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Abstract. Graph mining is concerned with mining frequent subgraph patterns over a collection of graphs, aiming to
find novel and useful knowledge. It has being used to analyze data from different domains, sometimes using algorithms
tailored for a specific area of knowledge. In this article, we propose a graph-mining algorithm and its application in the
biomedical domain. We introduce the following contributions. We propose the ADI-bio structure, which organizes data
from a database with information of a disease’s patient. We also propose the ADI-Minebio algorithm, which performs
a search on the proposed ADI-bio structure to find frequent subgraphs. Our approach is based on the ADI (adjacency
index) structure and the ADI-Mine algorithm, but specifies a different structure and hence a new way of analyzing data
through this structure. We also discuss a performance study to show the feasibility of our approach.

Categories and Subject Descriptors: H. Information Systems [H.2 Database Management]: H.2.8 Database Appli-
cations—Data mining

Keywords: adjacency index, biomedical data, graph, graph mining

1. INTRODUCTION

Graphs are important data structures composed of nodes (i.e. vertices) and links (i.e. edges), and
are typically used to model data from complex applications such as bioinformatics, social networks
analysis, text retrieval, chemical compounds, protein structures and XML documents [Cook and
Holder 2006; Han and Kamber 2005]. Graph mining, or graph-based data mining, is concerned
with mining frequent subgraph patterns over a collection of graphs, aiming to find novel and useful
knowledge. It provides a way to analyze data when the application involves patterns that are more
complex than frequent itemsets and sequential patterns [Han and Kamber 2005], and possibly the
knowledge to be mined is spread in interrelated transactions.

In this article, we propose ADI-Minebio, a graph-mining algorithm aimed at analyzing data from a
database with information of treatments of diseases and side effects caused by these treatments. Side
effects are usually other diseases that also need a specific treatment. Therefore, we seek to investigate
relationships between treatments for the original disease and treatments for the side effects originated
from the original disease or subsequent side effects. We organize this information in graphs and use
the proposed ADI-Minebio algorithm to extract meaningful substructures from these graphs.

This work has been supported by the following Brazilian research agencies: FAPESP, CNPq, CAPES and FINEP.
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The problem of mining biomedical data arose from a need of medical experts from the Medical
Faculty of Ribeirão Preto from the University of São Paulo, which investigate the Sickle Cell Anemia
(SCA) and its related diseases. The motivation is to aid experts to find patterns among treatments
and side effects (i.e. new diseases), by developing both a database with information of interest and a
related graph-mining algorithm. Our current work is included in an environment called Information
Extraction and Decision Support System in Biomedical domain (IEDSS-Bio), which is under devel-
opment and addresses supporting the expert in making decisions, by extracting relevant information
from biomedical documents, storing the information in a data warehouse, and mining interesting
knowledge from the data warehouse [Matos et al. 2010]. It is worth to note that the database and
the data warehouse are not completely loaded with real data, since the extraction of information from
scientific papers is still been performed. Therefore, we use only synthetic data to assess our proposals.
In this article, our synthetic data of interest is stored in relational tables and our algorithms transform
these tables in a graph database.

Regarding our proposal, the ADI-Minebio algorithm searches for frequent subgraphs in the graph
database using a new index structure also proposed in this article, called ADI-bio, which is specially
organized to structure data from a database with information of patients of a given disease. Our
approach is based on the ADI (adjacency index) structure, which provides an efficient way to search
for frequent subgraphs in large databases that cannot be held in main memory, and also on the ADI-
Mine algorithm [Wang et al. 2004], a graph-mining algorithm that improves the gSpan algorithm
[Yan and Han 2002] by using the ADI structure. The main differentials of the proposed ADI-Minebio
algorithm is that it uses a different index structure and introduces a new way of analyzing data based
on this index, providing an adequate way of working with graph data from the biomedical domain (i.e.
relationships among treatments and their side effects). Our performance tests showed the feasibility
of our approach when applied to discover new knowledge from a graph database storing information
about treatments and diseases.

The reminder of this article is organized as follows. Section 2 describes the theoretical foundation
and the basis of our proposals, Section 3 presents the proposed ADI-bio and ADI-Minebio algorithms,
Section 4 discusses performance results used to assess our proposals, Section 5 surveys related work
and Section 6 concludes the article and presents future work.

2. THEORETICAL FOUNDATION

In this section, we describe the adjacency index (Section 2.1) and the ADI-Mine Algorithm (Sec-
tion 2.2), which are used as a basis for our proposals.

2.1 Adjacency Index

An adjacency index (ADI) is an index structure that supports mining graph patterns over large
databases that cannot be held in main memory [Wang et al. 2004]. It indexes the database on three
levels: the first level represents the edges, the second level represents the graph identifications and
the third level represents adjacency information. Figure 1 depicts two graphs G1 and G2, as well as
shows how they are indexed by ADI.

The first level indexes all the edges present in all graphs through a list in the ADI structure. In
ADI, an edge e = (u, v) is stored as a tuple (l(u); l(u : v); l(v)), where l(u), l(u : v), l(v) are the label
of the first vertex, the label of the edge and the label of the second vertex, respectively. The mappings
of all edges are stored sorted in an edge table. For instance, in Figure 1, the first tuple of the edge
table represents an edge between the vertices A and B. Furthermore, each edge appears only once in
the edge table, independently on how many times it appears in the graphs.

The second level is a linked list of all graphs that have an edge stored in the edge table. In detail,
for each edge e of the edge table, there is a linked list of graphs represented by their identification,
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Fig. 1: An example of the ADI Structure.

such that a graph will be present in this list only if it has the edge e. For instance, in Figure 1, both
G1 and G2 contain the edge represented by (A, b, C). Note that each graph appears only once in a
linked list of an edge e, independently on how many times the edge e appears in the graph.

The third level consists of the adjacency information. In this level, all the edges of a graph are
stored in blocks, such that each block represents a graph. Also, the edges are linked with adjacent
edges, enabling the visualization of the connections between nodes. For instance, in Figure 1, the edge
of block 1 encoded by (1, 2) is adjacent to the edge encoded by (2, 3) through the vertex encoded by
2.

Depending on the available main memory, the three levels of ADI may be stored on disk or in
the main memory. If the graph database is small, the whole index can be held in main memory.
Otherwise, the levels of the index are stored on disk according to the following order: first the third
level, then the second level, and finally the first level. The clustering of edges in blocks in the third
level speed up the storage and the retrieval of graph data on disk.

2.2 The ADI-Mine Algorithm

The ADI-Mine algorithm [Wang et al. 2004] adapts the gSpan algorithm [Yan and Han 2002] to
search for frequent subgraph patterns using the ADI structure. Therefore, like the gSpan algorithm,
the ADI-Mine algorithm is based on the depth-first search (DFS) for navigating through connected
graphs and on the search for isomorphic graphs using the minimum DFS code notation.

In detail, using as input a graph database and a minimum support, the ADI-Mine algorithm pro-
duces as output a set of frequent graphs patterns described as follows. The algorithm first removes
all the edges present in the edge table that do not satisfy the minimum support. Then, the algorithm
tracks each remaining edge in the edge table and adds this edge to the set of frequent graphs patterns.
Also, for each edge, the algorithm recursively investigates its adjacent edges to identify which ones
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Fig. 2: An example of a graph and its DFS tree.

Table I: The DFS code for the DFS tree of Figure 2.

# Edge The DFS Code

0 (v0, v1, A, b, C)
1 (v1, v3, C, c, D)
2 (v1, v2, C, a, B)

are also frequent, using as a basis the third level of ADI. Frequent adjacent edges are also included in
the frequent graphs patterns, except when they generate isomorphic graphs.

The identification of isomorphic graphs is performed by the minimum DFS code notation, a tech-
nique composed of three phases: (i) creating a DFS tree; (ii) generating the DFS code for this tree; and
(iii) organizing the generated code in lexicographic order. A DFS tree corresponds to the path from
the root to its rightmost vertex, which is named rightmost path. Figure 2 shows a graph composed
of the vertices v0, v1, v2, v3, such that only the vertices v0, v1, v3 form the DFS tree. The edges in
the rightmost path, represented by dark lines, are called forward edges, while the remaining edges are
known as back edges.

The DFS code corresponds to the labeling of all the edges of a graph. It is constructed using the
5-tuple (i, j, li, l(i,j), lj), where i and j represent vertices from the DSF tree, li is the label of the vertex
i, l(i,j) is the label of the edge that connects i to j, and lj is the label of the vertex j. The DFS code
for the DFS tree of Figure 2 is shown in Table I.

The organization of the DFS code in lexicographic order is performed considering the linear order
of the graph edges. Given two edges ei,j and ex,y, ei,j < ex,y when one of the following conditions is
satisfied: (i) if both ei,j and ex,y are forward edges, then j < y or j = y and i > x; (ii) if both ei,j

and ex,y are backward edges, then i < x or i = x and j < y; (iii) if ei,j is a forward edge and ex,y is a
backward edge, then i < y; and (iv) if ei,j is a backward edge and ex,y is a forward edge, then i > y.
The lexicographic order of the DFS codes shown in Table I is (v0, v1, A, b, C), (v1, v3, C, c, D), (v1,
v2, C, a, B). Two graphs are isomorphic when they are represented by the same lexicographic order.

3. GRAPH MINING FROM A BIOMEDICAL DATABASE

In Section 3.1, we define the problem of graph mining. In Section 3.2, we discuss the construction
of a graph database from relational tables. Then, we describe our main contributions: the proposed
ADI-bio structure (Section 3.3) and the proposed ADI-Minebio graph-mining algorithm (Section 3.4).
We discuss further considerations in Section 3.5.
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Table II: An example of data from the disease-treatment-effect table.

# Paper Disease Name Treatment Name Effect Name

1 Sickle Cell Anemia (SCA) Standard BFM (BFM) Hepatomegaly (Hep)
1 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Hepatomegaly (Hep)
1 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Constipation (aCo)
· · · · · · · · · · · ·
2 Sickle Cell Anemia (SCA) Standard BFM (BFM) Hepatomegaly (Hep)
2 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Vomiting (Vo)
· · · · · · · · · · · ·
3 Sickle Cell Anemia (SCA) Standard BFM (BFM) Hepatomegaly (Hep)
3 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Constipation (aCo)
3 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Vomiting (Vo)
· · · · · · · · · · · ·
23 Constipation (aCo) Hydration (Hydt) Vomiting (Vo)
24 Constipation (aCo) Hydration (Hydt) Vomiting (Vo)
· · · · · · · · · · · ·
35 Vomiting (Vo) Dexametasona (Dex) Jitters (Jitt)
· · · · · · · · · · · ·
41 Vomiting (Vo) Dexametasona (Dex) Jitters (Jitt)

3.1 Problem Definition

We define our goal in mining a biomedical database as to discover a set of frequent subgraphs that
represent patterns involving treatments of diseases and side effects caused by these treatments. In
fact, side effects are usually other diseases that also need a specific treatment. Therefore, we seek to
investigate relationships between treatments for the original disease and treatments for the side effects
originated from the original disease or from subsequent side effects.

Formally, let D be a disease, TD be one of the treatments used for a patient with D, SE be one
of the side effects caused by TD, and TSE be one of the treatments used for SE. Our goal is to
find existing relationships between TD and TSE , which are represented by the following sequence
D → TD → SE → TSE , where → represents the relationship of treatment-effect. Also, it is possible
that a side effect SE1 and its treatment TSE1 be related to another side effect SE2 and its related
treatment TSE2, and so on, composing a sequence of treatments and side effects, such that D → TD →
SE1 → TSE1 → SE2 → TSE2 → · · · → SEn → TSEn.

Table II shows a sample of data related to treatments and side effects of the SCA disease and
its related diseases, whose investigation represents the main motivation of our work. This disease-
treatment-effect table contains the following data: (i) identification of the paper from which the
information has been extracted; (ii) name of the disease (or the side effect) that is analyzed in the
paper; (iii) name of the treatment for this disease (or for the side effect); and (iv) name of the side effect
caused by the treatment. An example of a sequence of treatment and side effects to be analyzed is:
Sickle Cell Anemia (SCA)→ Hydroxyurea (Hydro)→ Constipation→ Hydration (Hydt)→ Vomiting
(Vo) → Dexametasona (Dex).

The representation of the disease-treatment-effect table as a graph follows the baselines described
in this section, and is discussed in Section 3.2.

3.2 The Process to Build a Graph Database from Relational Tables

Our graph database contains information about treatments and side effects of these treatments, and
is represented as a directed labeled graph. While its vertices correspond to diseases and side effects
(e.g. the target disease D or its side effects SE1, SE2, · · · , SEn) or correspond to treatments for
a given disease or side effect (e.g. TD, TSE1, TSE2, · · · , TSEn), its edges represent relations between
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Fig. 3: The disease-treatment-effect graph database for the information depicted in Table II.

diseases/side effects and treatments. Furthermore, the label of each edge represents the frequency of
occurrence of this edge in the disease-treatment-effect table. For instance, Figure 3 shows the graph
database that represents the information depicted in Table II.

The construction of the graph database starts with the vertex whose label is the disease that is
the focus of analysis, i.e. the disease from which we wish to discover relationships among effects and
treatments. In our example, this disease is the SCA disease (i.e. D = SCA), which is represented in
the leftmost vertex in the graph of Figure 3. The treatments of SCA (i.e. TD1 = BFM and TD2 =
Hydro) compose the next vertices, which are linked to the SCA vertex. Then, vertices are created for
the side effects of treatments (e.g. TSE1 = Hep, TSE2 = aCo and TSE3 = Vo for the treatment Hydro).
For each side effect introduced in the graph, we obtain additional information (i.e. its treatments and
side effects) in other rows of the table, if its name is present in the column Disease Name in the
disease-treatment-effect table. The label of the edges represents frequencies of a treatment-disease.
For instance, the label 12 in the edge that connects the vertices SCA and BFM indicates that the
information that the disease SCA is treated by the treatment BFM occurs twelve times, three of them
shown in rows of Table II.

Therefore, for a given disease, the resulting graph database contains: (i) a set of treatments of this
disease; (ii) a set of side effects caused by the treatments; and (iii) a set of treatments that can be used
to combat these side effects, which are obtained from other scientific papers that report experiences
involving patients with these new diseases.

3.3 The Proposed ADI-bio Structure

In this section, we propose a new structure for the adjacency index, called ADI-bio, which is specially
designed according to the characteristics of the graph database. ADI-bio is composed of two levels.
The first level stores edges and frequencies of edges, while the second level stores the adjacency
information. Figure 4 shows an example of the ADI-bio structure for the graph depicted in Figure 3.

The components of the ADI-bio structure are detailed as follows.

—Edge Table: contains each distinct edge of the graph database, whose label value satisfies the
minimum support. The Edge Table is organized in alphabetical order.

—Adjacency Information: for each edge e = (u, v) of the Edge Table, the Adjacency Information
contains a linked list that begins with the vertex u. The inclusion of the remaining components in
the list should respect the following formation rules:
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Fig. 4: An example of the ADI-bio structure.

(1) Include each vertex found in a branch from u, following a depth-first search in the graph,
until the end of the branch or until finding a vertex that has already been included in some
subgraph of the Adjacency Information. For instance, for the edge (aCo, Hydt), the vertices
aCo, Hydt and Vo are included in the Adjacency Information, generating the subgraph G1,
which is represented by 2 lists. The first list contains all adjacent vertices to aCo, and the
second list contains all adjacent vertices to Hydt. There is no list for the vertex Vo as the
minimum support is set to 10 and, according to Figure 3, the frequency of the edge (Vo, Dex)
is 6.

(2) Do not include a vertex that has already been inserted into a subgraph. In this case, this vertex
is ignored and the next edge from the Edge Table is analyzed according the same described
rules. For instance, the construction of the subgraph G3 regarding the edge (Hydro, aCo) is
performed as follows. First, the vertices Hydro and aCo are included in G3. Then, the vertices
Hydt and Vo are ignored, as they already compose the subgraph G1. In the sequence, the edge
(Hydro, Hep) is analyzed, and the vertex Hep is included in G3. Finally, as the next edge of
the Edge Table also refers to Hydro (i.e. the edge (Hydro, Vo)), the vertex Vo is also included
in G3. As a result, G3 is represented by the list <Hydro, aCo, Hep, Vo>.

The algorithm to construct the ADI-bio structure is shown in Algorithm 1. It uses as inputs a graph
database and a minimum support and generates as output the ADI-bio structure, named adibiofreq,
which contains only the frequent edges. The algorithm works as follows. An auxiliary variable adibio,
which has the same structure as adbiofreq, is created in line 1 to store all the vertices and edges that
are found during the execution of the algorithm. The Adjacency Information of adibio is initialized
in line 3. Then, the graph database is traversed (lines 4 to 15) and each element is added to the
Adjacency Information of adibio if it is a vertex (lines 5 and 6) or is added to the Edge Table of adibio
if it is a new edge (line 8 and 9). In the latter case, the frequency counter of this new edge is initialized
to 1 (line 10) or is incremented by 1 if the Edge Table of adibio already contains the new edge (line
12). The adibiofreq structure is created in line 16, using as a basis the adibio structure. While adibio
structure contains all the edges of the graph database and its adjacent edges, adibiofreq stores only
the frequent edges and their correspondent adjacent edges. Finally, the Edge Table of adibiofreq is
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Algorithm 1: ADIbio (GBD, min_sup)
Input : GBD {graph database}, min_sup {minimum support}
Output: adibiofreq {linked list of records containing the fields edgeTable

and adjacencyInformation}
var adibio: linked list of records containing the fields1

edgeTable and adjacencyInformation2

initialize the adjacency information (i.e. adibio.adjacencyInformation)3

foreach element e of GDB do4

if e is a vertex then5

store e in the adjacency information6

else7

if e is a new edge then8

insert e into edge table (i.e. adibio.edgeTable)9

adibio.edgeTable(e).countEdge ← 110

else11

adibio.edgeTable(e).countEdge ← countEdge + 112

end13

end14

end15

create the structure adibiofreq, composed of frequent subgraphs from adibio16

sort the edge table of adibiofreq17

reorganize the adjacency information of adibiofreq18

return adibiofreq19

sorted in alphabetical order (line 17) and the Adjacency Information of adibiofreq is reorganized (line
18), using as a basis the formation rules.

The Adjacency Information of the adibiofreq structure is used to find frequent subgraphs, as dis-
cussed in Section 3.4.

3.4 The Proposed Algorithm for Extracting Frequent Subgraphs

Aiming to extract subgraphs from the graph database, our algorithm uses the concepts of DFS code
and minimum DFS code. It also uses the ADI-bio data structure to find the frequent subgraphs. Each
row of the Edge Table represents a frequent subgraph. The remaining subgraphs are found through
the adjacent edges for each edge present in the edge table, using the Adjacency Information.

The ADI-Minebio algorithm is shown in Algorithm 2. It uses as input the adibiofreq structure
created in Algorithm 1 and generates as outputs a list of all frequent subgraphs and a list of adjacent
edges. The ADI-Minebio algorithm works as follows. In lines 1 and 2, it defines two variables: (i) LF,
which stores all the frequent subgraphs; and (ii) lAdjacency, which maintains the edges that compose
a subgraph. In lines 3 to 9, the algorithm traverses the Edge Table and for each edge e, it performs the
following steps: it adds e to lAdjacency (line 4); it obtains the minimum DFS code of the subgraph
in lAdjacency (line 5); it adds lAdjacency to LF, since lAdjacency is a frequent subgraph (line 6); it
finds Fe, which is a list of adjacent edges from lAdjacency (line 7); and finally it calls the procedure
subgraph-mine to generate a new subgraph by performing an extension of the edge e using its adjacent
edges (line 8).

To exemplify this first part of Algorithm 2, consider the processing of the first edge of the Edge Table
of Figure 3 (i.e. e = (aCo, Hydt). The following partial results are obtained: (i) the list of adjacent
edges lAdjacency = <(aCo,Hydt)>; (ii) the list of the frequent subgraphs LF = <(aCo,Hydt)>; and
(iii) the list Fe of all edges that are adjacent to e, i.e. Fe = <(Hydt,Vo)>.
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The subgraph-mine procedure is responsible for creating new extensions of frequent subgraphs by
using the edges from the Edge Table that are adjacent to the edges of these subgraphs. For each edge
from Fe (line 13), the following steps are performed: lAdjacency is reset (line 14); the edge is added to
lAdjacency, generating a new subgraph (line 14); and the DFS code of lAdjacency is computed (line
16). The new subgraph generated is considered only if its DFS code is minimum and the existent list of
frequent subgraphs does not contain it (lines 17 to 22). If this test evaluates to true, the new subgraph
is added to LF (line 23). Finally, Fe is updated with new adjacent edges (line 24). The subgraph-mine
procedure is executed recursively (line 25), until all adjacent edges have been considered.

Using the same previous example, the algorithm finds the edges adjacent to the edge (Hydt, Vo). In
this case, there are no adjacent edges. As a result, the subgraph-mine procedure ends and Algorithm 2
processes the next edge present in the Edge Table, i.e. the edge (BFM, Hep). In the sequence, the
edge (BFM, Hep) is added to the list of adjacent edges, its minimum DFS code is computed and the
edge is also added to the list of frequent subgraphs. As there are no edges adjacent to the edge (BFM,
Hep), Algorithm 2 continues by evaluating the next edge, i.e. the edge (Hydro, aCo).

Considering the edge (Hydro, aCo), the following adjacent edges are found: (Hydro, Hep), (Hydro,
Vo), (aCo, Hydt). In lines 14 to 16, the algorithm generates the new subgraph (Hydro, aCo), (Hydro,
Hep), and in line 14, it updates the list of frequent edges to Fe = <(Hydro, Vo), (aCo, Hydt)>,
since there are no adjacent edges to (Hydro, Hep). Using Fe, the subgraph (Hydro, aCo), (Hydro,
Hep), (Hydro, Vo) is built, and again the list Fe is updated, producing Fe = <(ASC Hydt)>. The
next subgraph generated is: (Hydro, aCo), (Hydro, Hep), (Hydro, Vo), (aCo, Hydt), and the list is
updated with the edge (Hydt,Vo), which is adjacent to the edge (aCo, Hydt). In the sequence, the
last subgraph generated for (Hydro, aCo) is (Hydro, aCo), (Hydro, Hep), (Hydro, Vo), (aCo, Hydt)
(Hydt, Vo). Finally, the processing of the edge (Hydro, aCo) ends, since there are no more adjacent
edges. The same process is repeated for the following edges: (Hydro, Hep); (Hydro, Vo), (Hydt, Vo),
(aCo, BFM) and (aCo, Hydro).

3.5 Further Considerations

The ADI-Minebio algorithm enables the specialist to discover new clues and make assumptions of
occurrences that are not directly related to the data obtained from experiments with patients suffering
from certain disease. For instance, consider a subgraph that includes the path SCA → Hydro → aCo
→ Hydt in the graph of Figure 3. This subgraph represents the combination of treatments and side
effects in patients with the SCA, which is interpreted as: “patients that were treated with Hydroxyurea
may also need hydration”.

In our experiments, we focused on the SCA disease. However, our approach can be used for any other
type of disease. Furthermore, although the algorithm has been developed to support a biomedical
issue, it can be used in any application whose data is organized similarly to the database presented
here (Table II). Our algorithm is adequate for processing any table T (Id, A, B, C), such that A is
the object upon which we wish to perform analysis (in our example, A = disease), C has the same
nature (domain) of A, and also exists a relationship between values of the attributes A and B, and
between values of the attributes B and C. These relationships should be represented by the following
sequence: A1 → B1 → C1 → B2 → C2 → · · · → Bn.

4. PERFORMANCE EVALUATION

In this section, we present and discuss the performance evaluation carried out to validate the proposed
ADI-bio structure and the proposed ADI-Minebio algorithm. In the tests, we investigate three different
issues. Firstly, we address the impact of increasing number of vertices and edges in the performance
for building the ADI-bio’s data structure. Secondly, we investigate the impact of increasing number
of vertices in the performance of the ADI-Minebio algorithm. Finally, we analyze how the minimum
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Algorithm 2: ADI-Minebio (adibiofreq)
Input : adibiofreq {linked list of records containing the fields edgeTable

and adjacencyInformation}
Output: LF {list of frequent subgraphs}

lAdjacency {list of adjacent edges}
var LF: list1

lAdjacency: list2

for (i = 0; i ≤ adibiofreq.edgeTable.lenght; i++) do3

lAdjacency.add(adibiofreq.edgeTable(i))4

compute the minimum DFS code of the subgraph from lAdjacency5

LF.add(lAdjacency)6

find Fe, the list of adjacent edges from lAdjacency7

call subgraph-mine(adibiofreq.edgeTable(i), lAdjacency, Fe, LF)8

end9

// procedure to mine a subgraph10

Procedure subgraph-mine11

Parameters: edge, lAdjacency, Fe, LF12

for (i = 0; i ≤ Fe.length-1; i++) do13

lAdjacency = new list14

add Fe[i] in lAdjacency15

compute D, the DFS code of lAdjacency16

if DFS code is not minimum then17

return18

end19

if minimal DSF code is in LF then20

return21

end22

LF.add(lAdjacency)23

update Fe using the new adjacent edges24

call subgraph-mine(Fe[i+1], lAdjacency, Fe, LF)25

end26

return27

support impairs the performance of the ADI-Minebio algorithm.

We used the J2SE 6.0 based on the Eclipse Galileo IDE to implement the proposals. Regarding the
datasets, we used synthetic data about treatments and side effects of the SCA. It is worth to note that
the database and the data warehouse of this disease are not completely loaded with real data, since
the extraction of information from scientific biomedical papers is still been performed. Therefore, we
used only synthetic data to assess our proposals. However, to generate the synthetic data, we followed
the characteristics of some real data. We found experimentally, using an automatic tool developed
as a component of the IEDSS-Bio environment (Section 1), that the number of treatments by disease
and the number of side effects by treatment extracted from biomedical scientific papers varies from 4
to 7 and from 1 to 7, respectively. We used these findings in the generation of our synthetic data.

The minimum support and the number of vertices and edges of the generated graphs are specified
in each test described in this section. The performance tests were carried out on a computer with a 3.
2 GHz Pentium core 2 duo P8700 processor, 4 GB of main memory, a 7200 RPM SATA 750 GB hard
disk, Windows Vista operating system. We gathered the elapsed time in milliseconds and seconds.

Figure 5 shows the time spent to build the ADI-bio data structure, considering graphs containing
from 1,000 up to 1,000,000 vertices and from 666 up to 660,000 edges (Table III). In this test, we
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Table III: Characteristics of the synthetic datasets: number of vertices, number of edges and number of frequent edges.

Dataset # Vertices # Edges # Frequent Edges

1 1,000 666 166
2 10,000 6,600 1,650
3 50,000 33,000 8,250
4 100,000 66,000 16,500
5 250,000 165,000 41,250
6 500,000 330,000 82,500
7 750,000 495,000 123,750
8 1,000,000 660,000 165,000

Fig. 5: Time spent to build the ADI-bio data structure.

used the value of 1% for the minimum support. For smaller numbers of vertices and edges (i.e. up
to 100,000 vertices and 66,000 edges), which generated up to 16,500 frequent edges, the ADI-bio data
structure provided a linear growth in the building cost. But, the use of larger numbers of vertices
and edges and, consequently, the increase in the frequent edges, impaired the time construction of the
ADI-bio data structure.

Figure 6 shows the time spent to find frequent subgraphs patterns using the ADI-Minebio, consid-
ering graphs containing from 50,000 up to 100,000 vertices. The characteristics of the graphs are as
follows. They had 70% of their vertices connected and 65% frequent edges. Also, we used the value of
1% for the minimum support. The performance results demonstrated that the ADI-Minebio algorithm
provided good results, which were slightly superior to a linear growth. For instance, an increase of
twice in the number of vertices (i.e. from 50,000 to 100,000 vertices) produced only an increase of
four times in the elapsed time (i.e. from 50 seconds to about 200 seconds).

Table IV shows the impact of increasing values of minimum support in the performance of the
ADI-Minebio algorithm. We used the values of 90, 100 and 110 as the minimum support for a graph
database containing 250,000 vertices. The increase in the minimum support generated a smaller
number of frequent subgraphs. Therefore, a challenge faced by the ADI-Minebio algorithm was to
detect this fact and to spend less time to produce the list of frequent subgraphs. As can be noted,
the proposed algorithm greatly overcame this challenge, since it provided a reduction of 61% in the
elapsed time for a reduction of only 31% in the number of frequent patterns.

5. RELATED WORK

There are different types of algorithms for mining graphs. They are based on two approaches: based
on Apriori [Agrawal and Srikant 1994] and based on pattern growth methods [Pei 2002]. While AGM
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Fig. 6: Time spent to identify frequent subgraphs patterns.

Table IV: Performance results for increasing values of minimum support.

Minimum Support Elapsed Time (s) # Patterns

90 69 5,390
100 55 4,916
110 27 3,704

[Inokuchi et al. 2000] and FSG [Kuramochi and Karypis 2001] are examples of algorithms based on
Apriori, the algorithms gSpan [Yan and Han 2002], Mofa [Borgelt and Berthold 2002], CloseGraph
[Yan and Han 2003], SPIN [Huan et al. 2004], and Metagraph [Deepti et al. 2008] use techniques
based on pattern growth methods. Furthermore, mining graphs are usually applied to different fields
of knowledge. Thus, mining graphs algorithms may be tailored for specific areas of knowledge due to
the characteristics of their data, as is the case reported in [Chen et al. 2009; Lam and Chan 2008a;
2008b; Heydari et al. 2009; Song and Chen 2006]. Graph-mining algorithms more related to our
proposals are described in more details below.

FOGGER [Zeng et al. 2009] is a graph-mining algorithm based on the gSpan algorithm that ad-
dresses specifically the problem “frequent connected graph generator mining”. It tackles this problem
by using an extended ADI data structure, called ADI++, for quickly checking subgraph isomorphism.
FOGGER also uses two pruning techniques to avoid branches of the DFS code enumeration tree.
These techniques showed to be very efficient and scalable for increasing graph data volumes. On the
other hand, our proposals address the complete set of frequent subgraphs, which is an important issue
that is not tackled by the graph generator FOGGER.

The approach reported in [Wang et al. 2004] deals with a set of undirected graphs and works
separately with each undirected graph. On the other hand, our approaches consider a single directed
graph containing all subgraphs. We compute the frequencies of edges occurrences when the database is
traversed to build the ADI-bio structure, thus facilitating the computation of the subgraphs frequency.
In the approach of Wang et al. (2004), these frequencies are found in the ADI-Mine algorithm, after
the ADI-bio structure is built.

Zou and Holder (2010) also investigate the issue of frequent subgraph mining. In the same way of
our proposals, they consider a dataset as a single graph, but focus on graphs that are too large to
be completely held in main memory. For this purpose, they employed some sampling approaches and
identified that the sampling method called “random areas selection sampling” provided the best results.
On the other hand, the single graph addressed by our proposals is manipulated by an optimized ADI
data structure, called ADI-bio, which allows for the efficient search for patterns of treatments and
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side effects in medical applications.

6. CONCLUSIONS AND FUTURE WORK

In this article, we focused on mining graphs in the biomedical domain, considering information related
to treatments of diseases and side effects caused by these treatments. We introduced two main
contributions, as described as follows.

—We proposed the ADI-bio structure, which is specially organized to index data from a graph database
with information of patients of a disease.

—We also proposed the ADI-Minebio algorithm, which searches for frequent subgraphs in the graph
database organized according to the ADI-bio structure.

The advantages of our proposals were investigated through performance tests considering synthetic
data from the Sickle Cell Anemia. In the tests, we investigated three different issues: (i) the impact of
increasing number of vertices and edges in the performance for building the ADI-bio’s data structure;
(ii) the impact of increasing number of vertices in the performance of the ADI-Minebio algorithm;
and (iii) how the minimum support impairs the performance of the ADI-Minebio algorithm. For an
increasing number of vertices, which ranged from 1,000 up to 1,000,000 vertices, the performance
results showed that the ADI-Minebio algorithm provided good results, which were slightly superior
to a linear growth. The results also demonstrated that the ADI-Minebio algorithm provided a great
reduction in the time spent for detecting frequent subgraphs as the minimum support increased.

We plan to apply the ADI-Minebio algorithm to a database containing real data from the biomedical
domain. We also plan to include information about the number of patients enrolled in the experiment
as a quantitative aspect of the algorithm, as well as to extend the proposed algorithm to consider this
aspect.
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