
Design, Implementation, and Evaluation of a Tight
Integration of Database and Workflow Engines

Peter Reimann, Holger Schwarz, and Bernhard Mitschang

Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
{Firstname.Lastname}@ipvs.uni-stuttgart.de

Abstract. Accessing and processing huge amounts of heterogeneous and distributed data are some of the major
challenges of data-intensive workflows. Traditionally, the descriptions of such workflows focus on their data flow.
Nevertheless, control-flow-oriented workflow languages are increasingly adapted to the needs of data-intensive workflows.
This provides a common level of abstraction for both data-intensive workflows and classical orchestration workflows, e. g.,
business workflows, which then enables a comprehensive optimization across all workflows. However, the problem still
remains that workflows described in control-flow-oriented languages tend to be less efficient for data-intensive processes
compared to specialized data-flow-oriented approaches. In this article, we propose a new kind of optimization targeted
at data-intensive workflows that are described in control-flow-oriented languages. We show how to improve efficiency of
such workflows by introducing various techniques that partition the local data processing tasks to be performed during
workflow execution in an improved way. These data processing tasks are either assigned to the workflow engine or to
the tightly integrated local database engine. We evaluate the effectiveness of these techniques via various test scenarios.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; H.2.8 [Information
Systems]: Database Applications; H.4.1 [Information Systems Applications]: Office Automation

Keywords: Data-Intensive Workflow; Improved Local Data Processing; Scientific Workflow; Simulation Workflow

1. INTRODUCTION

Workflows have long been used to meet the needs of IT support for business processes. They are
compositions of tasks by means of causal or data dependencies that are carried out on a computer
using a workflow management system (WfMS) [Leymann and Roller 1999]. Recently, the workflow
technology has found application in the area of scientific computing and simulations for implementing
complex scientific applications and the term scientific workflow has been coined [Taylor et al. 2007].
Many of these scientific workflows treat data and their processing as first-class citizens. Such data-
intensive workflows typically process huge amounts of possibly distributed and heterogeneous data
and carry out a multiplicity of complex data processing steps that may be directly reflected in the
workflow definitions [Deelman and Chervenak 2008]. Examples are workflows for analyzing previously
generated data, for reducing models of a simulation problem, and for protein modeling and analysis.

Traditionally, the descriptions of data-intensive workflows focus on their data flow instead of the
control flow due to several benefits of this kind of workflow descriptions. This particularly in-
cludes optimization opportunities for massive data processing [Ludäscher et al. 2009], [Zinn et al.
2010], [Coutinho et al. 2010]. Nevertheless, control-flow-oriented workflow languages are increasingly
adapted to the needs of data-intensive workflows since they have some advantages for modeling and
executing such workflows as well [Böhm et al. 2007], [Slominski 2007]. They provide a common level

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC 310/1), Florian Wagner for implementing ODE-TI, and the
anonymous reviewers of the journal submission process for their valuable remarks and suggestions.
Copyright c©2011 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011, Pages 353–368.



354 · P. Reimann, H. Schwarz and B. Mitschang

Workflow Execution Environment

Workflow Runtime

Local Data Store

External Resources/Applications

Proprietary Files

Provenance Capture/

Management

Provenance 

Store

External Data Processing

Legacy Application

Detailed in Figure 4

Database

Local Data Processing 

in the Workflow Context

Provenance Framework

Fig. 1. Data processing during workflow execution phase.

of abstraction for both data-intensive workflows and classical orchestration workflows such as business
workflows. This enables a comprehensive re-engineering or optimization across all kinds of workflows
[Radeschütz and Mitschang 2009], [Vrhovnik et al. 2007], [Böhm et al. 2007]. Furthermore, it results
in a generic solution, i. e., being applicable in multiple domains of scientific or business applications
and also for workflows combining multiple domains [Reimann et al. 2011].

The life cycle of a scientific workflow typically consists of the phases workflow design, workflow
preparation or deployment, workflow execution, and post-execution analysis where result data, prove-
nance data, and other metadata are archived and analyzed [Ludäscher et al. 2009], [Deelman and
Chervenak 2008]. Figure 1 presents a high-level view of a workflow processing architecture including
a workflow execution environment, external resources and applications, and a provenance framework
to capture, manage, and store provenance data [Freire et al. 2008]. In this article, we focus on the
workflow execution phase, in particular on the processing of application data during this phase. For
some data sets, it may be appropriate or even inevitable to process them directly in the workflow
execution environment. The other option, which is particularly interesting for larger data sets, is to
outsource data processing to external resources or applications. Here, many approaches exist that deal
with access mechanisms for proprietary data sources or legacy applications [Reimann et al. 2011],
[Görlach et al. 2011] or focus on specific optimization opportunities, e. g., late binding of resources
or re-engineering of workflow models [Vrhovnik et al. 2007]. However, optimization opportunities for
processing high amounts of data directly in the workflow context, in particular for control-flow-oriented
workflow languages, have largely been neglected in previous work.

In this article, we focus exactly on this setting and show how to extend the system architecture to
transparently improve the local data processing in a workflow execution environment. We introduce
various techniques to partition the local data processing tasks in an improved way. These data
processing tasks are either assigned to the workflow runtime or to a tightly integrated local database
engine thus exploiting its data processing capabilities. We evaluate the effectiveness of these techniques
by means of various test scenarios and come up with possible indicators when to use either the workflow
runtime or the local database engine. Altogether, this offers a great potential for improved performance
and reliability of local data processing in data-intensive workflows and it broadens the set of such
workflows that may be described in terms of control flow. It forms the desired generic solution for all
kinds of workflows in multiple domains. Furthermore, it increases the extensibility of current workflow
execution environments by additional data management functionalities, e. g., the usage of a geographic
information system may support operations tailor-made to spatial problems.

The rest of this article is organized as follows: Section 2 deals with the state of the art of data pro-
cessing in workflows. In Section 3, we introduce our approach and discuss its benefits in Section 4. Af-
terwards, Section 5 shows the results of our evaluation. We highlight major related work in Section 6,
and Section 7 concludes and gives a brief outlook for future research.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 355

Workflows

Orchestration
Workflows

Data-Intensive
Workflows

Business
Workflows

Simulation
Management

Workflows

Data Analysis
Workflows

Data Modeling
Workflows

ETL
Workflows

Scientific Workflows

Business 
Process

Bone
Remodeling
Simulation

Pattern 
Recognition 
in Materials

Protein 
Modeling

Data 
Integration

Fig. 2. Classification of workflows regarding data-intensiveness and problem they solve. Workflow classes are shown in
rectangles, whereas circles state scenarios or use cases the respective classes find application in.

2. DATA PROCESSING IN DATA-INTENSIVE WORKFLOWS

In this section, we deal with major aspects and the state of the art of data processing in data-intensive
workflows. We first introduce a classification of workflows regarding their data-intensiveness and the
problem they solve and show the challenges of data processing in these workflows. Afterwards, we
deal with different types of workflow languages that are used in such settings. We then present
representative concepts for data management in workflows and relate them to the workflow classes.
Based on this, we finally illustrate the main aspects by means of a sample scenario.

2.1 Workflow Classes and their Challenges for Data Processing

Figure 2 shows the classification of workflows regarding their data-intensiveness and the prob-
lem they solve. Orchestration workflows originate from the area of business applications where
business workflows or production workflows orchestrate the execution of different and heterogeneous
applications to realize and automate business processes [Leymann and Roller 1999]. Here, the Service
Oriented Architecture (SOA), in particular the Web Services technology, is used to integrate the ap-
plications. Similarly, simulation management workflows coordinate the interaction with simulation
applications and resources that execute calculations and data management tasks for simulation pro-
cesses [Görlach et al. 2011]. See [Reimann et al. 2011] for a workflow of a bone remodeling simulation
that is used to research skeletal disorders, e. g., of a human femur.

In contrast to orchestration workflows, data-intensive workflows treat data and their processing
as first-class citizens. Such workflows typically process huge amounts of possibly distributed and
heterogeneous data and carry out a multiplicity of complex data processing steps that may be directly
reflected in the workflow definitions. The data may be processed on external resources or even within
the workflow. A sub-class of data-intensive workflows are visualization or data analysis workflows.
Their goal is to visualize previously generated data and/or to provide new insights from such data.
Typical operations are object identification, feature discovery, and pattern recognition, e. g., in a
workflow using similarity search and classification to detect the patterns among chemical compounds
or other materials [Kamath et al. 2009]. Data modeling workflows try to find a suitable model that
describes a certain problem or try to search for patterns in such models. This workflow class includes
applications such as model reductions that determine a reduced and thus less compute-intensive model
of computation for a simulation problem, without loosing too much precision in the computation
[Haasdonk and Ohlberger 2008]. Other examples deal with modeling certain materials or searching
for certain structures in material models, e. g., protein or genome modeling or analysis workflows
[Berg et al. 2007], [Da Cruz et al. 2010]. Typical data management operations in such workflows

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



356 · P. Reimann, H. Schwarz and B. Mitschang

Table I. Classification of data management concepts for workflows.
aaaaaaaaaaaa

Execution of
Data Management

Definition of Data
Management Within Workflow External to Workflow

Within Workflow System Integrated Case –
External to Workflow System Hybrid Case Separate Case

are sampling and probing subsets of data and pattern matching. The third sub-class of data-intensive
workflows constitute extraction, transformation, and load (ETL) workflows, i. e., ETL processes that
are modeled and executed using workflow technology [Reimann et al. 2011], [Maier et al. 2005]. Their
main goal is to provide a data integration or provisioning process for superordinate applications or
workflows. For example, assume ETL workflows to upload data into a data warehouse or to capture
and pre-process scientific data. These workflows include operations for loading or retrieving a bulk of
data, filtering a data set, and joining two data sets. Recently, the term scientific workflow has been
coined as generic term for some of these workflow classes [Taylor et al. 2007]. This includes simulation
management workflows, data analysis workflows, and data modeling workflows (see Figure 2).

2.2 Workflow Languages

The different workflow classes exhibit different kinds of workflow languages. In particular, we dis-
tinguish between data-flow-oriented and control-flow-oriented languages. A data flow defines data
dependencies between workflow tasks. These data dependencies correspond to unidirectional channels
over which data streams are sent. Each task is assigned with input queues for buffering individual
data items of such data streams. As soon as the input queues of a task are filled with a certain number
or combination of data items, the task processes theses items according to its functional definition.
For example, it transforms data items to another format or filters specific items. It then forwards the
resulting data items to the input queues of tasks succeeding in the data flow. Such data-flow-oriented
languages are frequently used to describe all kinds of data-intensive workflows. There already exist
market-proven products that show specific solutions in terms of modeling languages, optimization
techniques, and execution engines for data-flow-oriented problems, e. g., IBM InfoSphere Streams1.

A control flow usually forms a directed, acyclic graph (DAG) whose nodes are the tasks and whose
edges constitute causal dependencies between these tasks. Each task is executed at most once and its
execution may only start after all preceding tasks within the DAG have successfully and completely
finished their execution. Some workflow languages also allow their tasks to be procedural elements that
each may contain another DAG of tasks as sub-workflow and that define certain execution semantics
of such sub-workflows. For example, loops may define the repeated execution of the inner tasks as long
as a certain condition holds [Leymann and Roller 1999]. As control-flow-oriented workflow languages
are increasingly adapted to the needs of data-intensive workflows [Böhm et al. 2007], [Slominski 2007],
we focus on this setting. In particular, we focus on the local data processing in such workflows. This
local data processing is based on handling process variables as described in the following section.

2.3 Data Management in Workflows

Concepts for data management in workflows are characterized along two dimensions: (1) whether
the data management operations are defined within the workflow or external to it and (2) whether they
are executed within the workflow system or external to it (see Table I). The first concept, the separate
case, originates from control-flow-oriented settings of SOA-based business workflows. In this spirit,

1IBM InfoSphere Streams: http://www-01.ibm.com/software/data/infosphere/streams/

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 357

For each Protein Sequence

Receive Input 

Parameters

Get List
of Protein 

Sequences
Reply to Client

Count Negative 
Sequence

Add Sequence 
Header

Sequence

Matches

Pattern?

Yes

No

Fig. 3. Protein modeling workflow in Business Process Modeling Notation (BPMN).

services may encapsulate access to one or more data sources and provide operations on this data,
e. g., for data extraction or manipulation. Such services are typically called data services or data walls
as they hide the data sources and the data processing from the workflow that invokes the services.
So, data processing is strictly separated from workflow processing, i. e., the data management is both
defined and executed by services or external data sources. Scientific applications recently adopted the
SOA paradigm as well [Taylor et al. 2007]. Most of today’s scientific workflow systems offer some
kind of activities to invoke services, e. g., see [Ludäscher et al. 2006], [Barga et al. 2008], and [Görlach
et al. 2011], and may thus use services for data management.

The integrated case, on which we focus in this article, reflects local data processing within workflow
systems. So, data and workflow processing are integrated together. Here, data is first shipped to
the execution context of the relevant workflow, i. e., to input queues of workflow tasks in a data-
flow-oriented setting or to process variables in case of control-flow-oriented languages. Workflow tasks
embed or define data management operations that are executed locally on the shipped data within the
workflow execution environment. As shown in Figure 1, this environment may integrate a database
system or other kinds of local data processing units that store or manage the shipped data as well as
its processing by the workflow.

The third concept is an approach using data management activities that directly embed data man-
agement operations. When such an activity is executed, it seamlessly accesses the specified external
data source to issue its embedded operation against this source. So, this forms a hybrid case as data
management operations are defined within workflows as in the integrated case, but are executed by
external data sources as in the separate case. These data management activities may also be part
of separate ETL workflows that encapsulate data integration or provisioning processes for superor-
dinate workflows. They mainly come from business workflow solutions, e. g., the workflow products
of IBM, Microsoft, and Oracle that allow for the integration of SQL statements into BPEL processes
[Vrhovnik et al. 2008]. Nevertheless, the same also holds for the scientific workflow solutions Microsoft
Trident [Barga et al. 2008] and Kepler [Ludäscher et al. 2006]. The latter even allows to access pro-
prietary file systems and sensor networks. The Business Process Execution Language extension for
Data Management (BPEL-DM) is a data-source-independent approach to embed any kind of data
management operation for any kind of data source directly within workflows [Reimann et al. 2011].

2.4 Sample Scenario for Data-Intensive Workflows

Figure 3 shows the activities and their control flow of a workflow for protein modeling [Berg et al.
2007]. This workflow uses pattern matching to find important regions within protein sequences or
families, e. g., amino acids that are relevant for a certain chemical reaction. In doing so, it identifies
or investigates proteins that can solve a certain chemical or biological problem. The workflow first
gets input parameters from the client such as identifiers for data sources storing the protein sequences
to be investigated. Afterwards, it calls a service to retrieve a list of the relevant protein sequences.
This list is stored in a process variable within the workflow. The latter then iterates over the list and
searches for a certain pattern within each protein sequence, e. g., by means of a regular expression.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



358 · P. Reimann, H. Schwarz and B. Mitschang

If a sequence matches the pattern, the workflow adds the sequence header to a list of headers in
another process variable. Otherwise, it increments a counter for negative sequences. After having
processed all protein sequences in this way, it sends both the number of negative sequences and the
list of sequence headers of positive sequences back to the client.

According to our definition of a data-intensive workflow, the protein modeling workflow carries out
several data processing steps including data retrievals, variable assignments, and pattern matching.
This way, it treats data and their processing as first-class citizens. Most of the data are processed
directly within the workflow, i. e., in its process variables. The data sizes may range from a few
hundred KBs to several MBs or even GBs. The workflow benefits from the control-flow-oriented
workflow technology in various ways. For example, we get one common level of abstraction for this
workflow and for superordinate simulation management workflows that repeatedly call the protein
modeling workflow in order to investigate or to model a set of protein sequences or families. This
enables a comprehensive re-engineering or optimization across all involved workflows [Radeschütz and
Mitschang 2009], [Vrhovnik et al. 2007], [Böhm et al. 2007]. Furthermore, we can re-use the protein
modeling workflow for various simulation management workflows or other workflows in a generic
way. However, using control-flow-oriented languages for this kind of workflow sometimes leads to an
increased execution time compared to data-flow-oriented approaches. In the next section, we show
how to improve the data processing within such workflows and thus to reduce their execution time.

3. IMPROVED DATA PROCESSING IN CONTROL-FLOW-ORIENTED WORKFLOWS

To illustrate our approach, we first sketch the main components of the typical architecture of control-
flow-oriented workflow execution environments. Afterwards, we show how this architecture is extended
by our approach and introduce various techniques to improve the workflow-internal data processing.

3.1 Current Architecture for Local Data Processing in Control-Flow-Oriented Workflows

Figure 4(a) shows the current architecture for control-flow-oriented workflow execution environments
as they are typically used for orchestration workflows. For better readability, we leave out components
that are not directly relevant for the workflow-internal data processing, e. g., a compiler or deployment
component for workflow models. Such environments contain a local database system (DBS). Remark
that this is not the type of external database stores a workflow may access via the separate and hybrid
cases of data management (see Table I). In fact, this local DBS supports the integrated case of data
management and serves as persistent data store for the workflow-local data in process variables and for
metadata such as auditing information. However, it does not process this data, e. g., during variable
assignments. Instead, the workflow runtime component itself performs this data processing. For that
purpose, it contains a pool of variables that manages all process variables and their contents, e. g.,
realized as a heap of Java objects, and an expression evaluation engine that evaluates expressions,
e. g., XPath expressions, on these variables. A data processing logic component defines how all data-
processing workflow activities and constructs work on the variables and how the expression evaluation
engine as well as the pool of variables are employed. For example, this data processing logic controls
the data processing for variable assignments, service calls, and control flow decisions.

A persistence manager, e. g., a Data Access Object (DAO) layer, negotiates between the runtime
and the local DBS and manages the persistence of the workflow-local data, i. e., it stores and loads
the data in or from the DBS either automatically or when the runtime triggers it. To manage the
variable contents, the database contains a pool of variables as well. The persistence manager provides
the mapping between the variables in the pool of the workflow runtime and those in the pool of the
database. This way, the runtime is independent from the concrete local DBS, i. e., we can exchange this
DBS quite easily. The database management system contains a query/expression execution engine,
but this engine is not used to execute the workflow-internal data processing. It just gets simple queries
from the persistence manager to load or store whole variable contents.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 359

Workflow Execution Environment

Workflow Runtime

Persistence Manager

(e.g., DAO Layer)

Workflow Execution Environment

Workflow Runtime

Data Processing Logic

Pool of 

Variables

Expression 

Evaluation 

Engine

Persistence 

Manager

Query / 

Expression 

Interface

Data Processing Optimizer

Assign
Web 

Service Call

Control Flow 

Decisions

Local Database System

Database Management System

Database

Query / Expression 

Execution Engine

Pool of 

Variables

Local Database System

Database Management System

Database

Query / Expression 

Execution Engine

Pool of 

Variables

Data Processing Logic

Pool of 

Variables

Expression 

Evaluation 

Engine

Assign
Web 

Service Call

Control Flow 

Decisions

a) Classical Architecture – DB only as Data Store b) New Architecture Exploiting Local Database

Data Flow or

Query Submission

Control Messages and

Metadata Exchange

Data Processing 

(Integrated Case)
Variable Mapping

Fig. 4. Current architecture for data processing in workflows (a) and architecture for an improved data processing (b).

3.2 A New Architecture for Local Data Processing

To ensure a reliable and efficient local data processing in data-intensive workflows described in control-
flow-oriented languages, we have extended this architecture by components that provide an improved
workflow-internal data processing (Figure 4(b)). The data processing tasks to be performed during
workflow execution are partitioned between the workflow runtime and the local DBS in order to
exploit their respective capabilities as much as possible. This is transparent to the workflow modeler,
i. e., it does not change workflow models, but only influences the execution of such models. Beside
the persistence manager, the query/expression interface allows to push down workflow-internal data
processing operations from the runtime to the local DBS that finally executes these operations. Using
this component, the runtime only issues queries or expressions against the DBS and receives small
data items, e. g., Boolean values needed for control flow decisions. As the queries to execute the data
processing operations may vary between different DBSs, the query/expression interface has to store
query templates for concrete DBSs and has to set the necessary parameter values within these query
templates. This way, the workflow runtime is again independent from the concrete local DBS.

The data processing optimizer, embedded in the workflow runtime, controls the data process-
ing logic and decides whether the workflow-internal data processing operations are assigned to the

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



360 · P. Reimann, H. Schwarz and B. Mitschang

Workflow Execution Environment

4)1)

Workflow Runtime

Persistence 

Manager

Query / 

Expression 

Interface

Database System

Workflow Execution Environment

3)1)

Workflow Runtime

Persistence 

Manager

Query / 

Expression 

Interface

Database System

a) Assignment Pushdown b) Expression Evaluation Pushdown

Submission

of Expression 

or Query

Submission

of Notification

Submission

of Result Data

Evaluation

of Expression

Assignment 

of Result

3)2)

Workflow Execution Environment

Persistence 

Manager

Database System

Service

2) Service Call from

the Database

c) Web Service Pushdown

2) 3)

1) 4)

Query / 

Expression 

Interface

Workflow Runtime

Fig. 5. Assignment Pushdown (a), Expression Evaluation Pushdown (b), and Web Service Pushdown (c). Numbers
indicate the orders in which the individual steps are carried out.

workflow runtime or to the local DBS and in which of both components the corresponding data is
stored. The main goals of this optimization are to decrease the amount of data transfered between
the runtime and the DBS as well as to exploit the mature data processing facilities of the DBS and its
query/expression execution engine whenever appropriate. The decisions mainly depend on the capa-
bilities of the runtime and the local DBS, the data sizes, and the complexities of the involved queries
and expressions. All these optimization criteria are described by metadata the optimizer retrieves
from the respective components. The optimizer can make its decisions in several granularities, e. g.,
the same decision for all instances of one workflow model, for individual instances or sets of instances,
for single data processing tasks, or for single process variables or sets of variables.

3.3 Techniques to Improve Workflow-Internal Data Processing

The data processing optimizer may employ various techniques that partition the workflow-internal
data processing operations between the workflow runtime and the local DBS. Some of them are de-
picted in Figure 5. The Assignment Pushdown shifts the responsibility for executing process variable
assignments from the workflow runtime to the DBS. The DBS receives (step 1) and evaluates (step 2)
assignment expressions, e. g., XPath expressions, and assigns the expression results to the target
variables (step 3). Afterwards, the runtime gets a notification whether the assignment has been ex-
ecuted successfully or not (step 4). The Expression Evaluation Pushdown is used for control flow
decisions, such as transition conditions or loops. It again evaluates expressions within the DBS, but
synchronously forwards the expression results back to the runtime for further processing.

Using these two techniques, the data transferred from the local DBS to the runtime are only small
notifications or data items, possibly leading to performance improvements due to reduced costs for
data transmission. However, the input data of the corresponding expressions, which may become
big in case of data-intensive workflows, should be available in the DBS before the respective variable
assignments or control flow decisions are carried out. Otherwise, it would be necessary to transfer
these data from the runtime to the DBS via the persistence manager, which might lead to performance
degradations. To tackle this problem, we have developed two further techniques.

A control-flow-oriented workflow may get two kinds of data that eventually have to be stored in
the local DBS: (1) data as result of a service call or sent by the client and (2) literal values, e. g.,
XML snippets, which are defined in the workflow model and assigned to a process variable during
workflow execution. The Web Service Pushdown deals with the first kind of data. It calls Web Services
directly from the DBS instead from the runtime, thereby storing the result data of the service in the
database without the indirection over the runtime and the persistence manager (see Figure 5(c)). The
same principle can be applied for asynchronous communication, i. e., when a workflow sends data to
a service or client or when it gets data from them, without expecting any result on either side. The
literal values are already known at modeling and deployment time as they are a direct part of the

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 361

Workflow Execution Environment

Database System

Database

Workflow 

Compiler
Persistence 

Manager Table of 

Literals

Literal Value

Literal Pushdown

Literal Value

Workflow Model

Reference

Internal Workflow Representation

Fig. 6. Literal Pushdown.

workflow model. The Literal Pushdown exploits this characteristic and stores such literal values in a
designated table in the DBS during the deployment phase of the relevant workflow model (Figure 6).
Furthermore, it writes a reference into the internal representation of this model or into the contents
of the respective variables to refer to the previously stored literal values during workflow execution.

4. BENEFITS OF THE APPROACH

In this section, we discuss the benefits of our approach. This covers its optimization potential for
workflow-internal data processing, generality issues, and additional opportunities to extend current
workflow execution environments by further data management functionalities.

4.1 Optimization Potential for Workflow-Internal Data Processing

In previous control-flow-oriented workflow environments, the workflow-internal data processing could
only be executed by the workflow runtime. The data processing optimizer provides a new option to
shift data processing to the integrated DBS. This offers a great potential for improved performance
and reliability of the workflow-internal data processing in data-intensive workflows. The main reason is
that the mature database technology can more efficiently and reliably deal with large volumes of data
and the complex as well as frequent data processing operations that are involved in such workflows.
Furthermore, we can reduce the amount of data transfered from the runtime to the local DBS because
all data may be directly stored in the DBS without the indirection over the runtime.

When multiple workflow instances run concurrently, the execution of their local data processing
within the workflow runtime typically leads to an increased main memory consumption of this runtime.
It may get too busy or even overloaded. In such a case, the runtime pauses some of the workflow
instances and stores all relevant data in the DBS in order to resume the paused instances at a later
point in time. This leads to an increased execution time for some workflow instances and to reduced
overall throughput. The database technology is a mature technology regarding concurrent execution
of processes and regarding an efficient main memory allocation. Following our approach, we can push
parts of the workflow processing to the local DBS. This may lead to a more balanced utilization
of all involved system components, in particular to a more efficient overall main memory utilization,
and thus to a faster execution and a higher throughput of concurrent workflow instances. Furthermore,
the more efficient main memory utilization may reduce the number of main memory overloads in the
workflow system and thus enhance the reliability of workflow execution.

On the other hand, processing data in the main memory of the workflow runtime leads to less costs
of data access and the runtime may exploit customized internal data structures that are tailor-made to
the workflow-internal data processing. For less data-intensive workflows as well as for small data sizes,
e. g., for orchestration workflows, the data processing optimizer may decide to leave the responsibility

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



362 · P. Reimann, H. Schwarz and B. Mitschang

for data processing to the workflow runtime. To avoid the additional overhead for this optimization
decision at workflow execution time, this decision may be made during deployment time. In Section 5,
we evaluate some of the arguments discussed in this section.

4.2 Generic Workflow Management

Due to the above-mentioned optimization potential, our approach broadens the set of data-intensive
workflows that may be described in terms of control flow. Since this approach is also applicable to
small or less data-intensive workflows as well as for small data sizes and since we extend a common
architecture for control-flow-oriented workflow environments, it is suitable for orchestration workflows
as well. This results in a common level of abstraction, i. e., the control flow, for all kinds of workflows,
which entails several benefits. The common level of abstraction enables further optimizations over the
whole spectrum from the workflow level to the data level and across all workflow classes [Vrhovnik
et al. 2007], [Böhm et al. 2007]. Furthermore, it leads to an integrated tool support, i. e., all kinds
of processes can be modeled using standard languages such as BPEL and executed within common
tools or environments. Altogether, this forms a generic solution being applicable to all workflow
classes depicted in Figure 2, in multiple domains of scientific or business applications, and even in the
combination of scientific and business applications [Reimann et al. 2011], [Janowski et al. 2011].

4.3 Increased Extensibility of Workflow Execution Environments

The new possibility to intensively use the local database system in our new architecture of workflow
execution environments enables a highly increased extensibility of such environments by additional
data management functionalities. For example, current database systems offer useful capabilities for
workflows that a workflow runtime does not offer or for which it would have to be extended in a compli-
cated way. A geographic information system may support operations tailor-made to spatial problems.
Such operations can be used in a simulation that determines spatial changes of the structure of a car
in a crash test [Janowski et al. 2011]. Furthermore, we can easily extend the new architecture to
support global data structures that may serve as a cache for data needed by several workflow instances
or for data that is used for synchronization purposes. Traditional approaches define such global data
structures in the local DBS that workflows access following the separate or hybrid approaches depicted
in Table I. In contrast, the extended architecture allows to provide some kind of shared variables.
The main advantage is that these shared variables are modeled and used transparently, i. e., in the
same way as conventional process variables. The local DBS already offers functionality needed for the
management of shared variables. This includes guaranteed persistence and life-cycle management of
variables and their contents as well as concurrency control mechanisms that are needed when multiple
workflow instances access the same shared variables.

Many data-intensive workflows integrate highly heterogeneous external data and load parts of them
into their workflow context. Our approach serves as starting point to employ different kinds of data
processing facilities for the workflow-internal data processing that are tailor-made to specific workflows.
For example, some workflows might benefit from facilities for semi-structured or unstructured data
such as key-value stores. For data or workflows not having high persistence requirements, we may
also employ main-memory-based database systems to further improve performance. Furthermore, we
can use data integration solutions to describe external and local data in a transparent way.

5. EVALUATION OF TECHNIQUES FOR WORKFLOW-INTERNAL DATA PROCESSING

Now, we evaluate the effectiveness of the techniques introduced in Section 3.3 via experiments, in
particular via the protein modeling workflow of Section 2.4. In doing so, we evaluate some of
the arguments discussed in the previous section regarding improved efficiency and reliability for
data-intensive workflow execution.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 363

Workflow Execution Environment

Apache Orchestration

Director Engine (ODE)

Hibernate

IBM DB2

a) Original ODE b) ODE-TI (Tight Integration)

Workflow 

Runtime

Persistence 

Manager

Database 

System

W3CNode

VarChar BLOB

Variable 

Mapping

<= 256 char. > 256 char.

Workflow Execution Environment

Apache Orchestration

Director Engine (ODE)

Hibernate

IBM DB2

W3CNode

XML 

(pureXML)

Variable 

Mapping

Pushdown

Assign
Web 

Service

Expr. 

Eval.

Fig. 7. Prototypes original ODE (a) and ODE-TI (b), corresponding to architectures shown in Figure 4(a) and 4(b).

5.1 Prototype and Experimental Setup

For our evaluation, we have developed two BPEL-based prototypes of a workflow execution environ-
ment. The first one reflects the current architecture of such environments as shown in Figure 4(a).
We use the open source workflow engine Apache Orchestration Director Engine2 (ODE) V1.3.4 as
workflow runtime, the IBM DB23 V9.7 as DBS, and Hibernate4 V3.2.5 as persistence manager (see
Figure 7(a)). ODE represents variable contents as XML documents. These documents are managed
as Java objects of the type W3C Node5. When storing the data in the DBS, Hibernate maps small
XML documents to variable character fields (varchar) and larger ones to binary large objects (BLOBs).
These data structures are appropriate for the original usage pattern of the local DBS, i. e., it only
serves as data store for variable contents. In the following, we call this prototype original ODE.

To implement the extended architecture presented in Figure 4(b), we have changed the DBS-
internal data structure and the corresponding mapping of Hibernate to a native XML data type
in order to employ the XML-enabled query processing functionality of the DB2 pureXML technol-
ogy6 (see Figure 7(b)). We abstained from the data processing optimizer. Instead, we have extended
Hibernate to enforce the techniques Assignment Pushdown, Expression Evaluation Pushdown, and
Web Service Pushdown introduced in Section 3.3. This leads to a tight integration of the database
and the workflow engine. We call the resulting prototype ODE-TI (Tight Integration).

All system components ran on a 32-bit Windows Server 2003 Enterprise Edition (Service Pack 2)
operating system with two Intel Xeon PowerEdge 2850 3.2 GHz processors and 8 GB main memory.
With this system environment and the above-mentioned prototypes, we have investigated whether
there exist break-even points when ODE-TI is more efficient and reliable than original ODE. Criteria
for such break-even points are the data size, complexity of involved expressions, and complexity of
workflows. In real scenarios, concrete break-even points for decisions of the data processing optimizer
are system- and tool-dependent. We have analyzed the effectiveness of the techniques introduced
in Section 3.3 in two scenarios. The first one comprises small BPEL processes that facilitated the
test of individual workflow activities, i. e., a BPEL assign activity for the Assignment Pushdown,
an if activity for the Expression Evaluation Pushdown, and an invoke activity for the Web Service
Pushdown. This allows us to evaluate the techniques in isolation. The second test scenario is the
sample scenario of a data-intensive protein modeling workflow described in Section 2.4 that contains
all these activities and runs most of them in a loop. Activity Get List of Protein Sequences is
defined as invoke activity, the pattern matching step as if activity, and activities Add Sequence Header
and Count Negative as assign activities. This allows us to evaluate all techniques in combination.

2Apache ODE: http://ode.apache.org/
3IBM DB2: http://www-01.ibm.com/software/data/db2/
4Hibernate: http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
5W3C Node: http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Node.html
6IBM DB2 pureXML: http://www-01.ibm.com/software/data/db2/xml/

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



364 · P. Reimann, H. Schwarz and B. Mitschang

331 

458 

261 

227 

100 
112 

227 

272 

138 130 

26 

106 114 

184 

101 
120 

15 

97 

161 

191 

89 

117 

17 

96 

190 
177 

82 
95 

23 

86 

0

50

100

150

200

250

300

350

400

450

500

Assignment
Pushdown
(no expr.)

Assignment
Pushdown

(simple expr.)

Assignment
Pushdown

(complex expr.)

Expression
Evaluation Pushdown

(simple expr.)

Expression
Evaluation Pushdown

(complex expr.)

Web Service
Pushdown

100 KB

500 KB

4 MB

9 MB

50 MB

D
u

ra
ti

o
n

 f
o

r 
O

D
E

-T
I 

in
 %

 o
f 

o
ri

g
in

a
l 

O
D

E
 

Fig. 8. Effectiveness of techniques for workflow-internal data processing.

The underlying data set of both test scenarios is the list of protein sequences of the protein modeling
workflow. Each protein sequence is organized as XML element contained in an XML sequence of such
elements. The tests have been carried out for five different data sizes: 100 KB, 500 KB, 4 MB, 9 MB,
and 50 MB. This corresponds to 40, 199, 697, 1394, and 7695 protein sequences, respectively, as well
as the same number of iterations of the inner loop. Larger XML documents could not be tested since
Apache ODE either causes main memory overloads for such data sets or generally stops workflow
execution after 2000 seconds without result or failure notification. Remark that this is no severe
limitation of our experimental setting as for performance reasons, processing such large amounts of
data should be assigned to external resources anyway (see Figure 1).

5.2 Test Results

Up to 9 MB, we have carried out each BPEL process of the first test scenario 100 times, and 50
times for 50 MB. Afterwards, we have calculated the mean average of the relevant activity durations.
The durations of original ODE are taken as 100%, wheras those of ODE-TI are reported in Figure 8
in relation to those of original ODE. For the Assignment Pushdown, we have used three different
complexities of the involved XPath expressions. The underlying assign activity first carries out a
read operation to evaluate this expression on the input list of protein sequences, followed by a write
operation that stores the expression result to a variable. The first expression complexity involves no
expression, i. e., it stores the whole input data. The second one contains an expression to select exactly
one protein sequence (simple expression), and the third one concatenates two sequences (complex
expression). So, the write operation in these two cases stores a data set with constant size, i. e.,
its size does not depend on the size of the input data. Regarding no or a simple expression, the
Assignment Pushdown shows an average performance degradation for every data size that ranges
between 358% and 11%. For the complex expression, it shows degradations by 161% and 38% for
100 KB and 500 KB. When increasing the data size to more than 4 MB, we reach a break-even point
in the used system environment where ODE-TI gets slightly better than original ODE by up to 18%.

In the same way, we tested the Expression Evaluation Pushdown with a simple expression that
accesses one protein sequence and a complex expression that accesses two of them. The underlying
if activity only performs a read operation, and no subsequent write operation. For the simple expres-
sion, ODE-TI shows performance degradations from 17% to 127% when reading data up to 9 MB.
However, the break-even point is reached for 50 MB, where we get an improvement of 5%. When
testing the complex expression, we get the same performance for 100 KB and improvements between
74% and 85% for the other data sizes. The results of the Web Service Pushdown get better with
increasing data size and range from slight degradations of 12% to slight improvements up to 14%.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 365

11 

262 

4 
31 

291 

1000 

0

200

400

600

800

1000

1200

40
iterations
(100 KB)

199
iterations
(500 KB)

697
iterations

(4 MB)

1394
iterations

(9 MB)

original ODE

ODE-TI

A
v
e
ra

g
e

 d
u

ra
ti

o
n

 o
f 

o
n

e
 w

o
rk

fl
o

w
 i

n
s

ta
n

c
e
 i

n
 s

e
c
o

n
d

s
 

M
a
in

 m
e
m

o
ry

 o
v
e
rl

a
d

 a
ft

e
r 

c
a
. 

1
0

0
 i

te
ra

ti
o

n
s

 

45 20 

145 

736 

1620 

0

200

400

600

800

1000

1200

1400

1600

1800

40 iterations
(100 KB)

(10 instances)

199 iterations
(500 KB)

(10 instances)

697 iterations
(4 MB)

(5 instances)

1394 iterations
(9 MB)

(3 instances)

T
o

ta
l 

d
u

ra
ti

o
n

 o
f 

a
ll

 w
o

rk
fl

o
w

 i
n

s
ta

n
c

e
s

 i
n

 s
e
c
o

n
d

s
 

(a) Sequential Workflow Execution (b) Parallel Workflow Execution 

M
a
in

 m
e
m

o
ry

 o
v
e
rl

o
a
d

 a
ft

e
r 

c
a
. 

2
0
0
 i

te
ra

ti
o

n
s
 

M
a

in
 m

e
m

o
ry

 o
v
e

rl
o

a
d

 a
ft

e
r 

1
7

 m
in

u
te

s
 

M
a

in
 m

e
m

o
ry

 o
v
e

rl
o

a
d

 a
ft

e
r 

1
5

 m
in

u
te

s
 

M
a

in
 m

e
m

o
ry

 o
v
e

rl
o

a
d

 a
ft

e
r 

1
0

 m
in

u
te

s
 

Fig. 9. Performance improvements for the protein modeling workflow.

In summary and as described in Section 4.1, these experiments show that our techniques considered
in isolation result in performance improvements mainly for complex expressions that are evaluated on
large data sets.

Comparing the results of the Expression Evaluation Pushdown and the Assignment Pushdown and
considering that the only relevant difference between the underlying if and assign activities is the
additional write operation of the assign, we see that the workflow runtime in original ODE deals
more efficiently with write operations than the database system in ODE-TI. The main reason for the
additional overhead in the database system is that it needs to store log information on disk for the
involved data manipulation queries. Furthermore, it needs to adapt indexes when new data is inserted
or when existing data is updated. In case of the Assignment Pushdown without expression, the results
first get better with an increasing data size. However, this turns into the opposite when crossing the
4 MB size. This is because for bigger data sets the effects of the write operation in the database
system superimpose those of the read operation. All other test cases involving an expression either do
not perform a write operation or the write operation stores data of constant size. Hence, the effects
of write operations get less important with growing data sets and ODE-TI achieves better results
the bigger the input data sets are. In original ODE, the invoke activity regarding the Web Service
Pushdown stores the result of the service in the local DBS for persistence and recovery purposes. This
constitutes additional costs for transferring data from the workflow runtime to the local DBS, which
are circumvented in ODE-TI by the Web Service Pushdown (see Section 4.1). These transfer costs in
original ODE largely compensate the above-mentioned overhead for writing the service result in the
database system of ODE-TI, but they cross this overhead when the data size increases.

For the second test scenario, we have executed the protein modeling workflow either in sequence
or in parallel. For the sequential execution, we have carried out 100 instances for both 100 KB and
500 KB. The 4 MB and 9 MB cases have been executed 50 times. The 50 MB and larger documents
could not be tested due to a main memory overload in original ODE and workflow execution times
above 2 million ms in ODE-TI as described in Section 5.1. Figure 9(a) shows the absolute values of
the average duration of one workflow instance compared between original ODE and ODE-TI. These
results indicate the potential of our approach: For 100 KB, we can reduce the duration by nearly
a factor of 3, and even by a factor of more than 8 using 500 KB. For 4 and 9 MB, original ODE
was not able to execute the entire workflow at least once. Due to a main memory overload in the
workflow runtime, it crashed after approximately 200 or 100 iterations, respectively. However, ODE-TI
successfully executed all 50 instances of the workflow for both data sizes. Altogether, these results
correspond to the argument of Section 4.1 that the database technology can more efficiently and

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



366 · P. Reimann, H. Schwarz and B. Mitschang

reliably deal with high volumes of data and complex as well as frequent data processing operations
involved in data-intensive workflows. The standard version of Apache ODE comes with a Java-based
and embedded Apache Derby7 database system. When using Derby instead of DB2 in original ODE,
the problem with main memory overloads would even be worsened since Derby would be executed in
the same Java process as ODE and would thus share its main memory.

Figure 9(b) shows the results for parallel workflow execution where all instances are started at the
same time. Here, we have executed the 100 KB and 500 KB cases ten times, the 4 MB case five times,
and three instances for 9 MB. For each data size, the figure reports the total durations of all executed
workflow instances. ODE-TI outperforms original ODE in any of these cases. It reduces the total
duration by a factor of more than 2 already for 100 KB. When the data size grows, original ODE
gets problems to execute at least one of the workflow instances. After ten to 17 minutes, it aborts
with a main memory overload again. ODE-TI was able to execute all instances in 145 seconds for
500 KB, 736 seconds for 4 MB, and 1620 seconds in the 9 MB case. In summary and as described
in Section 4.1, the evaluated techniques lead to improved efficiency and reliability for both sequential
and parallel execution of data-intensive workflows such as the protein modeling workflow.

6. RELATED WORK

Previous work related to the approach we described in this article mainly deals with two aspects:
(1) various optimization opportunities for the data management in workflows and (2) the modeling of
data-intensive workflows. In the following, we highlight major work in these areas.

6.1 Optimization of Data Management in Workflows

For both data-flow-oriented and control-flow-oriented workflow languages, there exist several optimiza-
tion opportunities for the data management in workflows. Most of them are geared to a certain case
of data management as depicted in Table I. For example, workflow systems that allow for binding ser-
vices at workflow runtime focus on the optimization of data management in the separate case, but not
the integrated one as in our approach [Karastoyanova et al. 2007]. Further optimization approaches
represent rule-based techniques for re-engineering workflow models, which are mainly applied during
the phases workflow design or workflow deployment. In [Radeschütz and Mitschang 2009], for exam-
ple, the authors present an extended data warehouse approach that integrates workflow-related data
and operational business data to support extended analysis techniques for a comprehensive business
process optimization. The approach presented in [Vrhovnik et al. 2007] is mainly suited for the hybrid
case of Table I as it focuses on the optimization of workflows with embedded SQL statements that
are sent to external database systems. The techniques introduced in [Böhm et al. 2007], which are
applied during workflow execution phase, can be used for optimizing data integration workflows that
reflect the integrated case of Table I. All these rule-based re-engineering approaches have in common
that they change the structure of workflow definitions. In contrast, our optimization approach for
the integrated case increases the value of these approaches as it adds a new kind of optimization.
This optimization is transparent to the workflow definitions, i. e., it does not change them, but only
influences their execution within the system architecture of the workflow execution environment.

Data-flow-oriented workflow languages may employ additional optimization techniques for the inte-
grated case of data management. In particular, this encompasses pipeline parallelism between workflow
tasks [Ludäscher et al. 2009] and the possibility to employ scalable and parallel data processing infras-
tructures such as MapReduce or high performance computing (HPC) environments [Zinn et al. 2010],
[Coutinho et al. 2010]. However, these techniques cannot be easily adopted in control-flow-oriented
languages as they strictly separate between the process logic and the data or application processing.

7Apache Derby: http://db.apache.org/derby/

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Design, Implementation, and Evaluation of a Tight Integration of Database and Workflow Engines · 367

6.2 Modeling of Data-Intensive Workflows

The individual workflow classes depicted in Figure 2 typically either employ a rather data-flow-oriented
or control-flow-oriented workflow language. Orchestration workflows are largely described in terms
of control flow [Leymann and Roller 1999], [Görlach et al. 2011]. In contrast, most current data-
intensive workflows are modeled using pure data-flow-oriented languages. The main reasons are that
they treat data and their processing as first-class citizens and that this offers the additional opti-
mization opportunities described above. Nevertheless, control-flow-oriented workflow languages are
increasingly adapted to the needs of data-intensive workflows [Böhm et al. 2007], [Slominski 2007].
The main reasons mentioned in Section 4.2 are the resulting common level of abstraction for all kinds
of workflows, the corresponding possibility for a comprehensive workflow optimization, and generality
issues. Further benefits include the sophisticated fault, compensation, and event handling capabilities
at the workflow level, as well as the support for transaction concepts, a persistent execution state,
and recovery of workflows [Akram et al. 2006]. In addition, many control-flow-based workflow sys-
tems offer further useful capabilities, e. g., user interactions or workflow monitoring. In summary, the
adoption of control-flow-oriented workflow languages for data-intensive workflows may significantly
improve the modeling and execution of such workflows.

7. CONCLUSION AND FUTURE WORK

In this article, we introduced a generic and extensible approach to improve the local data processing
in control-flow-oriented workflow execution environments. This approach is targeted at data-intensive
workflows, but it is also applicable to other kinds of workflows in multiple scientific or business
domains. It includes various techniques to partition the local data processing tasks to be performed
during workflow execution in an improved way. These tasks are either assigned to the workflow
runtime or to the tightly integrated local database engine. The techniques encompass the execution
of variable assignments, expression evaluations for control flow decisions, and Web Service calls by
the database engine, as well as storing literal values in this database during workflow deployment.
Based on our ODE-TI prototype, which enforces these techniques, we evaluated their effectiveness
by means of small test workflows and a more complex and data-intensive protein modeling workflow.
The test results demonstrated that the techniques improve the efficiency and reliability of the local
data processing in data-intensive workflows. So, our approach broadens the set of such workflows that
may be described in terms of control flow.

Future work will try to extend the scalability of our ODE-TI prototype with respect to larger
XML document sizes. Furthermore, we will employ main-memory-based techniques to further improve
performance. This might even entail that ODE-TI may already be used for smaller data sizes and for
less complex expressions and workflows.

REFERENCES

Akram, A., Meredith, D., and Allan, R. Evaluation of BPEL to Scientific Workflows. In Proc. of the 6th
International Symposium on Cluster Computing and the Grid. Washington, DC, USA, pp. 269–274, 2006.

Barga, R., Jackson, J., Araujo, N., Guo, D., Gautam, N., and Simmhan, Y. The Trident Scientific Workflow
Workbench. In Proc. of the 4th International Conference on e-Science. Indianapolis, IN, USA, pp. 317–318, 2008.

Berg, J. M., Tymoczko, J. L., and Stryer, L. Biochemistry. W. H. Freeman and Co., New York City, NY, USA,
2007.

Böhm, M., Habich, D., Wloka, U., Bittner, J., and Lehner, W. Towards Self-Optimization of Message Trans-
formation Processes. In Communications of the 11th East-European Conference on Advances in Databases and
Information Systems (ADBIS 2007). Varna, Bulgaria, pp. 116–125, 2007.

Coutinho, F., Ogasawara, E., de Oliveira, D., Braganholo, V., Lima, A., Dávila, A., and Mattoso, M.
Data Parallelism in Bioinformatics Workflows using Hydra. In Proc. of the 19th ACM International Symposium on
High Performance Distributed Computing (HPDC 2010). Chicago, IL, USA, pp. 507–515, 2010.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



368 · P. Reimann, H. Schwarz and B. Mitschang

Da Cruz, S., Batista, V., Silva, E., Tosta, F., Vilela, C., Cuadrat, R., Tschoeke, D., Davila, A., Campos,
M., and Mattoso, M. Detecting Distant Homologies on Protozoans Metabolic Pathways using Scientific Workflows.
International Journal of Data Mining and Bioinformatics (IJDMB) 4 (3): 256–280, 2010.

Deelman, E. and Chervenak, A. Data Management Challenges of Data-Intensive Scientific Workflows. In Proc. of
the 8th International Symposium on Cluster Computing and the Grid. Washington, DC, USA, pp. 687–692, 2008.

Freire, J., Koop, D., Santos, E., and Silva, C. T. Provenance for Computational Tasks: A Survey. Computing
in Science and Engineering 10 (3): 11–21, 2008.

Görlach, K., Karastoyanova, D., Leymann, F., Reiter, M., and Sonntag, M. Conventional Workflow Technol-
ogy for Scientific Simulation. In Guide to e-Science, Y. Yang, L. Wang, and W. Jie (Eds.). Springer, London, UK,
chapter 11, pp. 323–352, 2011.

Haasdonk, B. and Ohlberger, M. Reduced Basis Method for Finite Volume Approximations of Parametrized Linear
Evolution Equations. Mathematical Modelling and Numerical Analysis 42 (2): 277–302, 2008.

Janowski, P., Mitschang, B., and Gollmann, A. Issues and Characteristics of Testing as Part of the Design Process
in Mechanical Engineering. In Proc. of the 15th International Conference on Computer Supported Cooperative Work
in Design (CSCWD 2011). Lausanne, Switzerland, pp. 599–604, 2011.

Kamath, C., Wale, N., Karypis, G., Pandey, G., Kumar, V., Rajan, K., Samatova, N. F., Breimyer, P.,
Kora, G., Pan, C., and Yoginath, S. Scientific Data Analysis. In Scientific Data Management: Challenges,
Technology, and Deployment, A. Shoshani and D. Rotem (Eds.). Computational Science Series. Chapman & Hall,
chapter 8, pp. 281–323, 2009.

Karastoyanova, D., Wetzstein, B., van Lessen, T., Wutke, D., Nitzsche, J., and Leymann, F. Semantic
Service Bus: Architecture and Implementation of a Next Generation Middleware. In Proc. of the 2nd International
ICDE Workshop on Service Engineering (SEIW 2007). Istanbul, Turkey, pp. 347–354, 2007.

Leymann, F. and Roller, D. Production Workflow: Concepts and Techniques. Prentice Hall, Englewood Cliffs, 1999.
Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A., Tao, J., and

Zhao, Y. Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice and
Experience 18 (10): 1039–1065, 2006.

Ludäscher, B., Altintas, I., Bowers, S., Cummings, J., Critchlow, T., Deelman, E., Roure, D. D., Freire,
J., Goble, C., Jones, M., Klasky, S., McPhillips, T., Podhorszki, N., Silva, C., Taylor, I., and Vouk, M.
Scientific Process Automation and Workflow Management. In Scientific Data Management: Challenges, Technology,
and Deployment, A. Shoshani and D. Rotem (Eds.). Computational Science Series. Chapman & Hall, chapter 13, pp.
467–508, 2009.

Ludäscher, B., Weske, M., Mcphillips, T., and Bowers, S. Scientific Workflows: Business as Usual? In Proc. of
the 7th International Conference on Business Process Management (BPM 2009). Ulm, Germany, pp. 31–47, 2009.

Maier, A., Mitschang, B., and Leymann, F. On Combining Business Process Integration and ETL Technologies.
In Gesellschaft für Informatik (ed.): Datenbanksysteme für Business, Technologie und Web. Karlsruhe, Germany,
pp. 533–546, 2005.

Radeschütz, S. and Mitschang, B. Extended Analysis Techniques for a Comprehensive Business Process Optimiza-
tion. In Proc. of the International Conference on Knowledge Management and Information Sharing (KMIS 2009).
Madeira, Portugal, pp. 77–82, 2009.

Reimann, P., Reiter, M., Schwarz, H., Karastoyanova, D., and Leymann, F. SIMPL - A Framework for
Accessing External Data in Simulation Workflows. In Gesellschaft für Informatik (ed.): Datenbanksysteme für
Business, Technologie und Web. Kaiserslautern, Germany, pp. 534–553, 2011.

Slominski, A. Adapting BPEL to Scientific Workflows. In Workflows for e-Science - Scientific Workflows for Grids,
I. Taylor, E. Deelman, and D. Gannon (Eds.). Springer, London, UK, chapter 14, pp. 208–226, 2007.

Taylor, I., Deelman, E., and Gannon, D. Workflows for e-Science - Scientific Workflows for Grids. Springer,
London, UK, 2007.

Vrhovnik, M., Schwarz, H., Radeschütz, S., and Mitschang, B. An Overview of SQL Support in Workflow
Products. In Proc. of the 24th International Conference on Data Engineering (ICDE 2008). Cancùn, México, pp.
1287–1296, 2008.

Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., and Kraft, T. An Approach
to Optimize Data Processing in Business Processes. In Proc. of the 33rd International Conference on Very Large
Data Bases (VLDB 2007). Vienna, Austria, pp. 615–626, 2007.

Zinn, D., Bowers, S., Köhler, S., and Ludäscher, B. Parallelizing XML Data-Streaming Workflows via MapRe-
duce. Journal of Computer and System Sciences 76 (6): 447–463, 2010.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.


