investigate two issues. The first determines the impact of developing
an indexing structure for processing range queries. The second investigates two approaches for mapping relations to
DHT’s key-value pairs: vertical and horizontal partition of relations.

Categories and Subject Descriptors: H. Information Systems [H.2. Database Management]: Systems
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1. INTRODUCTION

Peer-to-peer (P2P) are distributed, non-hierarchical networks that have been proposed to provide
resource sharing. One of the main properties of a P2P network is the absence of a centralized control
over its structure. This property minimizes common problems found in centralized systems such as
network congestion and waiting lists. For data management on P2P, distributed hash tables (DHT)
are often used for storing data, while ensuring a number of desired properties, such as durability,
fault tolerance, performance and scalability. DHTs store data as <key, value> pairs and provide a
simple service interface composed of operations for storing a pair (put(key, value)), retrieving the
value associated with a key (get(key)) and removing a pair (rem(key)). Given the similarity with
disk-based operations, DHTs are largely used for sharing files, having file names as keys.

However, for applications that involve elaborate data manipulation, it may be a burden for the
software developer to rely on a service that supports only data retrieval based on exact key match.
These are applications that would ideally be supported by a database management system (DBMS),
provided that the dataset is of manageable size and that there is little scalability concerns. In order to
combine features of DBMSs and DHTs, in this article we propose an architecture for layering an SQL-
based query processor on a P2P network. In the proposed architecture, the DBMS’s SQL interface
is maintained, providing high level operations for managing large volumes of data stored on a P2P
network, while maintaining the complexities of data distribution transparent to the user. The main
reason for using a DHT for storing data is to provide a massively distributed and scalable service
that can potentially store huge amounts of data spread over thousands of machines. The integration
of DBMS and DHT technologies involves many issues. One of them is an indexing structure to
efficiently process range queries, that is, searches for data items with keys within a given interval.
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Systems based solely on DHTs are not able to process this type of query efficiently. This is because of
the DHT standard interface that only provides exact key match searches. Another important issue is
the mapping between the key-value pair model supported by DHTs and the relational model. In this
article, we present some initial results from experiments that tackle these two problems.

The main contributions of this article are:

—Proposal of an architecture for integrating DHTs and relational DBMSs;
—Development of a system based on the proposed architecture, along with an indexing structure for
processing range queries. Results from an experimental study are reported showing the impact of
an index-based query processing;

—Analysis of two approaches for transforming relational data to key-value pairs. Results from an
experimental study conducted to determine their impact on the system are also reported.

The rest of the article is organized as follows. Section 2 describes related work, while the integration
architecture and our approaches for data mapping and range query processing are presented in Section
3. Our experiments involving these two issues are described in Section 4. We conclude in Section 5
presenting directions for future work.

2. RELATED WORK

Several systems and architectures have been proposed to support large volumes of data, such as
cluster databases and noSQL systems. Cluster databases [Mattoso 2009] were proposed as high-scale
relational repositories. These systems are composed of a cluster of commodity servers, each of them
running a DBMS. On top of the set, a layer is developed for managing metadata, replication and query
processing. The architecture proposed in this article differs from cluster databases by maintaining
the same three layers approach of traditional DBMSs, but with a DHT service on the physical layer.
While the goal of the majority of cluster databases is to execute OLAP queries in parallel, this article
proposes an architecture for sharing and distributing data that are involved in simple and transactional
processes. Alternative architectures for OLTP systems are evaluated in [Kossmann et al. 2010]. This
study shows that systems, such as SimpleDB1, MySQL Cluster2[Ronström and Thalmann 2004] and
MS Azure3, achieve scalability through architectures based on replication, partitioning and caching.
However, some systems present scalability limitations given that they rely on a centralized database
server that maintains master copies. In addition, these systems do not present some important
properties of traditional DBMSs, such as support for metadata and physical and logical independence.
Our approach, on the other hand, maintains all the traditional features of a DBMS and combine them
with a distributed and scalable data storage. [Curino et al. 2010] proposes a system with similar goals,
but that follows a different architecture.

Efficient support for range queries is one of the challenges for integrating DBMS and DHT tech-
nologies. Many approaches have been proposed in the literature to tackle this problem. They can
be divided into two categories: those that change the structure of the DHT and those that build an
additional structure on top of a DHT. Mercury [Bharambe et al. 2004] is a system that follows the first
approach. It changes the hash function and includes routing algorithms that support range queries
and load balance. There are a number of previous work that follow the second approach, but here we
mention two: PHT [Chawathe et al. 2005] and DST [Zheng et al. 2006]. A PHT is a search tree in
which every node corresponds to a distinct prefix on the key domain. DST, on the other hand, is a
segment tree.

1http://aws.amazon.com/simpledb/
2http://www.mysql.com/cluster/
3http://www.microsoft.com/windowsazure/
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Fig. 1. DBMS and DHT integration architecture.

The distribution of data involves two important steps for determining the system performance: data
fragmentation and distribution of the fragments. Data fragmentation can be on the level of relations,
tuples or attributes. [Baião et al. 1998] emphasize that the type of fragmentation may impact the
system performance. Besides horizontal and vertical partition of relations, their work also considers a
hybrid approach for taking advantage of the best features in both. For the distribution of data, if no
modifications on the underlying DHT are assumed, the node on which a given data item is stored is
determined by the result of a hash function on its key. Usually, a hash function randomly distribute
data among nodes that compose a P2P network to maintain load balance. However, the ability of
controlling data location in DBMSs by clustering data based on keys has long been recognized as
an efficient technique for speeding up query processing. In order to provide a similar functionality
on DHTs, some datastores provide key-range partitioning, such as PNUTS [Cooper et al. 2008], App
Engine’s BigTable [Chang et al. 2006] and Spinnaker [Rao et al. 2011], or use a DHT-based system
that maintains keys in lexicographical order, such as Scalaris [Schütt et al. 2008].

3. A DHT-BASED STORAGE ENGINE

The integration of DHT and DBMS technologies proposed in this article is based on the development of
a storage engine. A storage engine is the underlying component of a DBMS, responsible for inserting,
reading, updating and removing data items from physical storage. In a relational DBMS, this module
receives requests expressed as operations on tuples and transforms them to operations on the storage
device or service.

The proposed architecture is presented in Figure 1, showing the storage engine as the interface
between the query processor of a DBMS and a data repository based on a DHT. This module is
responsible for mapping data structured according to the logical model of the DBMS to a physical
model based on key-value pairs supported by the data repository. It receives requests from the DBMS’s
query processor as relational operations on tuples and maps them to corresponding operations on the
service interface of the data repository. This interface consists of standard DHT operations: put(key,
value), get(key) and rem(key). One important property of the proposed architecture is that it is
independent of the underlying DHT, given that it maintains the standard service interface. The DHT
is responsible for the management and retrieval of data stored in the repository and provides a basis
for relational query processing, while providing scalability.

3.1 Mapping Between Relational and Key-Value Based Models

To store relational data on a DHT we need to establish strategies for executing four basic tuple
operations that the storage engine of a DBMS should provide: insertion, deletion, retrieval and update.
As a design principle, we have implemented these operations using only the standard primitives
exported by the DHT. For inserting a tuple into a relation, all attributes have to be packed in a
key-value pair in order to be inserted in the DHT executing a put operation.
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There are many ways of partitioning a relation to be stored as key-value pairs. The process of
partitioning data is usually denoted as fragmentation. In the horizontal fragmentation, each fragment
contains a tuple (or set of tuples) whereas in the vertical fragmentation each fragment contains values
of the same attribute. Since each fragment is stored as a <key, value> pair in the data repository,
we have to define how horizontal and vertical fragments are packed into a value and how they are
identified by a key. We use the following approach. For the horizontal fragmentation, the value is
a unidimensional array in which all attributes of the corresponding tuple is packed. A key is created
by combining the name of the relation with the values of attributes that compose the primary key
of the relation, in lexicographical order. As an example, consider a relation R with a primary key
composed of a single attribute id, as illustrated in Figure 2. The key of a pair that corresponds to a
tuple in which the value of id is 1 is “R/1” and the value contains all the attribute values. For the
vertical fragmentation, the value is composed of a unidimensional array in which all the values of this
attribute in the relation are packed. The key is generated by simply concatenating the name of the
relation with the name of the attribute. Depending on the number of tuples of the relation, attribute
values have to be packed into several blocks, instead of a single one. In this case, the key of a block
must also contain the number of the block, as illustrated in Figure 2. That is, the pair containing the
n-th block of attribute a1 has key “R/a1/n” and its value consists of a subset of attribute a1’s values.
Observe that in order to be able to rebuild a tuple when the relation is vertically partitioned, each
attribute value must be associated with its tuple identifier.

3.2 Indexing Structure

Once the mapping strategy for transforming relations to key-value pairs is defined, all relational op-
erations have to be mapped to corresponding put-get-rem operations on the DHT. These operations
provide a simple and efficient interface for retrieving individual data items. However, for retrieving
all data items that contain keys in a given range, we need to execute a full scan over the relation.
That is, since there is no way of retrieving only the proper subset of data, all tuples in the relation
have to be retrieved for then selecting the ones within the interval. Among several data structures
that have been proposed in the literature to support range queries on DHTs, the Distributed Segment
Tree (DST) [Zheng et al. 2006] is defined based on the standard DHT interface, in accordance to
our architecture principle. Moreover, it performs better than the PHT, which also follows the same
approach.
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A DST is a binary tree in which each node corresponds to a key interval (segment). The root node
represents the full key range, while leaves contain a single key. Every internal node corresponds to
a subrange of its parent and contains the union of all descendant intervals. An example of a DST is
given in Figure 3. DSTs contain a user defined saturation point that defines the maximum number
of keys a node may hold. In a tree in which nodes do not exceed this limit a key stored on a leaf is
replicated in all its ancestor nodes. However, if a node reaches its limit, it is marked as saturated. A
saturated node n that represents an interval [s, t] does not contain all keys in the interval, warning
the search algorithm that the search must continue on n’s children to obtain additional keys. As an
example, consider the DST of Figure 3. In order to retrieve all keys in the range [4, 7], the search
starts at the root node with range [0, 7]. The mid value of the range is 4, which determines that only
the right child of the root has to be traversed. This node corresponds exactly to the search interval. If
the node is not marked as saturated, then the search ends, since it contains all the keys in the interval.
Otherwise, the search continues on both children in parallel and nodes corresponding to ranges [4, 5]
and [6,7] are visited. If both nodes are not saturated the search ends returning the union of all keys
stored on them. One important aspect of the DST is the fact that nodes are also distributed on the
DHT. A pair <key, value> is generated for each node in which the key corresponds to the range
[s, t] and the value contains the key set in the interval.

Next section describes the development of a prototype that follows the proposed architecture and
discusses experimental results that show the impact of horizontal and vertical data fragmentation of
data as well as of the addition of a DST indexing structure.

4. EXPERIMENTAL STUDY

For the development of a system based on the proposed architecture, we have chosen the MySQL
DBMS and the Bamboo4[Rhea et al. 2005] data repository. Bamboo is based on the Pastry [Rowstron
and Druschel 2001] routing protocol and communicates using Sun RPC protocol on TCP or XML
RPC on HTTP. In Bamboo, keys are limited to 40 bytes and its associated value cannot exceed 1024
bytes. The motivation for choosing MySQL is due to its decomposable architecture, with well-defined
interface among its components. This simplifies the development of new modules, in particular,
a new storage engine. The interface is based on a set of function prototypes that corresponds to
functionalities expected from the storage engine. As an example, for inserting new tuples in a relation,
the storage engine should implement a function write_row(uchar* buf). It receives as input the
tuple that is to be inserted in a compact form. Applying functions already provided by MySQL, it is
possible to obtain the value of its attributes. Similarly, for making a full scan over a relation, MySQL
defines two functions: rnd_init() to begin a new scan and rnd_next(uchar *buf) for retrieving
tuples individually.

In the following sections, we describe two experiments that have been conducted to investigate two
issues related to the integration of DBMS and DHT technologies: horizontal and vertical fragmentation
of relations and range query processing.

4.1 Horizontal and Vertical Fragmentation

Both types of fragmentation described in Section 3, horizontal and blocked vertical fragmentation,
were implemented. We have conducted an experiment using a relation with 2000 tuples, composed of
51 attributes of 20 bytes each. The total size of the relation is 2.04 MB. We have generated <key,
value> pairs with values of 1024 bytes, which is the maximum size allowed by Bamboo. For the
horizontal fragmentation, each tuple is mapped to a pair, with keys generated as described in the
previous section. For the vertical fragmentation, each block contains 42 values of the same attribute.

4http://bamboo-dht.org/
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The experiment was conducted on a local network with seven servers with dual or quad core pro-
cessors and 6 to 32 GB of RAM, connected at 1 Gbps. Each server hosts ten nodes of the DHT and
an additional gateway node was generated to receive messages sent by the MySQL DBMS; in total,
the network was composed of 71 nodes.

The insertion of the entire relation using horizontal fragmentation took 1 minute and 39.87 seconds.
For the vertical fragmentation, we applied blocked insertion. That is, the first 42 tuples were used
to fill up 51 pairs that correspond to each of the relation’s attributes and then the set of pairs were
inserted in the DHT. This process took 1 minute and 59 seconds for the entire relation.

In order to compare the impact on data retrieval, we executed SQL queries to read all tuples
in the relation, but varying the number of attributes in the result set. Figure 4(a) presents the
experimental results. The vertical axis corresponds to query processing time, while the horizontal
axis shows the number of attributes in the result. It can be observed that the query execution
time when the relation is horizontally partitioned remains almost linear, not being affected by the
increasing number of attributes in the result. This is because all tuples must be retrieved from the
DHT, even when the final result of the relation is projected over a small number of attributes. For
the vertical fragmentation, on the other hand, the execution time grows linearly. For retrieving the
entire relation, it took 45.24 seconds for the horizontal fragmentation, while for the vertical partitioned
representation, it executed in 1 minute and 29.50 seconds. This difference is due to three reasons.
First, in the vertical fragmentation the volume of data is larger, given that each attribute value must
be associated with the tuple’s key. Second, the number of requests to the DHT is much larger for the
vertical partition. In fact, in the experiment setting, with a relation of 2000 tuples and 51 attributes,
divided in 42 values per block, the number of requests is 2000 × 51/42 = 2.428, while the horizontal
fragmentation generates one request per tuple, that is, 2000 get operations. The vertical partitioning
imposes roughly 21% overhead on the number of requests to the DHT. The third reason is the time
spent for reconstructing a tuple, by joining all attribute values associated with the same tuple key.

This experiment shows that vertical partitioning may be an interesting approach if the number of
attributes involved in processing queries is small. In our particular setting, the processing times are
the same when the number of attributes is half the number of attributes in the relation.

We have also conducted experiments with vertical blocks of smaller sizes. In the extreme case, when
each block consists of only one attribute value, the query execution time was extremely high. For
retrieving one single attribute, the query took 1 minute and 17.91 seconds, while 1 hour was spent
for retrieving the entire relation. These results show that the number of requests to the DHT is a
determining factor on the system’s performance.

4.2 Range Queries

The goal of this experiment is determine the impact an indexing structure based on DST can have
on the system. To this end, we have generated a DST index on the primary key of the relations. We
have conducted experiments using two relations, r1 and r2, that follow the same schema, but with
8.000 and 15.000 tuples, and of size 1.1 e 1.5 MB, respectively. Both relations were stored following
the horizontal fragmentation approach.

The experiment setting included ten servers with dual or quad core processors and 2GB or 4GB of
RAM, interconnected in a 100 Mbps local network. Each server hosts five DHT nodes, composing a
50 nodes DHT. We have issued range queries on the primary key and the results of the experiment are
shown in Figure 4(b). The vertical axis represents the query execution time and the horizontal axis,
the number of tuples in the result. The reported execution time is the average of measures collected
from the execution of 40 different queries that return exactly the same result size.

Journal of Information and Data Management, Vol. 2, No. 1, February 2011.



Layering a DBMS on a DHT-Based Storage Engine · 65

12 4 8 16 32 51
00:00:00

00:17:28

00:34:56

00:51:84

01:09:12

01:26:40

01:43:68

Horizontal

Vertical
(blocked)

Degree of the result (# of attributes)

Q
u

e
ry

 e
xe

cu
ti

on
 t

im
e
 (

m
:s

:m
s)

(a) Horizontal and Vertical Fragmentation

0
1
2
3
4
5

7

9

11

13

15

500 2000 4000 6000 8000 10000 12000

Q
u
er

y 
ex

ec
u
ti

on
 t

im
e 

(s
ec

)

15000 tuples relation
8000 tuples relation

Cardinality of the result (# of tuples) 

(b) Range Query

Fig. 4. Experimental results.

It can be observed that the response time grows linearly with the size of the result. The last marks
of each plotted line show the time to retrieve the entire relation. For r1 this takes 12 seconds and for
r2 the query runs in 16 seconds. Observe that without any indexing structure, these are roughly the
time for processing any range query on these relations. This is because, without an index, the DHT
does not provide any means to limit the search space. Thus, every tuple in the relation would have to
be retrieved, delegating to the query processor the responsibility for filtering those of interest. This
is equivalent to process range queries in a traditional DBMS using a full table scan. With a DST,
in order to retrieve 2000 tuples from both relations, the system takes less than 3 seconds. Compared
to the full scan on the DHT, these response times correspond to a speedup of 75% to retrieve 25%
of r1’s tuples and 81% speedup to retrive 13.3% of r2’s tuples. One important observation is that by
increasing the size of the result, the response times for r1 grow faster than for r2. This is because the
DST’s saturation point for r1 was set smaller than for r2. As a consequence, for retrieving the same
number of tuples, more nodes have to be visited for r1 than for r2. Moreover, more nodes are likely
to be saturated in r1 and, as a consequence, descendant nodes have to be visited to retrieve all keys
in the interval. This shows that the number of requests to the DHT is indeed a determining factor on
the system’s performance, confirming the results reported in Section 4.1.

5. CONCLUSION

This article proposes an architecture for integrating DBMS and DHT technologies. The main com-
ponent of this architecture is the storage engine, which is responsible for mapping both data and
operations defined on the relational model to key-value pairs and operations over a DHT. The ar-
chitecture follows the three layers approach of a traditional DBMS, in which the DHT serves as the
physical level component and the logical and external layers remain unchanged. One of the main
advantages of this approach is that the distribution of data, provided by the DHT, is transparent to
the user. The DHT also provides properties that are hard to achieve by a traditional DBMS, such as
scalability, fault tolerance and decentralization. Moreover, it keeps all the expected functionality of
a DBMS intact, such as support for metadata, logical and physical independence and support for a
high-level query language.

Based on the proposed architecture, we have implemented a system for integrating the MySQL
DBMS and the Bamboo DHT. One of the design principles in developing the system was the main-
tenance of the standard DHT interface, based on simple put-get-rem operations on key-value pairs.
Data retrieval based solely on these operations requires full table scans to process queries that involve
any operator other than equality on primary keys. As a first step towards solving this problem, we
have implemented an index structure based on DST [Zheng et al. 2006]. Our experiments showed
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that for processing range queries, a DST can result in speedups of 75% to retrieve 25% of tuples in a
relation, and 81% to retrieve 13.3% of the relation. Although the system allows joins and aggregations
to be expressed as SQL queries, in the future we intend to investigate how these operations can be
efficiently processed in our system.

We have also conducted an experiment to determine the impact that different forms of fragmen-
tation have on query execution times. They show that the performance of the system is strongly
dependent on the DHT and the number of requests sent to the DHT. Thus, in the future, we intend to
investigate other issues related to database physical design, such as data clustering and secondary in-
dex structures. We believe that careful data fragmentation and distribution, combined with additional
index structures, may have a huge impact on the system’s performance.

Thus, the main contribution of this article is to show the feasibility of a system that integrates the
scalability and robustness of a DHT with the ability to express complex queries in a high-level query
language. Results from our experiments show the potentiality of the proposed approach and present
directions for future work.
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