
Planning Databases Service Level Agreements

through Stochastic Petri Nets

Marcelo Teixeira1, Pablo Sabadin Chaves2

1 Universidade Federal de Santa Catarina

mt@das.ufsc.br
2 Dueto Tecnologia Ltda

pablo@duetotecnologia.com.br

Abstract. The Service Oriented Architecture (SOA) has become a pattern for managing business transactions through
distributed services, usually supported by third-party providers. In the SOA world, Service Level Agreements (SLA) are
used to establish the requirements between customers and providers. Among the clauses agreed in SLA are those related
with databases execution time, which have direct relationship with the overall web services performance. However, the
high variability, typical of the SOA environments, makes difficult the negotiation of an appropriate SLA that could be
guaranteed in practice. Thus, efforts to predict the quality of SOA-based transactions are justified by anticipate possible
problems that tend to arise at run-time, disturbing the SLA clauses. In this article we propose a simulation modeling
approach, based on stochastic Petri nets, for performance evaluation of databases requests in data-intensive business
applications. Through our proposal it is possible to predict the resources consumption and performance degradation of
databases, upon the variation of the workload levels, both at design-time and run-time. A case study was conducted in
order to illustrate our contributions.

Categories and Subject Descriptors: D.4.8 [Software]: Performance—Modeling and prediction

Keywords: Databases, GSPN, Performance Evaluation, SLA compliance

1. INTRODUCTION

The new patterns for the informations systems are increasingly prioritizing the integration of orga-
nizational processes and the third partnerships enhancement, which results in distributed business
models. In this context, the service-oriented architecture (SOA) has supported these new paradigms.
Concisely, SOA is an architecture focused on heterogeneous environments, in which software compo-
nents could be executed in platforms with distinct characteristics. Among the advantages achieved
by adopting SOA paradigm are component reuse, interoperability, flexibility, integration, etc.

Within the SOA world, the quality of services (QoS) directly effects the quality of business trans-
actions and the relationships between customers and service providers as well [Casati et al. 2003].
Usually, Service Level Agreements (SLA) are used to establish the legal commitments between them,
whose breach may entail legal penalties. Among the clauses agreed in a SOA-aware SLA, are those
related with databases (DB) spent time, which affect the web services overall performance.

However, the high variability typical of the SOA environments, makes difficult the negotiation
of a SLA level that could, in fact, be guaranteed in practice. The ratio of the load variation for
Internet applications can achieve the order of 300% [Chase et al. 2001], which makes critical the
challenge of managing performance requirements of these systems. Moreover, in SOA it is common
that the applications are constantly changing, with new services being introduced, updated and/or

Copyright c©2011 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011, Pages 369–384.



370 · M. Teixeira, P. S. Chaves

removed [Baresi and Guinea 2008] and it is essential to predict the impact of these modifications over
the agreed contracts. In practice, the designers develop the application and stress it to measure its
quality. This approach can be expensive and time consuming, since the analyst needs an executable
version for that. Thus, estimating SOA metrics prior to develop or change the physical system, is
essential to avoid undesirable behavior.

Recently proposed alternatives suggest adopting models for performance prediction in SOA-based
systems [Rud et al. 2007; Teixeira et al. 2010], which certainly helps to establish some SLA clauses
[Teixeira et al. 2011]. However, these approaches have basically focused on evaluating SOA network
and web service transactions, generalizing that the time spent by DB queries is implicit into the
service performance. From a SLA point of view it seems a gap, since some clauses can be specifically
related with DB spent time. Moreover, this important drawback can affect a reliable SOA capacity
planning, whereas one can not verify, for example, the DB performance degradation insofar as the
workload increases nor the spent time by messages waiting in input and output database buffers,
which is common in data-intensive applications.

Therefore, we propose in this work a GSPN (Generalized Stochastic Petri Nets [Marsan et al.
1995]) based simulation modeling for estimating the performance of databases operations in SOA-
aware scenarios. Our model analyses the resource consumption and performance levels degradation in
databases with highly variable workloads. Then, based on these information it is possible to elaborate,
at modeling time, accurate agreements to be established between services customers and providers.

The main advantage of our proposal, with relation to another similar alternatives, is that it does not
require real time measurements nor the complete system implementation to provide useful estimates.
These information are not always available at design time, when a SOA capacity planning is useful.
Instead, our model is supported by higher level parameters, collected from the Data Base Management
System (DBMS) configuration and from a set of samples containing DB queries executions statistics.
For this reason, the adopted technology, structure and/or particular type of operation, are irrelevant.

In order to illustrate our approach and analyze its accuracy, we develop a case study where were
compare the estimated results against those measured from an evaluated DB system, performed in a
real SOA environment. The remainder of this article is organized as follows: Section 2 describes some
related works; Section 3 introduces the basic concepts of SOA, SLA and GSPN; Section 4 presents
the proposed performance model. Finally, Section 5 presents the developed case study and Section 6
the final comments.

2. RELATED WORK

Performance Evaluation of DB systems has been explored since the initial proposals of DB technologies
[Elhardt and Bayer 1984; Adams 1985]. However, with the web advent, DB systems have embodied
new features, necessary to supply emergent requirements, as parallel and distributed extensions [De-
witt and Gray 1992], object [Kim et al. 2002] and service orientation [Tok and Bressan 2006], etc.
Although these new concepts have played an essential technological role, evaluating their performance
is difficult due to the variable and data-intensive environments where they are immersed.

In [Ranganathan et al. 1998] the authors discuss the impact of radically different workload levels on
the performance of DB applications and how it becomes an important concern when it is necessary to
provide service guarantees. Still, [Krompass et al. 2008] focuses on to separate the requests belonging
to different levels of workloads, which allow to adopt particular policies when performing them.

Also, in [Lumb et al. 2003] is developed an approach for guaranteeing DB performance levels in
highly variable scenarios. Through a developed tool, the authors suggest to retain and divert trans-
actions that could saturate the system and cause performance loss. Thus, they avoid violating the
agreed service clauses.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 371

In [Schroeder et al. 2006], the authors develop the framework EQMS (External Queue Management
System), that acts externally to the DB system, filtering the arrival of DB requests and so scheduling
where and when each transaction is dispatched to the DBMS. Among the benefits provided by the
EQMS, is the possibility of labeling requests before their execution, composing classes of similar
transactions to be performed according to QoS rules and/or priorities polices.

In fact, the existent proposals seem effective for dealing with DB transactions in their real envi-
ronment, estimating and improving their qualitative metrics. However, specially when interacting
with service partnerships, the business managers need to be aware on the capacity planning and SLA
negotiation issues. Usually, these information are required at design-time, in order to compose SLA
clauses. Then, most of the existent alternatives for DB performance evaluation, although efficient,
can be useless for this purpose.

An option to cover these gaps is by adopting analytic models. In [Tomov et al. 2004], for example,
the authors suggest adopting a queueing networks approach for DB response time estimation. The DB
execution time is estimated by mapping DB queries according to patterns of resource consumption.
Meanwhile, queue times are predicted through using heuristic rules [Zhou et al. 1997]. Similarly,
[Osman et al. 2010] develop an approach to evaluate a particular DB design before its implementation.
In fact, these proposals seem closed with ours, since are focused on predictive organizational support.

However, analytic models are shown to be predominantly deterministic, which does not often match
the characteristics of the real web environments [Teixeira et al. 2010]. Moreover, they can be inflexible
when adopting different probability distribution, in order to variate the modeled system behavior.
Still, their accuracy can be degraded when representing queues times.

The problem is that, in practice, there is no predictable execution patterns for distributed web trans-
actions and, certainly, it makes critical any type of performance estimation [Nicola and Jarke 2000].
Therefore, one can imagine how difficult is provisioning storage resources to ensure that database
queries will execute enough quickly that will not delay the process more than the expected [Reiss and
Kanungo 2005]. In this sense, we suggest that a stochastic simulation approach can absorb most of
these drawbacks and, as we shall describe, it can be powerful from a SLA planning point of view.

3. PRELIMINARIES

In this section we present the general concepts associated with the SOA paradigm, implementation and
relationship between SOA users, highlighting the legal clauses usually agreed among them, particularly
those related with DB performance guarantees.

In order to provide a way for improve the SOA contracts negotiation, we also introduce the tech-
nical foundation used for that. In particular, we briefly describe GSPN and probability distributions
concepts, essentials to develop the proposed model for DB performance evaluation.

3.1 SOA and Related Concepts

SOA emerges as a new paradigm for information planning and business processes integration. SOA is
not a tool, but principles or concepts. This architecture is defined on the basis of three fundamental
technical concepts [Josuttis 2008], as follows:

Functionality as services: service is a SOA element that operates independently from the other
components of the system. Usually, a services receives one or more requests, processes them, and
returns its contributions, through an interface;

Enterprise Service Bus (ESB): is the infrastructure that provides interoperability between dif-
ferent distributed systems and services. From a more practical perspective, the ESB can be understood
as a mean by which a client invokes one or more services provided by suppliers;

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



372 · M. Teixeira, P. S. Chaves

Loose coupling: by focusing on large distributed systems, SOA supports the reduction of depen-
dence between services, avoiding that a failure or maintenance affects significantly other services.

The most widely used language for SOA systems orchestrations is BPEL [Oasis 2011]. Through
simple primitives and a distributed nature, BPEL provides facilities for orchestrating modern business
logic flow, where complex operations are supported by nesting basic activities. The basic structures
of BPEL are Invoke, Receive, Assign, Wait and Reply. The composite structures involve Sequence, If,
Pick, RepeatUntil/While/ForEach and Flow.

In the SOA world, the service commitments between customers and providers are expressed by
contracts, known as Service Level Agreements (SLA) [Sturm et al. 2000]. A SLA expresses responsi-
bilities and rights with respect to QoS levels, such as but not limited to response time, availability,
cost, etc. [Pinheiro 2009]. It also foresees the penalties for the cases where the quality falls below the
promised standard [Raibulet and Massarelli 2008].

One can imagine how difficult is to fulfill this type of commitment, when dealing with highly
variable environments, as is the case of the SOA scenarios. Successful examples have been achieved
by adopting predictive models to support the SLA planning for network and web service transactions.
Here, we suggest an approach that helps to define SLA clauses for SOA databases performance, which
is disregarded by the existent alternatives. Before that, however, it is essential to clarify the main
concepts related with our proposal, like those presented in the following.

3.2 Generalized Stochastic Petri Nets - GSPN

Among the several extensions of the Petri Nets, the timed ones [Merlin and Farber 1976; Murata 1989]
are shown to be powerful for the modeling of time-dependent process, as communication protocols,
systems performance, hardware design and so on.

For the cases where the explored timed processes demand a non-deterministic representation, an
efficient alternative is to adopt GSPN (Generalized Stochastic Petri Nets [Marsan et al. 1995]) ex-
tensions, which associate timed and non-timed (immediate) transitions, in a way that the time is
represented through random variables [Marsan et al. 1984].

The GSPN are extensively used, specially for systems performance evaluations since, in these cases,
the analyzed behaviors are naturally stochastic. The model proposed in this work, was built and
simulated through GSPN structures. Alternatively, extensions like CPN - Coloured Petri Nets [Jensen
1997] could be considered. However, CPN express the time through integer values, handled directly
in the model, by the designer. Meanwhile, in GSPN it is implicit into continuous variables, which is
much more efficient and useful.

In a GSPN structure, these variables are represented by timed transitions, with exponential dis-
tribution. Nevertheless, there may be modeling situations that require representing non exponential
behaviors. Thus, it is essential to discuss the main distributions that a random variable can assume. In
the GSPN model, it is represented by combining arrangements of exponential transitions, as discussed
in the following.

3.3 Probability Mass Functions - PMF

Assuming a discrete scope, a Probability Mass Function (PMF) is a stochastic function that asso-
ciates each random variable with each one of its possibly assumed values [Cassandras and Lafortune
2008; Jain 1991]. Among the most common distributions are the Binomial, Geometric, Poisson, Er-
lang, Hyper-exponential, Hypo-exponential and Exponential, where the last four mentioned ones, are
depicted in Fig. 1 [Desrochers and Al’Jaar 1995].

In the following, we briefly discuss each of them, using average (µ) and standard deviation (σ)

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 373

Fig. 1. Example of Probability Distributions

parameters to characterize them.

3.3.1 Exponential. This distribution is indicated for situations where:

µ

σ
= 1.

In GSPN, representing an exponential distribution requires assigning µ as the temporal parameter
(λ) for a timed transition.

3.3.2 Hyper-Exponential. It is commonly used in a behavioral situation where:

µ

σ
< 1.

Thus, a GSPN Hyper-Exponential structure receives the following parameters:

λh =
2µ

(µ2 + σ2)
; r1 =

2µ2

(µ2 + σ2)
; r2 = 1 − r1.

3.3.3 Erlang. Erlang consists in a special case of an exponential distribution, that is triggered
several times. Usually an Erlang is adopted for the cases whose behavior is characterized by:

µ

σ
∈ Z ∧

µ

σ
6= 1.

The parameters of this distributions are as follows:

γ = (
µ

σ
)2; λ = (

γ

µ
).

3.3.4 Hypo-exponential. This distribution is particularly important for this work, since it is used for
conduct the case study. A Hypo-exponential distribution is normally adopted to represent behaviors
where:

µ

σ
> 1 ∧

µ

σ
6= Z.

Its parameters are obtained according to the following equations:

(

µ
σ

)2

− 1 ≤ γ <
(

µ
σ

)2

; λ1 =
γ + 1

µ ∓
√

γ(γ + 1)σ2 − γµ2
; λ2 =

γ + 1

γµ ±
√

γ(γ + 1)σ2 − γµ2
.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



374 · M. Teixeira, P. S. Chaves

Fig. 2. Typical SOA Process Interaction

As can be seen, a Hypo-exponential function matches Exponential and Erlang distributions. Observe
that λ1 represents an exponential approximation, while λ2 maps an Erlang distribution, since the γ
parameter is used as a sequencer of Exponential triggers.

4. DATABASES PERFORMANCE MODEL

This section describes our proposal for modeling and performance evaluation of DB performing in
Service-oriented environments. We are considering the flow of requests since their departure from the
web service to the DB server, until a response is received back, by the web service. Alternatively,
additional analysis of the SOA process could be associated to the present proposal, covering network
links, orchestrations engine and web service evaluations [Teixeira et al. 2009; 2010].

The sequence diagram presented in Fig. 2 identifies our workspace within a SOA-aware scenario.

Usually, a web interface is used to compose packages sent from remote users to a BPEL server. After
received, the messages are orchestrated by the BPEL’s engine, that invokes several distributed WS
iteratively, until a response be sent to requestors. Usually, web services operations require databases
transactions (in bold), whose performance evaluation is our goal.

Based on the scenario from Fig. 2, we identify which ranks of activities and devices are responsible
for time consumption in a DB transaction, such that the following delays are considered:

—Buffering: it is responsible for storing messages, before and after the DB execution;

—Parsing: corresponds to the stage of validation, syntactical and semantical, of the queries received
for processing into DB server;

—Execution: consists in to perform the validated code. This stage involves accessing the data rela-
tions, building a package that answers each request.

From a stochastic point of view, Parsing and Execution stages could be evaluate together, since the
largest portion of time is consumed by the "execution" rank. Hence, in Fig. 3 we present the proposed
general structure to map the temporal behavior of DB transactions. The models building embodies
the GSPN (Generalized Stochastic Petri Nets) formalism as modeling technique and composition rules
among them. Thus, it can be simulated through specific tools (e.g. TimeNet [Zimmermann 2011])
and performance metrics can be obtained.

Table I presents the main notation for the model. Timely, we shall discuss how to assign the
correspondent parameters (see in Subsection 4.1).

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 375

Fig. 3. Proposed GSPN structure for Databases Performance Evaluation.

Table I. Notation for the Proposed Model.
Notation Description

Stati Used only for estimates purposes. It holds the tokens from the start to the exit point;
Ri Contains the available resources for input queue (size in bytes);

Places Ki Contains the available execution resources (parallel processing);
Si Contains the requests waiting for processing;
QIi Contains the requests that are being processed;
QOi Contains the requests after processing;

Tλi Simulates the arrival of requests in the system;
Transitions tIdbi Represents the DB processing Input;

tOdbi Represents the DB processing output;
tendi Simulates the process exit point.

Let i be the indexer of the evaluated DB1. Basically, the model starts by firing the timed transition
Tλi

, according to rate 1/dλi
, resulting from the delay dλi

. The fired requests are inserted into an
input queue QIi, bounded by the number of resources in the place Ri. According to the availability
of resources in the place Ki, the transition tIdbi fires, inserting the request into the place Si, which
contains the requests that are being executed in the DB. Hence, the tokens remain in Si according to
the adopted Probability Mass Function - PMF (gray block), whose choice is supported by measured
DB statistics (see Section 3). Timely we turn to discuss the PMF selection (See Section 5).

After performing, the requests are inserted into the output queue QOi, which represents also the
model exit point. The supported number of requests in QOi is coordinated by the availability of
resources in Ri place. The weights of input and output arcs, from/to places Ri and Ki, express the
impact caused by inserting and removing resources in each repository. This impact is conservative,
that is, the number of removed and returned tokens is the same, for each request.

Notice that by sharing Ri with QIi and QOi places, it is possible a model deadlock. Supposing, for
example, a situation where QIi consumes all the resources from Ri. After perform, the requests can
not be sent to QOi, because there is no more resources for that. For the same reason, Tλi can not
trigger requests toward QIi. Therefore, the system is blocked.

In order to avoid that, we assign conditions for the arcs Case (i) and Case (ii). Through Case (i)
we avoid the deadlock by firing of tOdbi, even if there is no enough resources in Ri. When it happens,

1Several DBs could be concurrently evaluated in a Web Service Composition

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



376 · M. Teixeira, P. S. Chaves

Case (ii) assigns 0 for the arc that leads to QOi, discarding definitively the request.

4.1 Model Parameters

In order to simulate the proposed model, it is necessary to feed its input structures. In the following,
we presented a practical manner to do that.

4.1.1 Database Queue Parameters. Let Ri be the available resources for the input and output
DB queues occupation. The marking2 of Ri is defined according to the buffer size, measured in the
real DB system. In practice, each DBMS defines their own parameters for the amount of memory
available for DB operations. These parameters are flexible and can be changed according to the system
management rules. The most important parameters to be collected from DBMS are:

(1) Number of Memory Pages (NMP ) (integer): refers to the available number of memory blocks
destined to serve the DB operations3;

(2) Size of the Memory Pages (SMP ) (bytes): represents the amount of bytes assigned to each NMP .

From M = NMP ∗ SMP , we have the amount of memory (M) available for storing input and
output messages from/to DB system. Therefore, the marking of Ri is such that #Ri = M . In
addition, one need to establish the impact caused by the arcs from/to Ri. For that, we assign weights
to the arcs (a) Get_Ri and (b) Put_Ri, according to the mean size of exchanged messages (bytes),
such that:

(a) Get_Ri = Msgarr; (b) Put_Ri = Msgdep,

where Msgarr and Msgdep are the measured mean size of messages arriving/departing, respectively,
in/from DB system. Finally, the assigned parameters allow us to estimate the DB Queue Response
Time (QRT), through the following equation:

QRT =
E(QIi) + E(QOi)

λi

,

where, for j = QIi, QOi, E(j) corresponds to the expectation of tokens in the place j and λi is the
arrival rate of requests in the DB i. Observe that λi results from 1/dλi

and dλi
is the parameter of

the transition Tλi. The QRT represents the overall time spent by messages waiting before and after
their processing.

4.1.2 Database Execution Parameters. Modeling DB processing operations encompasses requests
since their arrival, in the Si place, until that transition tOdbi fires. Therefore, the adopted PMF makes
part of the DB execution modeling so as Ki, that contains the available resources for DB processing.
In the following we show how to calculate these parameters.

4.1.2.1 Resources for Processing. In order to establish the marking of Ki, it is necessary to measure
the DB system (or its prototype when it is not available for). Specifically, one must collect the
maximum number of parallel operations supported by the DB, without causing queues on the system.

Through gradually increasing the workload level, we observe the point where the queue appears
on DB system. It is detected by an increase in the response time when the workload overcomes
the resources available for processing. Thus, #Ki receives the value of the workload applied before
observing the first signals of queue. The weight of the arcs Get_Ki and Put_Ki is 1, since their
source place (Ki) contains requests and, therefore, each performed request has impact 1 on its resources
repository.

2"#" is used to reference the number of tokens in the place p (#p ∈ N).
3Large database pages benefits database performance, usually decreasing I/O time.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 377

Fig. 4. Activity Diagram of Evaluated Process

4.1.2.2 Processing Response Time. These assigned parameters enable us to estimate the DB Pro-
cessing Response Time (PRT), through the following equation:

PRT =
E(Si) + E(PMF )

λi

,

where, E(Si) is the expectation of tokens in the place Si and E(PMF ) is the expectation of tokens
in all the places contained in the PMF structure. Finally, λi is the arrival rate of requests in DB
system i. The value of PRT represents the amount of time spent when processing DB operations.

4.1.3 Overall Database Response Time. Finally, one can estimate the overall DB Response Time
(DBRT), including queues and processing time, according to one of the following equations:

DBRT =
E(Stati)

λi

, or even DBRT = QRT + PRT,

where E(Stati) contains the expectation of tokens in the place Stati, which does not exert a functional
role, but it is used for storing the overall process expectation. Hence, the value of DBRT means the
amount of time spent by a DB transaction, considering all its execution stages.

Summarizing, the proposed DB performance evaluation starts by receiving a set of parameters,
without including any evidence of queue. As a result, we inform the variable behavior assumed by the
DB system, insofar as the workload level increases. For that, of course, the GSPN must be simulated,
as presented in the following.

5. CASE STUDY

We developed a case study in order to validate our approach. For that, we explore a DB system,
that makes part of a SOA application, implemented into the scope of this work. This application
represents a real process, currently used in practice by Brazilian government for the issuance and the
management of electronic invoices. It was necessary to propose our own implementation due to the
impossibility of accessing the real DB, from the federal agency, since the stored data are confidential.

Even so, our application covers the usual SOA features, since its workflow is orchestrated by using
BPEL language [Oasis 2011], its services are deployed on remote servers and interfaced with external
users, through the World Wide Web. These users order different types of distributed operations,
generating a random system workload. The developed SOA process is depicted in Fig. 4.

Basically, for each finalized sell, a commercial invoice is transmitted in parallel toward a regional and
national web services. For now, our scope covers the regional operations, although it could involve
additional web services (reason for the notation i, in the proposed model). The Evaluation zone

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



378 · M. Teixeira, P. S. Chaves

contains the DB system that receives the regional transactions. After recording each remittance and
replying a response message, the merchandises are released to transport or transfer.

Otherwise, if the request does not respond timely, according to the SLA definitions, a contingency
operation is invoked. In this case, the overall system response time tends to be increased, disagreements
with service commitment are susceptible to occur and the data security is affected, since the remittance
must be retransmitted posteriorly. Besides this, any problem delaying the process directly affects
customers and/or inspection agencies, that usually are waiting for the invoices validation.

For these reasons, it is essential that a contractual structure is preventing eventual service inter-
ruptions or even delays longer than the expected to answer, defining the penalties for possible inter-
ventions of the contingency solution. By providing juridical validity for web electronic transactions,
it is reasonable to supply technological support for the lawyer’s minds.

Our goal, in this work, is focused on investigating how to establish and accomplish legal rules for
SOA DB transactions. For the described process, we estimate the mean spent time for receiving a
response from the invoices transmitters and its degradation insofar as the workload increases. It helps
to acquire and provide electronic DB operations with QoS guarantees. Moreover, it avoids to develop
a SOA system and, only then, to observe unexpected low performances, which certainly has already
consumed money, time, employees, etc.

5.1 Database Structure and Primary Measurements

We are interested on to estimate the performance of DB requests, through using the proposed GSPN
model. But this model receives a set of input parameters, obtained from the DB system. So, for the
particular case, the DB structure was built over a Java DB technology4, such that the experiments
posteriorly performed, require only partially its relations, involving the following tables:

—Products: containing more than 700 records;

—Clients: with more than 500 records;

—Invoices: currently, it includes more than 10.000 received records;

—MovInvoices: it also contains more than 10.000 records.

In the sequence, is presented an example of a problem, whose solution is achieved through bringing
information from the DB recorded data.

Problem 1. Given the previously described DB system, implement a query that returns all the
clients and their respective negotiated invoices, admitting the following requirements:
(i) the merchandises were already shipped;
(ii) the deadline for the payment is in, at most, one month.
Besides this, sort the results by the invoice deadline.

Let us assume the following SQL query, in order to resolve problem 1:

select *
from CLIENTS, INVOICES, MOV_INVOICES, PRODUCTS
where INVOICES.Clients_IdClient = CLIENTS.idClients
and INVOICES.IdInvoices = MOV_INVOICES.Invoices_IdInvoices
and MOV_INVOICES.Products_IdProducts = PRODUCTS.IdProduct
and INVOICES.Shipment_Date <= ’Informed current date’
and INVOICES.Deadline <= ’Informed Limit date for payment’

4DB Java: http://www.oracle.com/technetwork/java/javadb

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 379

Table II. Model Input Parameters.
Type of collected Parameter

DBMS Configuration Buffering Processing

NMP SMP #Ri (bytes) Get_Ri Put_Ri #Ki (req) Get_Ki Put_Ki

1000 4(KB) = 4096(B) 4096000 1022 1022 2 1 1

order by INVOICES.Deadline

By the sake of convenience, we are evaluating a single query, although it does not make difference if
considering more than one. Actually, by receiving a set of initial measurements and DBMS parameters,
issues involving DB technology, type of performed operation, access policies, etc., are irrelevant for
the estimates, since they are absorbed by each particular set of collected parameters. It enables us to
generically apply our proposal over any size and type of DB and different operation as well, without
compromising its accuracy.

Then, using the proposed code, we obtain the parameters to feed the GSPN model, by collecting the
DB statistics when answering the mentioned query. Through JMeter tool5, an Apache software de-
signed mainly for workload generation and performance evaluation, we build a test plan that performs
it repeatedly.

In JMeter, we gradually increase the workload of requests. However, notice that the model input
parameters, should not include queue time. This is part of the dynamic system behavior and should be
estimated through subsequent simulations. Instead, when measuring, we impose the highest possible
workload level, before observing evidences of queue appearing in the system. It is detected by a
perceptible increases of the response time, when the workload overcome the systems resources. Hence,
we collected the parameters presented in Table II, complemented by those information from the DBMS.

First two columns bring the DBMS configuration parameters, where NMP represents the number
of memory pages available for database operations, whose size6 is defined by SMP .

Columns labeled Buffering, show the input and output queue resources, responsible for storing the
database requests before and after their execution, which is supplied by the parameters presented in
Processing columns. For clarifying the notations meaning, see the model description in Section 4.

The presented parameters are not the only ones necessary for allowing the GSPN simulations. A
probability function must be also defined, as discussed in the following.

5.2 Establishing and Feeding the PMF

Assuming the proposed GSPN topology for performance evaluation of DB systems (see Fig. 3), notice
that input and output memory spaces (places QIi and QOi) mediate the access to the DB core Si.
These buffers express the DB extra-execution spent time.

Modeling the DB processing time, however, requires to chose a PMF that better fits with the
real system behavior. This decision is made during the initial measurements, when the model input
parameters are being collected. Once chosen, the same PMF can be used along all the simulation
process, since it should stochastically follow the changes of the DB dynamic behavior.

The calculation of an appropriate PMF, requires the average - µ and standard deviation - σ of
the DB requests response time. Usually, these metrics are only defined after collecting a set of DB
transactions, containing an enough number of samples that allows observing a tendency to a stationary
behavior.

5JMeter: http://jakarta.apache.org/site/news/news-2011-q3.html
6The used DB automatically tunes the database page size, although it can be changed.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



380 · M. Teixeira, P. S. Chaves

Fig. 5. Adopted Hypo-exponential distribution

For the particular case, for example, when JMeter was requesting around the hundredth sample,
it was already possible to observe a stationary condition. Then, the values assigned for µ and σ are
those from (a) and (b) as below. Equation (c) defines how establishing the coefficient of variation -
Π, with result in (d):

(a) µ = 36; (b) σ = 17; (c) Π =
σ

µ
; (d) Π = 0, 47.

Depending on the value assumed by Π, one can identify the appropriated PMF that would better
represent each type of stochastic process. For the particular example, Π = 0, 47. Then, as discussed in
Section 3.3, whenever Π < 1 it is suggested adopting a Hypo-exponential distribution, whose structure
is depicted in Fig. 5. Therefore, this GSPN block takes the place of the gray box in the initial model,
presented in Section 4, Fig. 3.

A Hypo-exponential probability function matches Exponential and Erlang distributions. In fact,
Tλ1 represents an exponential approximation, while Tλ2 maps an Erlang distribution, since the γ
parameter is used as a sequencer of Exponential triggers, both with delay dλ2.

Supported by the formulation discussed in Section 3.3 and variables µ and σ previously presented,
we establish the Hypo-exponential parameters, as follows:

dλ1 = 12; dλ2 = 23; γ = 3.

At this moment we have the necessary informations to proceed with the GSPN simulations, provid-
ing organizational informations and planning SLA for DB transactions, as discussed in the following.

5.3 Defining SLA clauses for DB systems

Let us start supposing usual situations, faced when defining SLA clauses for SOA-based systems.
Assuming, for example, that it is necessary to answer the following question.

Question 1: For the particular DB system discussed in this section, let W be a predefined workload
level of requests arriving at DB server (requests per second). Which SLA, for the DB mean response
time, could be guaranteed in practice?

In this case, a typical range of workload levels (variating W ) is known, but the response times for
the DB requests under these workloads, are quite variables and difficult to predict.

In a similar way, let us suppose that a performance engineer is challenged to answer the following
question, to the company’s legal department, in order to elaborate contractual partnership clauses.

Question 2: For the same discussed DB system, let RT be an established SLA for the response time
(in milliseconds) of a particular DB operation. Which SLA, for the higher supported workload, could
be guaranteed in practice, such that the mentioned RT is not exceeded?

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 381

Table III. Comparison between Simulated and Measured Response Times
Applied Workload Level (req/sec)

1 2 3 4 5 6 7 8 9 10 20 30 40 50 100

Estimated Response Time (s)

0, 06 0, 12 0, 18 0, 29 0, 34 0, 41 0, 51 0, 65 0, 78 0, 94 1, 18 1, 59 2, 17 3, 84 8, 16

Measured Response Time (s)

0, 04 0, 08 0, 20 0, 25 0, 38 0, 46 0, 56 0, 68 0, 84 0, 92 1, 62 2, 22 3, 51 4, 50 9, 08

Closeness Percentage between Estimations and Measurements

62% 67% 89% 86% 90% 89% 90% 97% 93% 98% 73% 72% 62% 85% 90%

In this case, the service supplier is committed to deliver each request with response time no less
than the clause RT . But, certainly, the RT degrades when the workload increases and, in SOA, it is
unexpected. So, it is essential to know which number of requests per second could be received by the
application, such that RT is kept on track in the SLA.

The capability for answering questions 1 and 2 is one of the keys for elaborating realistic and safer
service contracts. In practice, it is difficult to find ways to do so. Usually, the performance engineer
waits for the system implementation and, then, for historical execution traces in order to supply those
information and, finally, the lawyers could plan appropriated SLA. It really could take years. In the
following we present an alternative to quickly and efficiently answer these questions.

5.4 Model Simulations

We use the statistical data from Table II and the PMF parameters previously discussed, to feed
the input structures of the GSPN depicted in Fig. 3. As output, we intend to estimate the DB
variable behavior, including queue occupation, processing performance degradation and so on, when
increasing the workload level of requests. For that, we conduct GSPN simulations using TimeNet
tool7 [Zimmermann 2011], considering a confidence level in 95% and relative error of 10%.

For the sake of convenience, we establish the workload levels (in requests per second - req/sec), to
be used during the experiments. We start by applying 1 req/sec and gradually increase until achieving
10 req/sec. After that, we turn to increase it from 10 to 10, until 50. Finally, in order to verify the
accuracy of the proposed approach under a more extreme variability condition, we simulate the model
by applying 100 req/sec.

We also measure the implemented DB system, with the purpose of comparing the collected real
samples, against the estimates provided by our model. This comparative analysis represents a way to
validate our approach. The workloads levels used for simulations and measurements were the same
and the obtained results are presented in Table III.

First line presents the workload level (number of requests per second) applied on the experiments,
which is achieved by properly variating the delay dλi of the timed transition Tλi in the GSPN model.
Estimated and Measured response times, bring the results achieved by simulating the proposed model
and by measuring the real DB system, respectively.

5.4.1 Discussing the achieved results. As can be seen, according to the workload increases, the
system becomes less deterministic due to presence of queues. Nevertheless, the response times calcu-
lated through the proposed approach, maintain their accuracy in relation to the measures taken from
the real DB application, whose percentage may be checked in the last line (Closeness Percentage).
Fig. 6 helps to graphically analyze the results from Table III.

7TimeNet - Timed Net Evaluation Tool is a software for the modeling and analysis of stochastic Petri nets with non-
exponentially distributed firing times.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



382 · M. Teixeira, P. S. Chaves

Fig. 6. Analysis of the Measured and Estimated Database Behaviors

Fig. 7. General Closeness between Measured and Estimated Response Times

Firstly, let us discuss the statistics from the first ten levels of workload, which were increased
individually. A comparison between estimated and measured results, as presented in Fig. 6, leads
us to recognize that our approach remains close to the measured samples, whatever the existent
variability. For these results, the accuracy is on the order of 86%. We also graphically analyze the
Table III as a whole, as shows Fig. 7.

One can observe that, even increasing the workload, our estimates follow the behavior of the real
measurements, which indicates that a more extreme variability does not affect our predictions. In a
general case, the closeness observed between measured and estimated results is on the order of 83%,
which certainly is reasonable from a stochastic point of view. It is also essential to notice that, for
several times, the curves tend to intercept to each other. This fact indicates that nowhere our model
lost the tracing of the real evaluated behavior.

5.5 Composing the SLA

Given the SLA requirements, defined in the subsection 5.3, it is opportune to analyze the range of
information available for answering the questions 1 and 2, after obtained the results from Table III.

For question 1, let us suppose that we know the mean workload usually imposed to the system. Let
us assume W = 50, for example. It is easy to note that for this workload level, the DB system would
take 4436 ms to reply each request, while we have estimated a response time of 3842 ms. Although
we have not provided an exact estimative, which was not our proposal, certainly it contributes for the
SLA planning since, in practice, this difference should be absorbed by an usual adopted margin of
error. Moreover, our estimative is on the order of 85% closed with the measured sample, which surely
is stochastically acceptable.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets · 383

In a inverse way, suppose that we know the minimum response time for each DB requests, which
is defined in SLA, as introduced by question 2. So, let us assume RT = 900 ms, for instance. It is
expected to establish a SLA for the maximum supported workload, such that the RT is not exceeded.
According to the Table III, it is easy to show that 9 req/sec is the higher supported workload that
satisfies the assumed assumptions. The estimated mean response time, in this case, is 778 ms while
the measured one is 835 ms, with accuracy between them on the order of 93%.

6. CONCLUSIONS

In this article, we proposed a stochastic approach for managing database service requirements, in
SOA-based systems. By predicting the performance of DB transactions upon the variation of the
workload, we provided support for planning suitable SLA for the response time, considering a range
of possible arrival rates. In a inverse way, we also established SLA for the highest workload supported
by a DB system, without overcome a previously agreed response time. These are only examples of
possible information mined from our approach.

In order to illustrate our contributions, we compared the simulated results against those measured
from a real DB implementation. The comparison shows that our estimates remain close with the
measured samples, whatever the existent variability. Moreover, we established two examples of SLA
requirements and, based on our estimates, we identified possible solutions for them. We remember
that these analysis were conducted without requiring real-time measures. However, by focusing on
representing the dynamic system behavior, we provide support at design-time and/or run-time, which
contributes to avoid legal issues with SLA compliance.

Prospects of future works aim to extend the performance model, inserting a timeout mechanism.
So, would be possible to register the DB failure rate, establishing availability metrics. Moreover,
by crossing failure and performance metrics, we could discover possible bottlenecks delaying DB
transactions, so planning structural upgrades, access policies, load balancing and so one.

REFERENCES

Adams, E. J. Workload models for dbms performance evaluation. In Proceedings of the ACM Annual Conference on
Computer Science. New York, NY, USA, pp. 185–195, 1985.

Baresi, L. and Guinea, S. A dynamic and reactive approach to the supervision of bpel processes. In Proceedings of

the Annual India Software Engineering Conference. Hyderabad, India, pp. 39–48, 2008.

Casati, F., Shan, E., Dayal, U., and Shan, M. Business-oriented management of web services. Communications
of the ACM 46 (10): 55–60, 2003.

Cassandras, C. G. and Lafortune, S. Introduction to Discrete Event Systems. Springer Science, New York, 2008.

Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., and Doyle, R. P. Managing energy and server
resources in hosting centers. In Proceedings of the ACM Symposium on Operating Systems Principles. Alberta,
Canada, pp. 103–116, 2001.

Desrochers, A. A. and Al’Jaar, R. Applications of Petri Nets em Manufacturing Systems: Modeling, Control and

Performance Analysis. IEEE Press, 1995.

Dewitt, D. J. and Gray, J. Parallel database systems: the future of high performance database systems. Commu-

nications of the ACM 35 (6): 85–98, 1992.

Elhardt, K. and Bayer, R. A database cache for high performance and fast restart in database systems. ACM
Transactions on Database Systems 9 (4): 503–525, 1984.

Jain, R. Art of Computer Systems Performance Analysis Techniques For Experimental Design Measurements Simu-
lation And Modeling. John Wiley & Sons, Inc., New York, 1991.

Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1. Springer-Verlag, Berlin,
1997.

Josuttis, N. M. SOA in practice. O’reilly, 2008.

Kim, S., Son, S., and Stankovic, J. Performance evaluation on a real-time database. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium. San Jose, CA, pp. 253–265, 2002.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



384 · M. Teixeira, P. S. Chaves

Krompass, S., Scholz, A., cezara Albutiu, M., Kuno, H. A., Wiener, J. L., Dayal, U., and Kemper, A.

Quality of service-enabled management of database workloads. IEEE Data(base) Engineering Bulletin 31 (1): 20–27,
2008.

Lumb, C. R., Merchant, A., and Alvarez, G. A. Façade: Virtual storage devices with performance guarantees. In
Proceedings of the USENIX Conference on File and Storage Technologies. Berkeley, CA, USA, pp. 131–144, 2003.

Marsan, M. A., Balbo, G., and Conte, G. A class of generalized stochastic Petri nets for the performance analysis
of multiprocessor systems. ACM Transactions on Computer Systems 2 (2): 93–122, 1984.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. Modelling with Generalized
Stochastic Petri Nets. Wiley Series in Parallel Computing - John Wiley and Sons, New York, 1995.

Marsan, M. A., Balbo, G., and et al., G. C. Modelling with Generalized Stochastic Petri Nets. Wiley, 1995.

Merlin, P. M. and Farber, D. J. Recoverability of communication protocols: Implications of a theoretical study.
IEEE Transection in Communications 24 (9): 1036–1043, 1976.

Murata, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77 (4): 541–580, 1989.

Nicola, M. and Jarke, M. Performance modeling of distributed and replicated databases. IEEE Transactions on
Knowledge and Data Engineering 12 (4): 645–672, 2000.

Oasis. Web Services Business Process Execution Language. http://www.oasis-open.org/committees/wsbpel, 2011.

Osman, R., Awan, I., and Woodward, M. Performance evaluation of database designs. In Proceedings of the IEEE
International Conference on Advanced Information Networking and Applications. Perth, Australia, pp. 42–49, 2010.

Pinheiro, P. P. Direito Digital. Saraiva, São Paulo, 2009.

Raibulet, C. and Massarelli, M. Managing non-functional aspects in soa through sla. In Proceedings of the
International Conference on Database and Expert Systems Application. Turin, Italy, pp. 701–705, 2008.

Ranganathan, P., Gharachorloo, K., Adve, S. V., and Barroso, L. A. Performance of database workloads on
shared-memory systems with out-of-order processors. Operating Systems Review 32 (5): 307–318, 1998.

Reiss, F. R. and Kanungo, T. Satisfying database service level agreements while minimizing cost through storage
qos. In Proceedings of the IEEE International Conference on Services Computing. Washington DC, USA, pp. 13–21,
2005.

Rud, D., Schmietendorf, A., and Dumke, R. Performance annotated business processes in serviceoriented architec-
tures. International Journal of Simulation: Systems, Science & Technology. Special Issue on Performance Modelling
of Computer Networks, Systems and Services 8 (3): 61–71, 2007.

Schroeder, B., Harchol-Balter, M., Iyengar, A., and Nahum, E. Achieving class-based qos for transactional
workloads. In Proceedings of the International Conference on Data Engineering. Washington, DC, USA, pp. 153,
2006.

Sturm, R., Morris, W., and Jander, M. Foundations of Service Level Management. Sams Publishing, 2000.

Teixeira, M., Lima, R., Oliveira, C., and Maciel, P. Performance evaluation of service-oriented architecture
through stochastic petri nets. In Proceedings of the International Conference on Systems, Man, and Cybernetics.
Texas, USA, pp. 2831–2836, 2009.

Teixeira, M., Lima, R., Oliveira, C., and Maciel, P. A stochastic model for performance evaluation and bottleneck
discovering on soa-based systems. In Proceedings of the International Conference on Systems, Man, and Cybernetics.
Istanbul, Turkey, pp. 358–365, 2010.

Teixeira, M., Lima, R., Oliveira, C., and Maciel, P. Planning service agreements in soa-based systems through
stochastic models. In Proceedings of the ACM Symposium On Applied Computing. TaiChung, Taiwan, pp. 1576–1581,
2011.

Tok, W. H. and Bressan, S. Dbnet: A service-oriented database architecture. In Proceedings of the International
Workshop on Database and Expert Systems Applications. Los Alamitos, CA, USA, pp. 727–731, 2006.

Tomov, N., Dempster, E., Williams, M. H., Burger, A., Taylor, H., King, P. J. B., and Broughton, P.

Analytical response time estimation in parallel relational database systems. Parallel Computing 30 (2): 249–283,
2004.

Zhou, S., Tomov, N., Williams, M. H., Burger, A., and Taylor, H. Cache modeling in a performance evaluator
for parallel database systems. In Proceedings of the International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems. Haifa, Israel, pp. 46–50, 1997.

Zimmermann, A. TimeNET 4.0. Technische Universität Ilmenau, http://www.tu-ilmenau.de/TimeNET, 2011.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.


