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Abstract. The Service Oriented Architecture (SOA) has become a patter n for managing business transactions through
distributed services, usually supported by third-party provide  rs. In the SOA world, Service Level Agreements (SLA) are
used to establish the requirements between customers and provid ers. Among the clauses agreed in SLA are those related
with databases execution time, which have direct relationshi p with the overall web services performance. However, the
high variability, typical of the SOA environments, makes di cult the negotiation of an appropriate SLA that could be
guaranteed in practice. Thus, e orts to predict the quality o f SOA-based transactions are justi ed by anticipate possible
problems that tend to arise at run-time, disturbing the SLA cla  uses. In this article we propose a simulation modeling
approach, based on stochastic Petri nets, for performance evalu ation of databases requests in data-intensive business
applications. Through our proposal it is possible to predict the  resources consumption and performance degradation of
databases, upon the variation of the workload levels, both at de sign-time and run-time. A case study was conducted in
order to illustrate our contributions.

Categories and Subject Descriptors: D.4.8 [ Software ]: Performance Modeling and prediction

Keywords: Databases, GSPN, Performance Evaluation, SLA compl iance

1. INTRODUCTION

The new patterns for the informations systems are increasigly prioritizing the integration of orga-
nizational processes and the third partnerships enhancenm, which results in distributed business
models. In this context, the service-oriented architectue (SOA) has supported these new paradigms.
Concisely, SOA is an architecture focused on heterogeneo@svironments, in which software compo-
nents could be executed in platforms with distinct characteistics. Among the advantages achieved
by adopting SOA paradigm are component reuse, interoperaliity, exibility, integration, etc.

Within the SOA world, the quality of services (QoS) directly e ects the quality of business trans-
actions and the relationships between customers and sengcproviders as well [Casati et al. 2003].
Usually, Service Level Agreements (SLA) are used to establishhie legal commitments between them,
whose breach may entail legal penalties. Among the clauses @gd in a SOA-aware SLA, are those
related with databases (DB) spent time, which a ect the web services overall performance.

However, the high variability typical of the SOA environments, makes di cult the negotiation
of a SLA level that could, in fact, be guaranteed in practice. The ratio of the load variation for
Internet applications can achieve the order of 300% [Chaseteal. 2001], which makes critical the
challenge of managing performance requirements of these stgms. Moreover, in SOA it is common
that the applications are constantly changing, with new sewices being introduced, updated and/or
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removed [Baresi and Guinea 2008] and it is essential to predi the impact of these modi cations over
the agreed contracts. In practice, the designers develop # application and stress it to measure its
quality. This approach can be expensive and time consumingsince the analyst needs an executable
version for that. Thus, estimating SOA metrics prior to develop or change the physical system, is
essential to avoid undesirable behavior.

Recently proposed alternatives suggest adopting models fgerformance prediction in SOA-based
systems [Rud et al. 2007; Teixeira et al. 2010], which certaly helps to establish some SLA clauses
[Teixeira et al. 2011]. However, these approaches have baally focused on evaluating SOA network
and web service transactions, generalizing that the time spnt by DB queries is implicit into the
service performance. From a SLA point of view it seems a gap,rsce some clauses can be speci cally
related with DB spent time. Moreover, this important drawba ck can a ect a reliable SOA capacity
planning, whereas one can not verify, for example, the DB pdormance degradation insofar as the
workload increases nor the spent time by messages waiting imput and output database bu ers,
which is common in data-intensive applications.

Therefore, we propose in this work a GSPN (Generalized Stodstic Petri Nets [Marsan et al.
1995]) based simulation modeling for estimating the perfamance of databases operations in SOA-
aware scenarios. Our model analyses the resource consungatiand performance levels degradation in
databases with highly variable workloads. Then, based on tese information it is possible to elaborate,
at modeling time, accurate agreements to be established beten services customers and providers.

The main advantage of our proposal, with relation to anothersimilar alternatives, is that it does not
require real time measurements nor the complete system impmentation to provide useful estimates.
These information are not always available at design time, en a SOA capacity planning is useful.
Instead, our model is supported by higher level parametersgollected from the Data Base Management
System (DBMS) con guration and from a set of samples contairing DB queries executions statistics.
For this reason, the adopted technology, structure and/or particular type of operation, are irrelevant.

In order to illustrate our approach and analyze its accuracy we develop a case study where were
compare the estimated results against those measured fronnaevaluated DB system, performed in a
real SOA environment. The remainder of this article is organzed as follows: Section 2 describes some
related works; Section 3 introduces the basic concepts of SX) SLA and GSPN; Section 4 presents
the proposed performance model. Finally, Section 5 presestthe developed case study and Section 6
the nal comments.

2. RELATED WORK

Performance Evaluation of DB systems has been explored siedhe initial proposals of DB technologies
[Elhardt and Bayer 1984; Adams 1985]. However, with the web adent, DB systems have embodied
new features, necessary to supply emergent requirementss arallel and distributed extensions [De-
witt and Gray 1992], object [Kim et al. 2002] and service oriatation [Tok and Bressan 2006], etc.
Although these new concepts have played an essential techragjical role, evaluating their performance
is di cult due to the variable and data-intensive environme nts where they are immersed.

In [Ranganathan et al. 1998] the authors discuss the impact foradically di erent workload levels on
the performance of DB applications and how it becomes an impidant concern when it is necessary to
provide service guarantees. Still, [Krompass et al. 2008pbtuses on to separate the requests belonging
to di erent levels of workloads, which allow to adopt partic ular policies when performing them.

Also, in [Lumb et al. 2003] is developed an approach for guardeeing DB performance levels in
highly variable scenarios. Through a developed tool, the athors suggest to retain and divert trans-
actions that could saturate the system and cause performare loss. Thus, they avoid violating the
agreed service clauses.
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In [Schroeder et al. 2006], the authors develop the framew&rEQMS (External Queue Management
System), that acts externally to the DB system, ltering the arrival of DB requests and so scheduling
where and when each transaction is dispatched to the DBMS. Amiog the bene ts provided by the
EQMS, is the possibility of labeling requests before their gecution, composing classes of similar
transactions to be performed according to QoS rules and/or porities polices.

In fact, the existent proposals seem e ective for dealing wih DB transactions in their real envi-
ronment, estimating and improving their qualitative metri cs. However, specially when interacting
with service partnerships, the business managers need to mvare on the capacity planning and SLA
negotiation issues. Usually, these information are requiré at design-time, in order to compose SLA
clauses. Then, most of the existent alternatives for DB perfrmance evaluation, although e cient,
can be useless for this purpose.

An option to cover these gaps is by adopting analytic models. i [Tomov et al. 2004], for example,
the authors suggest adopting a queueing networks approaclof DB response time estimation. The DB
execution time is estimated by mapping DB queries accordingo patterns of resource consumption.
Meanwhile, queue times are predicted through using heurist rules [Zhou et al. 1997]. Similarly,
[Osman et al. 2010] develop an approach to evaluate a partidar DB design before its implementation.
In fact, these proposals seem closed with ours, since are fsed on predictive organizational support.

However, analytic models are shown to be predominantly deteministic, which does not often match
the characteristics of the real web environments [Teixeiraet al. 2010]. Moreover, they can be in exible
when adopting di erent probability distribution, in order to variate the modeled system behavior.
Still, their accuracy can be degraded when representing quees times.

The problem is that, in practice, there is no predictable exeution patterns for distributed web trans-
actions and, certainly, it makes critical any type of performance estimation [Nicola and Jarke 2000].
Therefore, one can imagine how di cult is provisioning storage resources to ensure that database
queries will execute enough quickly that will not delay the process more than the expected [Reiss and
Kanungo 2005]. In this sense, we suggest that a stochasticnsulation approach can absorb most of
these drawbacks and, as we shall describe, it can be powerfilibm a SLA planning point of view.

3. PRELIMINARIES

In this section we present the general concepts associatedtivthe SOA paradigm, implementation and
relationship between SOA users, highlighting the legal clases usually agreed among them, particularly
those related with DB performance guarantees.

In order to provide a way for improve the SOA contracts negotiation, we also introduce the tech-
nical foundation used for that. In particular, we brie y des cribe GSPN and probability distributions
concepts, essentials to develop the proposed model for DB germance evaluation.

3.1 SOA and Related Concepts

SOA emerges as a new paradigm for information planning and bainess processes integration. SOA is
not a tool, but principles or concepts. This architecture is de ned on the basis of three fundamental
technical concepts [Josuttis 2008], as follows:

Functionality as services : service is a SOA element that operates independently fromhe other
components of the system. Usually, a services receives one miore requests, processes them, and
returns its contributions, through an interface;

Enterprise Service Bus (ESB) : is the infrastructure that provides interoperability bet ween dif-
ferent distributed systems and services. From a more practial perspective, the ESB can be understood
as a mean by which a client invokes one or more services proved by suppliers;
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Loose coupling : by focusing on large distributed systems, SOA supports theeduction of depen-
dence between services, avoiding that a failure or maintenece a ects signi cantly other services.

The most widely used language for SOA systems orchestratienis BPEL [Oasis 2011]. Through
simple primitives and a distributed nature, BPEL provides facilities for orchestrating modern business
logic ow, where complex operations are supported by nestig basic activities. The basic structures
of BPEL are Invoke, Receive, Assign, Waitand Reply. The composite structures involve Sequence, If,
Pick, RepeatUntil/While/ForEach and Flow.

In the SOA world, the service commitments between customersand providers are expressed by
contracts, known as Service Level Agreements (SLA) [Sturm et la 2000]. A SLA expresses responsi-
bilities and rights with respect to QoS levels, such as but nblimited to response time, availability,
cost, etc. [Pinheiro 2009]. It also foresees the penaltiesif the cases where the quality falls below the
promised standard [Raibulet and Massarelli 2008].

One can imagine how dicult is to fulll this type of commitme nt, when dealing with highly
variable environments, as is the case of the SOA scenarios.u€cessful examples have been achieved
by adopting predictive models to support the SLA planning for network and web service transactions.
Here, we suggest an approach that helps to de ne SLA clausesf&OA databases performance, which
is disregarded by the existent alternatives. Before that, towever, it is essential to clarify the main
concepts related with our proposal, like those presented irthe following.

3.2 Generalized Stochastic Petri Nets - GSPN

Among the several extensions of the Petri Nets, the timed onederlin and Farber 1976; Murata 1989]
are shown to be powerful for the modeling of time-dependent ppcess, as communication protocols,
systems performance, hardware design and so on.

For the cases where the explored timed processes demand a Rdeterministic representation, an
e cient alternative is to adopt GSPN (Generalized Stochastic Petri Nets [Marsan et al. 1995]) ex-
tensions, which associate timed and non-timed (immediate)ransitions, in a way that the time is
represented through random variables [Marsan et al. 1984].

The GSPN are extensively used, specially for systems perforance evaluations since, in these cases,
the analyzed behaviors are naturally stochastic. The modebproposed in this work, was built and
simulated through GSPN structures. Alternatively, extensions like CPN - Coloured Petri Nets [Jensen
1997] could be considered. However, CPN express the time thugh integer values, handled directly
in the model, by the designer. Meanwhile, in GSPN it is implidt into continuous variables, which is
much more e cient and useful.

In a GSPN structure, these variables are represented by time transitions, with exponential dis-
tribution. Nevertheless, there may be modeling situations tat require representing non exponential
behaviors. Thus, it is essential to discuss the main distrilntions that a random variable can assume. In
the GSPN model, it is represented by combining arrangementsf exponential transitions, as discussed
in the following.

3.3 Probability Mass Functions - PMF

Assuming a discrete scope, a Probability Mass Function (PMF)is a stochastic function that asso-

ciates each random variable with each one of its possibly asmed values [Cassandras and Lafortune
2008; Jain 1991]. Among the most common distributions are theBinomial, Geometric, Poisson, Er-

lang, Hyper-exponential, Hypo-exponential and Exponential where the last four mentioned ones, are
depicted in Fig. 1 [Desrochers and Al'Jaar 1995].

In the following, we briey discuss each of them, using averge ( ) and standard deviation ( )
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Fig. 1. Example of Probability Distributions
parameters to characterize them.

3.3.1 Exponential. This distribution is indicated for situations where:

—=1:

In GSPN, representing an exponential distribution requiresassigning as the temporal parameter
() for a timed transition.

3.3.2 Hyper-Exponential. It is commonly used in a behavioral situation where:

—< 1

Thus, a GSPN Hyper-Exponential structure receives the follaving parameters:

2 22

= Tz 7 R rz=1 ru

3.3.3 Erlang. Erlang consists in a special case of an exponential distridion, that is triggered
several times. Usually an Erlang is adopted for the cases wheshehavior is characterized by:

—-2Z "N —61:
The parameters of this distributions are as follows:

= ()% =(-):

3.3.4 Hypo-exponential. This distribution is particularly important for this work, since it is used for
conduct the case study. A Hypo-exponential distribution is normally adopted to represent behaviors
where:

->1" —6Z:

Its parameters are obtained according to the following equtons:

2 2 +1 n +1

— l<,; = n , = :
S G VI i (+D 2 ?
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Fig. 2. Typical SOA Process Interaction

As can be seen, a Hypo-exponential function matches Exponerai and Erlang distributions. Observe
that ; represents an exponential approximation, while , maps an Erlang distribution, since the
parameter is used as a sequencer of Exponential triggers.

4. DATABASES PERFORMANCE MODEL

This section describes our proposal for modeling and perfanance evaluation of DB performing in
Service-oriented environments. We are considering the owof requests since their departure from the
web service to the DB server, until a response is received blacby the web service. Alternatively,

additional analysis of the SOA process could be associatedtthe present proposal, covering network
links, orchestrations engine and web service evaluationd¢ixeira et al. 2009; 2010].

The sequence diagram presented in Fig. 2 identi es our worlggace within a SOA-aware scenario.

Usually, a web interface is used to compose packages sent frawmote users to a BPEL server. After
received, the messages are orchestrated by the BPEL's enginthat invokes several distributed WS
iteratively, until a response be sent to requestors. Usuallyweb services operations require databases
transactions (in bold), whose performance evaluation is ougoal.

Based on the scenario from Fig. 2, we identify which ranks of etivities and devices are responsible
for time consumption in a DB transaction, such that the following delays are considered:

Bu ering: it is responsible for storing messages, before ah after the DB execution;

Parsing: corresponds to the stage of validation, syntactial and semantical, of the queries received
for processing into DB server;

Execution: consists in to perform the validated code. This gage involves accessing the data rela-
tions, building a package that answers each request.

From a stochastic point of view, Parsing and Execution stages could be evaluate together, since the
largest portion of time is consumed by the "execution” rank. Hence, in Fig. 3 we present the proposed
general structure to map the temporal behavior of DB transadions. The models building embodies
the GSPN (Generalized Stochastic Petri Nets) formalism as mdeling technique and compaosition rules
among them. Thus, it can be simulated through speci c tools €.g. TimeNet [Zimmermann 2011])
and performance metrics can be obtained.

Table | presents the main notation for the model. Timely, we sall discuss how to assign the
correspondent parameters (see in Subsection 4.1).
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Fig. 3. Proposed GSPN structure for Databases Performance Evalu ation.
Table I. Notation for the Proposed Model.
[ Notation | Description ]
Stat; Used only for estimates purposes. It holds the tokens from the star t to the exit point;
Ri Contains the available resources for input queue (size in byte s);
Places K Contains the available execution resources (parallel proce ssing);
Si Contains the requests waiting for processing;
Ql; Contains the requests that are being processed;
QO; Contains the requests after processing;
T Simulates the arrival of requests in the system;
Transitions tl gbi Represents the DB processing Input;
tO gpi Represents the DB processing output;
tendi Simulates the process exit point.

Let i be the indexer of the evaluated DB Basically, the model starts by ring the timed transition
T ,, according to rate 1=d  , resulting from the delay d ;. The red requests are inserted into an
input queue QI;, bounded by the number of resources in the plac®;. According to the availability
of resources in the placeK;, the transition tl 4, res, inserting the request into the place S;, which
contains the requests that are being executed in the DB. Hencgehe tokens remain in S; according to
the adopted Probability Mass Function - PMF (gray block), whose choice is supported by measured
DB statistics (see Section 3). Timely we turn to discuss the MF selection (See Section 5).

After performing, the requests are inserted into the output queue QO;, which represents also the
model exit point. The supported number of requests inQO; is coordinated by the availability of
resources inR; place. The weights of input and output arcs, from/to places R; and K;, express the
impact caused by inserting and removing resources in each pesitory. This impact is conservative,
that is, the number of removed and returned tokens is the samefor each request.

Notice that by sharing R; with QI; and QO; places, it is possible a model deadlock. Supposing, for
example, a situation whereQl; consumes all the resources fronR;. After perform, the requests can
not be sent to QO;, because there is no more resources for that. For the same =, T ; can not
trigger requests toward Ql;. Therefore, the system is blocked.

In order to avoid that, we assign conditions for the arcsCase (i) and Case (ii). Through Case (i)
we avoid the deadlock by ring of tOqi, even if there is no enough resources iRj. When it happens,

1Several DBs could be concurrently evaluated in a Web Service Composition
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Case (ii) assigns0 for the arc that leads to QO;, discarding de nitively the request.

4.1 Model Parameters

In order to simulate the proposed model, it is necessary to fd its input structures. In the following,
we presented a practical manner to do that.

4.1.1 Database Queue ParametersLet R; be the available resources for the input and output
DB queues occupation. The marking of R; is de ned according to the bu er size, measured in the
real DB system. In practice, each DBMS de nes their own paraneters for the amount of memory
available for DB operations. These parameters are exible ad can be changed according to the system
management rules. The most important parameters to be colleted from DBMS are:

(1) Number of Memory Pages NMP ) (integer): refers to the available number of memory blocks
destined to serve the DB operation$;

(2) Size of the Memory Pages$MP ) (bytes): represents the amount of bytes assigned to eacNMP .

From M = NMP SMP, we have the amount of memory M) available for storing input and
output messages from/to DB system. Therefore, the marking 6 R; is such that # R; = M. In
addition, one need to establish the impact caused by the arckom/to R;. For that, we assign weights
to the arcs (a) Get_R; and (b) Put_ R;, according to the mean size of exchanged messages (bytes),
such that:

(a) Get_Rj = Msgar ; (b) Put_Ri = MSQgep;

where Msgar and Msgqep are the measured mean size of messages arriving/departinggspectively,
in/from DB system. Finally, the assigned parameters allow s to estimate the DB Queue Response
Time (QRT), through the following equation:

1= EQI* E(QO),

QR

where, forj = Ql;; QO;, E(j) corresponds to the expectation of tokens in the placg and ; is the
arrival rate of requests in the DB i. Observe that ; results from 1=d , and d , is the parameter of
the transition T ;. The QRT represents the overall time spent by messages waiig before and after
their processing.

4.1.2 Database Execution Parameters.Modeling DB processing operations encompasses requests
since their arrival, in the S; place, until that transition tOgqy res. Therefore, the adopted PMF makes
part of the DB execution modeling so asK, that contains the available resources for DB processing.
In the following we show how to calculate these parameters.

4.1.2.1 Resources for Processing.In order to establish the marking of K, it is necessary to measure
the DB system (or its prototype when it is not available for). Specically, one must collect the
maximum number of parallel operations supported by the DB, without causing queues on the system.

Through gradually increasing the workload level, we obserg the point where the queue appears
on DB system. It is detected by an increase in the response tien when the workload overcomes
the resources available for processing. Thust K; receives the value of the workload applied before
observing the rst signals of queue. The weight of the arcsGet K; and Put_K; is 1, since their
source place K ) contains requests and, therefore, each performed requelas impact1 on its resources
repository.

24" is used to reference the number of tokens in the place p (# p 2 N).
3Large database pages bene ts database performance, usually de creasing I/O time.
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Fig. 4. Activity Diagram of Evaluated Process
4.1.2.2 Processing Response Time.These assigned parameters enable us to estimate the DB Pro-
cessing Response Time (PRT), through the following equatio:

E(S)+ E(PMF),

PRT =

where, E(S;) is the expectation of tokens in the placeS; and E(PMF ) is the expectation of tokens
in all the places contained in the PMF structure. Finally, ; is the arrival rate of requests in DB
systemi. The value of PRT represents the amount of time spent when praessing DB operations.

4.1.3 Overall Database Response TimeFinally, one can estimate the overall DB Response Time
(DBRT), including queues and processing time, according toone of the following equations:
E (Stat;)

DBRT = ; oreven DBRT = QRT + PRT;
where E (Stat;) contains the expectation of tokens in the placeStat;, which does not exert a functional
role, but it is used for storing the overall process expectabn. Hence, the value ofDBRT means the
amount of time spent by a DB transaction, considering all its execution stages.

Summarizing, the proposed DB performance evaluation stad by receiving a set of parameters,
without including any evidence of queue. As a result, we infom the variable behavior assumed by the
DB system, insofar as the workload level increases. For thatof course, the GSPN must be simulated,
as presented in the following.

5. CASE STUDY

We developed a case study in order to validate our approach. & that, we explore a DB system,
that makes part of a SOA application, implemented into the smpe of this work. This application

represents a real process, currently used in practice by Bmlian government for the issuance and the
management of electronic invoices. It was necessary to pr@se our own implementation due to the
impossibility of accessing the real DB, from the federal agecy, since the stored data are con dential.

Even so, our application covers the usual SOA features, sircits work ow is orchestrated by using
BPEL language [Oasis 2011], its services are deployed on rete servers and interfaced with external
users, through the World Wide Web. These users order di erem types of distributed operations,
generating a random system workload. The developed SOA pra&ss is depicted in Fig. 4.

Basically, for each nalized sell, a commercial invoice is tansmitted in parallel toward a regional and
national web services. For now, our scope covers the regiohaperations, although it could involve
additional web services (reason for the notationi, in the proposed model). The Evaluation zone
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contains the DB system that receives the regional transactins. After recording each remittance and
replying a response message, the merchandises are releatedransport or transfer.

Otherwise, if the request does not respond timely, accordig to the SLA de nitions, a contingency
operation is invoked. In this case, the overall system resptse time tends to be increased, disagreements
with service commitment are susceptible to occur and the da& security is a ected, since the remittance
must be retransmitted posteriorly. Besides this, any probem delaying the process directly a ects
customers and/or inspection agencies, that usually are waing for the invoices validation.

For these reasons, it is essential that a contractual struatire is preventing eventual service inter-
ruptions or even delays longer than the expected to answer, @ning the penalties for possible inter-
ventions of the contingency solution. By providing juridical validity for web electronic transactions,
it is reasonable to supply technological support for the lawer's minds.

Our goal, in this work, is focused on investigating how to esablish and accomplish legal rules for
SOA DB transactions. For the described process, we estimatéthe mean spent time for receiving a
response from the invoices transmitters and its degradatio insofar as the workload increases. It helps
to acquire and provide electronic DB operations with QoS guaantees. Moreover, it avoids to develop
a SOA system and, only then, to observe unexpected low perfarances, which certainly has already
consumed money, time, employees, etc.

5.1 Database Structure and Primary Measurements

We are interested on to estimate the performance of DB requés, through using the proposed GSPN
model. But this model receives a set of input parameters, okdined from the DB system. So, for the
particular case, the DB structure was built over a Java DB technology*, such that the experiments
posteriorly performed, require only partially its relatio ns, involving the following tables:

Products: containing more than 700 records;

Clients: with more than 500 records;

Invoices: currently, it includes more than 10:000 received records;
Movlinvoices: it also contains more than 10:000 records.

In the sequence, is presented an example of a problem, whosagion is achieved through bringing
information from the DB recorded data.

Problem 1. Given the previously described DB system, implement a query thaeturns all the
clients and their respective negotiated invoices, admittig the following requirements:
(i) the merchandises were already shipped;
(ii) the deadline for the payment is in, at most, one month.
Besides this, sort the results by the invoice deadline.

Let us assume the following SQL query, in order to resolve prolem 1:

select *

from CLIENTS, INVOICES, MOV_INVOICES, PRODUCTS

where INVOICES.Clients_IdClient = CLIENTS.idClients

and INVOICES.IdInvoices = MOV_INVOICES.Invoices_ldInvo ices
and MOV _INVOICES.Products_IdProducts = PRODUCTS.IdProd uct

and INVOICES.Shipment_Date <= 'Informed current date'

and INVOICES.Deadline <= "Informed Limit date for payment'

4DB Java: http://www.oracle.com/technetwork/java/javadb

Journal of Information and Data Management, Vol. 2, No. 3, Octo ber 2011.



Planning Databases Service Level Agreements through Stochastic Petri Nets 379

Table 1.  Model Input Parameters.
[ Type of collected Parameter

DBMS Con guration Bu ering Processing
NMP SMP #R; (bytes) | Get_R; | Put_R; | #K; (req) | Get_K; | Put_K;
1000 | 4(KB)=4096(B) 4096000 1022 1022 2 1 1

order by INVOICES.Deadline

By the sake of convenience, we are evaluating a single queithough it does not make di erence if
considering more than one. Actually, by receiving a set of iitial measurements and DBMS parameters,
issues involving DB technology, type of performed operatia, access policies, etc., are irrelevant for
the estimates, since they are absorbed by each particular sef collected parameters. It enables us to
generically apply our proposal over any size and type of DB ad di erent operation as well, without
compromising its accuracy.

Then, using the proposed code, we obtain the parameters to & the GSPN model, by collecting the
DB statistics when answering the mentioned query. Through Meter tool®, an Apache software de-
signed mainly for workload generation and performance evalation, we build a test plan that performs
it repeatedly.

In JMeter, we gradually increase the workload of requests. Haever, notice that the model input
parameters, should not include queue time. This is part of tle dynamic system behavior and should be
estimated through subsequent simulations. Instead, when masuring, we impose the highest possible
workload level, before observing evidences of queue appéay in the system. It is detected by a
perceptible increases of the response time, when the worldd overcome the systems resources. Hence,
we collected the parameters presented in Table Il, complenrged by those information from the DBMS.

First two columns bring the DBMS con guration parameters, where NMP represents the number
of memory pages available for database operations, whosezdi is de ned by SMP .

Columns labeledBu ering , show the input and output queue resources, responsible fatoring the
database requests before and after their execution, whictsisupplied by the parameters presented in
Processingcolumns. For clarifying the notations meaning, see the modedescription in Section 4.

The presented parameters are not the only ones necessary fatlowing the GSPN simulations. A
probability function must be also de ned, as discussed in tte following.

5.2 Establishing and Feeding the PMF

Assuming the proposed GSPN topology for performance evaluan of DB systems (see Fig. 3), notice
that input and output memory spaces (placesQIl; and QO;) mediate the access to the DB coreS;.
These bu ers express the DB extra-execution spent time.

Modeling the DB processing time, however, requires to chosa PMF that better ts with the
real system behavior. This decision is made during the initall measurements, when the model input
parameters are being collected. Once chosen, the same PMFrcée used along all the simulation
process, since it should stochastically follow the changesf the DB dynamic behavior.

The calculation of an appropriate PMF, requires the average- and standard deviation -  of
the DB requests response time. Usually, these metrics are onlde ned after collecting a set of DB
transactions, containing an enough number of samples that lkbows observing a tendency to a stationary
behavior.

5JMeter: http://jakarta.apache.org/site/news/news-2011-g3.ht ml
6The used DB automatically tunes the database page size, althoug h it can be changed.

Journal of Information and Data Management, Vol. 2, No. 3, Octo ber 2011.



380 M. Teixeira, P. S. Chaves

Fig. 5. Adopted Hypo-exponential distribution

For the particular case, for example, when JMeter was requésg around the hundredth sample,
it was already possible to observe a stationary condition. Then, the values assigned for and are
those from (a) and (b) as below. Equation (c) de nes how estalishing the coe cient of variation -

, with result in (d):

(a) =36 (bh =17, () = —; (d =0 ;47

Depending on the value assumed by , one can identify the appropriated PMF that would better
represent each type of stochastic process. For the partical example, =0 ;47. Then, as discussed in
Section 3.3, whenever < 1litis suggested adopting a Hypo-exponential distribution, whose structure
is depicted in Fig. 5. Therefore, this GSPN block takes the phce of the gray box in the initial model,
presented in Section 4, Fig. 3.

A Hypo-exponential probability function matches Exponential and Erlang distributions. In fact,
T 1 represents an exponential approximation, whileT , maps an Erlang distribution, since the
parameter is used as a sequencer of Exponential triggers, tiowith delay d 2.

Supported by the formulation discussed in Section 3.3 and vdables and previously presented,
we establish the Hypo-exponential parameters, as follows:

d1=12; d 2=23; =3:

At this moment we have the necessary informations to proceedavith the GSPN simulations, provid-
ing organizational informations and planning SLA for DB tra nsactions, as discussed in the following.

5.3 De ning SLA clauses for DB systems

Let us start supposing usual situations, faced when de ningSLA clauses for SOA-based systems.
Assuming, for example, that it is necessary to answer the fodwing question.

Question 1: For the particular DB system discussed in this section, letW be a prede ned workload
level of requests arriving at DB server (requests per secopdWhich SLA, for the DB mean response
time, could be guaranteed in practic@

In this case, a typical range of workload levels (variatingW) is known, but the response times for
the DB requests under these workloads, are quite variablesral di cult to predict.

In a similar way, let us suppose that a performance engineersichallenged to answer the following
guestion, to the company's legal department, in order to elédorate contractual partnership clauses.

Question 2: For the same discussed DB system, IdRT be an established SLA for the response time
(in milliseconds) of a particular DB operation. Which SLA, fo r the higher supported workload, could
be guaranteed in practice, such that the mentione®T is not exceede@
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Table 11l.  Comparison between Simulated and Measured Response Ti mes
Applied Workload Level (reg/sec)
1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 20] 3] 40] 50 100

Estimated Response Time (s)
0;06 [ 0;12 [ 0;18 [ 0,29 [ 0;34 [ 0;41 [ 0;51 [ 0;65 [ 0;78 [ 0,94 [ 1,18 | 1,59 [ 2,17 | 3;84 | 8,16
Measured Response Time (s)
0,04 [ 0,08 [ 0;20 [ 0;25 [ 0;38 | 0;46 [ 0,56 [ 0,68 [ 0,84 [ 0,92 [ 1;62 | 2;22 | 3;51 | 4,50 [ 9,08
Closeness Percentage between Estimations and Measurements
62% | 67% [ 89% | 86% | 90% [ 89% [ 90% | 97% [ 93% [ 98% | 73% [ 72% | 62% | 85% | 90%

In this case, the service supplier is committed to deliver esh request with response time no less
than the clause RT. But, certainly, the RT degrades when the workload increases and, in SOA, it is
unexpected. So, it is essential to know which number of requets per second could be received by the
application, such that RT is kept on track in the SLA.

The capability for answering questions1 and 2 is one of the keys for elaborating realistic and safer
service contracts. In practice, it is dicult to nd ways to d o so. Usually, the performance engineer
waits for the system implementation and, then, for historical execution traces in order to supply those
information and, nally, the lawyers could plan appropriat ed SLA. It really could take years. In the
following we present an alternative to quickly and e cientl y answer these questions.

5.4 Model Simulations

We use the statistical data from Table |l and the PMF parameters previously discussed, to feed
the input structures of the GSPN depicted in Fig. 3. As output, we intend to estimate the DB
variable behavior, including queue occupation, processm performance degradation and so on, when
increasing the workload level of requests. For that, we condct GSPN simulations using TimeNet
tool” [Zimmermann 2011], considering a con dence level in 95% ancklative error of 10%.

For the sake of convenience, we establish the workload leelin requests per second reg/sec), to
be used during the experiments. We start by applyingl reg/sec and gradually increase until achieving
10 reg/sec. After that, we turn to increase it from 10 to 10, until 50. Finally, in order to verify the
accuracy of the proposed approach under a more extreme vaiidity condition, we simulate the model
by applying 100 reqg/sec.

We also measure the implemented DB system, with the purposefocomparing the collected real
samples, against the estimates provided by our model. Thisamparative analysis represents a way to
validate our approach. The workloads levels used for simukions and measurements were the same
and the obtained results are presented in Table Ill.

First line presents the workload level (number of requests pr second) applied on the experiments,
which is achieved by properly variating the delayd ; of the timed transition T ; in the GSPN model.
Estimated and Measuredresponse times, bring the results achieved by simulating te proposed model
and by measuring the real DB system, respectively.

5.4.1 Discussing the achieved resultsAs can be seen, according to the workload increases, the
system becomes less deterministic due to presence of queudevertheless, the response times calcu-
lated through the proposed approach, maintain their accuray in relation to the measures taken from
the real DB application, whose percentage may be checked inhe last line (Closeness Percentage
Fig. 6 helps to graphically analyze the results from Table II.

“TimeNet - Timed Net Evaluation Tool is a software for the modeling and analysis of stochastic Petri ne ts with non-
exponentially distributed ring times.
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Fig. 6. Analysis of the Measured and Estimated Database Behavior s

Fig. 7. General Closeness between Measured and Estimated Response Times

Firstly, let us discuss the statistics from the rst ten levels of workload, which were increased
individually. A comparison between estimated and measuredresults, as presented in Fig. 6, leads
us to recognize that our approach remains close to the meased samples, whatever the existent
variability. For these results, the accuracy is on the orderof 86% We also graphically analyze the
Table 11l as a whole, as shows Fig. 7.

One can observe that, even increasing the workload, our estiates follow the behavior of the real
measurements, which indicates that a more extreme variabity does not a ect our predictions. In a
general case, the closeness observed between measured astiheted results is on the order 0f83%
which certainly is reasonable from a stochastic point of viev. It is also essential to notice that, for
several times, the curves tend to intercept to each other. Tlis fact indicates that nowhere our model
lost the tracing of the real evaluated behavior.

5.5 Composing the SLA

Given the SLA requirements, de ned in the subsection 5.3, itis opportune to analyze the range of
information available for answering the questionsl and 2, after obtained the results from Table llI.

For question 1, let us suppose that we know the mean workload usually impogkto the system. Let
us assumewW =50, for example. It is easy to note that for this workload level, the DB system would
take 4436 ms to reply each request, while we have estimated a response tenof 3842 ms. Although
we have not provided an exact estimative, which was not our poposal, certainly it contributes for the
SLA planning since, in practice, this di erence should be alsorbed by an usual adopted margin of
error. Moreover, our estimative is on the order 0f85% closed with the measured sample, which surely
is stochastically acceptable.
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In a inverse way, suppose that we know the minimum response rtie for each DB requests, which
is de ned in SLA, as introduced by question 2. So, let us assumeRT = 900 ms, for instance. It is
expected to establish a SLA for the maximum supported worklad, such that the RT is not exceeded.
According to the Table lll, it is easy to show that 9 reg/sec is the higher supported workload that
satis es the assumed assumptions. The estimated mean respse time, in this case, is778 ms while
the measured one i835 ms, with accuracy between them on the order 0f93%

6. CONCLUSIONS

In this article, we proposed a stochastic approach for manaigg database service requirements, in
SOA-based systems. By predicting the performance of DB transctions upon the variation of the
workload, we provided support for planning suitable SLA for the response time, considering a range
of possible arrival rates. In a inverse way, we also establied SLA for the highest workload supported
by a DB system, without overcome a previously agreed respomstime. These are only examples of
possible information mined from our approach.

In order to illustrate our contributions, we compared the simulated results against those measured
from a real DB implementation. The comparison shows that our estimates remain close with the
measured samples, whatever the existent variability. Morever, we established two examples of SLA
requirements and, based on our estimates, we identi ed podisle solutions for them. We remember
that these analysis were conducted without requiring realtime measures. However, by focusing on
representing the dynamic system behavior, we provide supgbat design-time and/or run-time, which
contributes to avoid legal issues with SLA compliance.

Prospects of future works aim to extend the performance mode inserting a timeout mechanism.
So, would be possible to register the DB failure rate, estalidhing availability metrics. Moreover,
by crossing failure and performance metrics, we could disser possible bottlenecks delaying DB
transactions, so planning structural upgrades, access pigies, load balancing and so one.
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