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Abstract. With the growth of mobile devices equipped with geographical localization services, it has become
economical and technically feasible to capture moving object trajectories in real life. Many interesting applications
are being developed based on trajectory analysis. For example, in a traffic management system, traffic jams may be
determined by mining movement patterns of groups of cars. In general, trajectory data can be analyzed into two different
perspectives: real time and historical. In addition, trajectory applications share a common need, a more structured
recording of movement. This allows managing trajectories as first class citizens and attaching whatever semantics the
application requires, and developing robust and efficient methods to aggregate a set of trajectories that may support
complex analysis. This article extends previous work on the conceptual modeling of trajectories by generalizing the
idea of stops and moves and by defining a set of aggregation functions on trajectory data. In addition, this work
proposes two modeling approaches, both based on design patterns, for devising trajectory data schemas for relational
and multidimensional environments. A real-world case study about truck trajectories is used as a proof of concept.
Experimental results showed that these modeling approaches offer the flexibility we are looking for to cope with the
potential complexity of trajectory semantics in real time and historical analyses.

Categories and Subject Descriptors: H.2.7 [Database Management|: Database Administration
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1. INTRODUCTION

With the growth of mobile devices equipped with geographical localization services, it has become
economical and technically feasible to capture moving object traces (i.e. trajectories) in real life. Many
interesting applications are being developed based on the analysis of moving object trajectories. For
example, in a traffic management system, traffic jams may be determined by mining movement pat-
terns of groups of cars. Similarly, in a zoology application, the analysis of a group of bird trajectories
can help explaining their migration patterns. In a delivery system, discovering the trucks’ movement
patterns may be used as input to decision making processes, such as delivery scheduling. From a tra-
jectory data management point of view, these applications require (1) a more structured recording of
movement, which allows managing trajectories as first class citizens and attaching whatever semantics
the application requires, and (2) methods to model and organize a set of trajectories multidimension-
ally. From a trajectory analysis point of view, these applications ask for (3) trajectory real time
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analysis, and (4) trajectory historical analysis, to support the decision-making process by computing
aggregations and by visualizing them according to different perspectives and levels of details. These
four requirements are key to facilitating the development of applications relying on trajectory data.

Substantial research has been conducted on providing methods and prototype systems for storing,
querying and analyzing moving object trajectories in relational and multidimensional models (e.g.
[Giiting et al. 2000; Pelekis et al. 2006; Orlando et al. 2007; Orlando et al. 2008; Spaccapietra et al.
2008]). However, none of the proposed approaches provides an adequate solution for managing tra-
jectory data as first class objects in transactional and multidimensional environments. Moreover,
only the approach in [Spaccapietra et al. 2008] provides a semantic view of trajectory, which enables
applications to associate whatever semantics they want with the trajectories. However, this approach
is only applicable to transactional schema. Indeed, no work has been published using trajectories as
a semantic objects on multidimensional data modeling.

To fill the gap between the transactional view and the multidimensional view on trajectories, a
novel approach has to be developed to enable applications to perform traditional operating queries
over semantic trajectories stored in transactional databases and compute aggregations on semantic tra-
jectories stored in multidimensional data warehouses. Thus, a set of aggregation functions on semantic
trajectory is required. In addition, a semantic view of trajectories is needed for both transactional and
multidimensional schemas. This mandates that trajectories be treated as first class objects in both
relational and multidimensional schemas, which is beyond the capability of current spatio-temporal
prototypes. Therefore, our contributions are:

—An object-relational meta-schema for semantic trajectories;
—A star meta-schema for semantic trajectories;
—A set of semantic trajectory aggregation functions;

—Two ETL algorithms for populating multidimensional databases from object-relational databases
of the operating environment of a corporation by considering trajectories as first class objects with
semantic data associated with them.

The rest of this article is organized as follows. Section 2 surveys related work. Section 3 specifies a
set of requirements for trajectory modeling and analysis, using an application scenario based on truck
fleet management, and informally introduces the definitions used throughout this article. Section 4
describes two modeling approaches that consider trajectories as first class objects, based on the re-
quirements previously listed, whose purposes are: (i) defining a trajectory data type; (ii) designing
trajectory data schemas of both transactional and multidimensional environments; (iii) specifying al-
gorithms for populating operational databases and data warehouses with trajectories treated as first
class objects; and (iv) designing a set of aggregation functions for enabling real time and historical
analysis over traditional and multidimensional DB, respectively. Section 5 details the experiments
conducted in a real-world application for managing a delivery truck fleet. Finally, Section 6 concludes
the article and highlights future work.

2. RELATED WORK

Spatio-temporal phenomena have been studied by several research communities in the context of
several application areas. In the database community, the work of Guting was the first full implemen-
tation of a database for coping with moving objects. Based on Guting’s and Wolfsonz’s work [Wolfson
et al. 1998; Giiting et al. 2000], Pelekis [Pelekis et al. 2007] devised a framework for representing and
querying moving objects over Oracle DBMS platform. The database community has mainly focused
on management techniques for moving objects and has largely neglected supporting the concept of
trajectories as first class objects.
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In addition, data collection of trajectories of moving objects currently consists of the acquisition
of their positions in time and space that correspond to sample points (i.e. raw data), represented
by triples of the form (x, y, t), where  and y denote the coordinate data and ¢ indicates the time
in which such data were collected. Most DBMSs used today in transactional applications perform
trajectory analysis by storing and processing queries on the raw data, making it difficult to process
queries over trajectories, which should regarded as first class objects.

Several methods have been proposed to improve trajectory data analysis, including the use of spa-
tiotemporal databases and data mining techniques. They can be classified according to the following
groups: (i) generation of trajectory patterns (e.g. convergence, encounter, flock and leadership) ac-
cording to the geometrical properties of trajectories [Laube et al. 2005]; (ii) extraction of clusters of
sample points from trajectories, basically using time and space to determine trajectories located in
dense regions, trajectories with similar shapes or distances, and trajectories that move between regions
during the same time interval [Nanni and Pedreschi 2006; Kuijpers et al. 2006; Giannotti et al. 2007;
Pelekis et al. 2007]; (iii) analysis of trajectories from a semantic point of view, trying to add context
information [Alvares et al. 2007; Guc et al. 2008; Spaccapietra et al. 2008; Palma et al. 2008; Rocha
et al. 2010; Moreno et al. 2010]; (iv) development of architectures, ETL (Extraction, Transformation
and Loading) processes, data models and languages for helping in the construction of trajectory data
warehouses (TDWs). This last group is the focus of the work described here and, therefore, the rest
of this section surveys this group in more detail.

Data Warehouse (DW) technology has helped many organizations improve their decision-making
processes and improve their performance. A DW is a multidimensional database that stores subject-
oriented, integrated, time-variant and non-volatile data [Kimball and Ross 2002|, and is often queried
through an OLAP (On-line Analytical Processing) tool that is aimed at multidimensional processing
of data extracted from DWs, allowing these data to be analyzed in different perspectives and levels
of aggregation [Chaudhuri and Dayal 1997]. There has been a number of proposals in the literature
aimed at integrating functionality and characteristics related to trajectory data and data warehouse
systems [Orlando et al. 2007; Orlando et al. 2008; Pelekis et al. 2008; Marketos et al. 2008; Leonardi
et al. 2009; Baltzer et al. 2008]. The main goal is to enable the storage of trajectory data in a
data warehouse and to provide multidimensional processing with the capability of querying these
trajectories according to several perspectives of analysis in order to support strategic decision-making
processes related to moving objects. This kind of environment has been referred to as Trajectory Data
Warehouses (TDWs).

In [Marketos et al. 2008], data originated from GPS sensors were loaded into a trajectory warehouse
by using a set of ETL (Extract, Transform and Load) procedures. In addition, mechanisms for per-
forming spatio-temporal aggregations analytical queries over trajectory data are detailed in [Leonardi
et al. 2009]. Moreover, based on the trajectory conceptual model proposed in [Spaccapietra et al.
2008|, a conceptual model schema for TDW that is aimed at supporting the monitoring of athletes’
biochemical data is discussed in [Porto et al. 2010]. However, these biochemical data are not organized
into dimensional data structures, through the use of fact and dimension tables and the representation
of different levels of aggregation. In fact, traditional data warehouse techniques and current analytical
tools do not satisfy the requirements of TDW applications because the representation and aggrega-
tion of trajectories imply the need for the modeling and aggregation of varied and interrelated data
types, such as geometries, context information and spatiotemporal objects. Consequently, there is
still no consensus about how trajectories are modeled multidimensionally, organized in different levels
of aggregation and used for answering aggregation queries of OLAP systems.

Even though the advantages of spatiotemporal data warehouses have been known for some time, as
far as we know, no commercial business intelligence solutions employ TDWs today. In [Orlando et al.
2007], the first proposal of a DW for trajectories defines an OLAP data cube with both spatial and
temporal dimensions, and a set of spatiotemporal hierarchies determined through the use of regular
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grids. Both numerical and spatial measures are proposed for this TDW. Some other studies have been
conducted to help the development and widespread use of TDWs. However, none of them deals with
the semantic aspect of trajectories that are rarely treated as first class objects and, thus, the resulting
multidimensional analysis lacks knowledge about the discovered multidimensional patterns.

In this article, two modeling approaches, both based on design patterns, are proposed for designing
trajectory data schemas of transactional and multidimensional environments, in which trajectories
are considered as first class objects. This enables the creation of reports and other outputs that tend
to be much richer than those whose spatiotemporal data are handled as a sample of points with no
associated semantics. Also, a case study based on real truck trajectories was developed to illustrate
how both real time and historical trajectories are modeled and queried in a way that facilitates analysis
and reporting.

3. PRELIMINARIES

Section 3.1 presents an application scenario using trajectory data and discusses specific requirements
for trajectory modeling and analysis, which we claim to be necessary for facilitating the development
of those applications. Section 3.2 informally introduces basic definitions related to trajectories that
will be used throughout this article.

3.1 Application Scenario

Logistic management is an important class of applications that may take advantage of analyzing
trajectory data. Particularly, applications that manage truck delivery of goods are of special interest
due its importance for the global economy. For this kind of application, truck travels may be used to
check whether delivery plans are being correctly executed (real time analysis) or they may analyzed to
assess the performance of the delivery system (historical analysis). Indeed, analyzing truck travels is
the key to improve knowledge about many questions on logistic management, such as: Are the delivery
plans being respected? Taking into account the current state of truck deliveries, when a customer will
be visited? Is it possible to reduce the number of truck travels without compromising revenue? Why
a delivery was not performed? The answers to such questions are key to support decision-making
processes in delivery planning and routing.

In order to analyze the truck travels, hereinafter called simply truck trajectories, this application
must record two types of data:

(1) Data about truck trajectories: Each truck is equipped with a controller device, which automat-
ically collects data about the truck location and allows the truck driver to inform certain events that
occurred during the travel. Data about truck position is sent at regular intervals to a central server,
which stores this data in a conventional database. For example, when the truck stops, the following
data is recorded: (a) the kind of stop: delivery or otherwise, (b) when the stop is not a delivery, the
activities executed by the truck driver during the stop must be informed, such as: lunching, rest-
ing, refueling, emergency, etc. When the truck is traveling, the controller device informs the speed,
direction and position of the truck. In addition, data about the streets travelled by is recorded.

(2) Data related to truck trajectories: regions of interest (e.g. district, regions, state, etc) associated
with each trajectory; the list of customers visited in each trajectory; traffic conditions associate with
the trajectory (to explain delivery delays).

Examples of typical queries executed in this application scenario are:
Q1. What is the location of the truck 1103 and which were the customers it visited?
Q2. What is the number of trajectories and the corresponding average duration, carried out in the

City of Sao Paulo in April?
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Q3. When customer A will be visited?

3.2 Basic Definitions

Based on the application scenario of Section 3.1, we introduce the definitions on which the rest of the
article depends on.

From a conceptual point of view, a trajectory must be perceived by the application or the database
designer as an identifiable and manageable object. Even if the trajectory is defined as a first-class
object, applications sometimes require relating information to segments of a trajectory, for example,
to indicate that, in a time interval along the trajectory, the truck stopped to deliver merchandise
to a customer. Thus, a conceptual view of trajectories must provide mechanisms to deal with the
trajectory as a first-class object, as well as to decompose the trajectory into meaningful events.

In more detail, a geographical positioning device collects, at regular time intervals, the geographic
location of a moving object (e.g. latitude, longitude), associated with a timestamp. Over time, the
device accumulates a set of triples (e.g. lat, long, instant), which represent the movement of the
object. However, the sequence of triples collected may in fact represent different trajectories of the
moving object. For example, suppose a truck made several trips per day. At the end of the day, the
collection of triples captured by the device should be separated into different trajectories, each one
representing a different trip. By contrast, suppose that the same set of triples should be used by a
truck maintenance application. In this second scenario, the trajectory of the truck should be defined
as the sequence of all triples collected throughout the day. Thus, in general, the definition of what
is a trajectory depends on the application, that is, the definition of the start and the end points of a
trajectory depend on how the application perceives the movement of the object.

Therefore, the designer should provide a function to segment the raw data collected by the posi-
tioning device and to generate trajectories, which will then be stored in a database and manipulated
by the application. In the literature, the process of segmenting raw trajectory data is known as se-
mantic construction of the trajectories (hence the term semantic trajectories we adopt). This may
also include other tasks, such as the correction of points collected by the positioning device.

To capture such concepts, we introduce a sequence of definitions. A spatio-temporal point is a triple
p=(l,g,t), where | and g are real numbers that represent latitude and longitude, respectively, and ¢
is a positive real number representing a timestamp.

A raw spatio-temporal dataset is a finite sequence of spatio-temporal points R = ((I1,91,t1), ...,
(Ik, gk, tx)) such that, for all ¢ € [1,k), ¢; < t;11. Note a raw spatio-temporal dataset has no semantics.

Let A be an event attribute, taking values from the domain D. An event over A is a triple e =
(b,d,a), where b = (ly, g, tp) and d = (mg, hg,uq) are points such that ¢, < wug, representing the
begin and end points of e, and a is an attribute value from D, representing the event information. A
semantic trajectory over an event attribute A is a quadruple s = (b,d, R, L), where

—b = (lp, g, tp) and d = (mg, hg,uq) are points such that t, < wug, representing the begin and end
points of s;

—R = ((l1,91,t1), -+, (lk, gk, tx)) is a raw spatio-temporal dataset such that b and d, the begin and
end points of s, are the first and the last points of R;

—L = (e1,...,e,) is a finite sequence of events over A such that:
—for ¢ = [1,n], the begin and end points of e; are points in R;
—for i = [1,n), if d; = (my, hi,u;) is the end point of e; and b;11 = (11, git1,ti1+1) is the begin

point of e;41, then u; <t;4q.

Note that b and d, the begin and end points of s, are just a definitional convenience, since they can
be trivially deduced from R.
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To summarize, a semantic trajectory is an application-defined representation of the evolution of
the position of a moving object (perceived as a point) during a given time interval. The application
may extract (or define) semantic trajectories from a raw spatio-temporal dataset using a function
which incorporates the semantics of what a trajectory for the domain should be. The definition of a
semantic trajectory includes a sequence of events, which can be referenced and managed individually.
The application may in fact treat events as first-class objects that carry additional semantics.

4. MODELING TRAJECTORY DATA

We now investigate solutions to support the application requirements we identified before. We propose
two solutions that are driven by different modeling objectives. In one scenario, we imagine designers
using trajectories as encapsulated objects without worrying about their internal details. For this sce-
nario, we propose a solution which aims at encapsulating trajectories into a dedicated TrajectoryType
object type, equipped with methods providing access to trajectory components (events). In a second
scenario, we suppose that designers want to associate thematic information with parts of the trajec-
tory object, for instance, to associate a list of the closest points of interest with a trajectory event.
We describe a solution for this scenario that focuses on the explicit representation of a trajectory and
its components, which makes it possible to link application objects to any of these components.

4.1 Transactional Environment

Extending data models with new data types is the key to provide adequate representation and ma-
nipulation of real world complex objects. In the database domain, this technique has been frequently
applied in order to reduce the complexity of design and application development. For example, with
the creation of new spatial data types, various DBMS were equipped with such types, which greatly
facilitated the development of applications dealing with spatial data. The creation of a new data type
not only provides comfort to the designer but also enables data management optimizations. Thus, a
plausible solution is to define a trajectory data type containing attributes and methods that are useful
for instantiating object types and creating attributes of this new type.

Figure 1 shows the proposed trajectory data type. Note that this data type encapsulates two lists:
samplePoints and eventList. The samplePoints list represents the sample points collected from the
positioning devices and the eventList list refers to the semantic segmentation of the trajectory. In
fact, according to the semantic trajectory definition (refer to Section 3) the idea of capturing the
geometric and semantic facet into a single data type is represented respectively by these two lists.
An event has application-dependent information. In this case, the designer should provide a function
that maps geometric data to event information. Each event is defined by two spatio-temporal points
corresponding to the event begin and end, and a textual information about the event.

The proposed trajectory data type encapsulates a set of useful methods for retrieving geometric
data (e.g. sample points), computing measures on trajectory data (e.g., length, duration, speed, etc),
and accessing events. Due to space limitations, we do not show all the defined data type methods.
Indeed, this data type can be extended with other attributes and methods to meet the requirements
considered crucial to the application.

The trajectory data type approach is adequate for applications that only require geometric data
and a semantic event view of the trajectories. Whatever semantics the application needs should be
explicitly defined by the database designer in the form of attributes of an object type (e.g. moving
object), which must contain one attribute of type TrajectoryType. Another way to attach semantics
is by linking TrajectoryType objects to other application objects.

Since much of the information on trajectories is application dependent, it is not adequate to com-
pletely solve this problem by adopting only the data type approach. An adequate solution is to expose
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Trajectory TYPE

integer trid
interval trlife
oid integer
trBegin, trEnd STPoint
samplePoints [] {
instant time
point geo
}
eventList [] {
evtBegin, evtEnd STPoint
type string
}
STPoint getBegin()
STPoint getEnd()
Event[] getEventList()
samplePoint[] getSamplePoints()
real getLength()
line getTrline()

Fig. 1. Trajectory Data Type

Trajectory Type components in such a way that additional application semantics may be linked to these
components. This exposure is achieved by decomposing TrajectoryType attributes into distinct object
types. In addition, we add a new moving object type since a trajectory is always the result of a moving
object.

Design patterns are well known artifacts in the software engineering literature. They aim at facili-
tating and organizing the development process, providing pre-defined solutions to known problems in
software design. Unlike the area of software engineering, where design patterns focus on models for
software, this article proposes the use of design standards for the construction of database schemas
related to moving objects trajectories. Basically, the idea is to provide an off-the-shelf data schema
using semantic trajectory concept and points of extension (called hooks in the literature). Extension
points can be used by the designer to attach semantic information related to trajectory data.

To meet application requirements related to real time or historical analysis, we propose two design
patterns. We assume that transactional schemes are suitable for building applications that perform
analysis in real time, and multidimensional schemes are ideal to carry out historical analysis. There-
fore, we specify two design patterns, one for instantiating data schemas for transactional environment
and another one for creating database schemas in a multidimensional environment.

Figure 2 depicted the proposed design pattern for a transactional schema. This trajectory design
pattern holds object types for representing trajectories, their events (a subcomponent of a trajectory)
and moving objects. In fact, we assume that moving objects, trajectories and events are the common
information needed by database designers of trajectory management applications. In addition to
structure trajectory data, this design pattern includes hooks used to connect to application objects.
In Figure 2, the hooks are represented as a box with dashed border. Trajectories are linked to a
MovingObject Type object type that represents the traveling objects covering the trajectories. Hence,
a designer can instantiate a data schema from this design pattern by defining new attributes for the
object types and substituting hook objects by application object types.

Algorithm 1 populates a transactional schema that instantiates the design pattern presented in
Figure 1. It takes the raw spatio-temporal points generated by a positioning device (line 1), and, for
each moving object, it creates an instance of MovingObjectType (line 2). Next, it calls a function,
provided by the designer, to construct trajectories (line 3). For each trajectory this function constructs,
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MovingObjectTYPE TrajectoryTYPE - EventTYPE
0.* 2.
moid integer trid integer evtid integer
moid integer evtBegin, evtEnd STPoint
trBegin, trEnd STPoint type string

samplePoints ] {
instant timestamp
geometry point

}

Fig. 2. Trajectory Design Pattern for Transactional Environment

an instance of TrajectoryType is created (line 5). Finally, it uses another function provided by the
designer to segment a trajectory into a list of events (line 6).

Algorithm 1 Populate Transactional Schema
1: for each distinct moid in the Raw Spatio-Temporal Dataset do
2 creates an instance mo of MovingObjectType
3:  mo.trajList = trajectorySegmentation(lp)
4:  for each trajectory ti € trajList do
5: creates an instance tr of TrajectoryType
6
7
8:

tr.eventList = eventSegmentation(ti)
end for
end for

4.2  Multidimensional Environment

Multidimensional modeling refers to a set of techniques and concepts used in data warehouse de-
sign. The multidimensional model is composed by two main conceptual constructors, called fact and
dimension. Facts are values (in general, numeric) that can be aggregated, and dimensions are groups
of hierarchies and descriptors that contextualize the facts.

Figure 3 shows the design pattern for a multidimensional modeling. We use UML notation for
this design pattern, and sterotypes are used to denote fact and dimension classes. Dimensions are
represented with traced lines, indicating that they are extension points (hooks). Dimensions can
be extended with new hierarchies and properties. Facts accept extensions on measures but existing
measures must be preserved in order to follow trajectory data type proposal.

In this design pattern, we use TrajectoryType and FventType as measures of multidimensional
models, which define that aggregations will be made over trajectory and event facts. Indeed, these
facts represent the geometric and semantic view on trajectories that is coherent with the idea of
exposing the trajectory components. One example of geometric aggregation is the union of trajectories
that exceed a certain speed threshold and that intersect a given ad hoc query window. An example
of an aggregation function for events is the average duration of an event of type "Lunch".

Since a trajectory is inherently a spatio-temporal object resulting from traveling moving object, we
propose three generic dimensions that are shared by trajectory and event facts: Time, Region (Space),
and Moving Object. In addition, the TrajectoryCategory and EventCategory dimensions are defined
to characterize aggregations over trajectory and event facts, respectively. It is worth noting that

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



From Conceptual Modeling to Logical Representation of Trajectories in DBMS-OR and DW Systems . 471

<<DIMENSION>> i
TRAJECTORY_CATEGORY TrajectoryTYPE
]

"TR_CATEGORY

<<FACT>>

trid integer

__________ trlife interval
1 samplePoints [] {
_-<7| timeinstant e YO8
_e*” geometry point Y
} S
S T -~ S,

. T Y | FEFasETAREE R s EAREERREER !
' <<DIMENSION>> ! e —— Lo ) i <<DIMENSION>> :
! ;

: TIME : : <<DIMENSION>> ] : REGION !
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SVEAR | | MOVING OBJECT ! | COUNTRY ;
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<<FACT>>
EventTYPE
________ eventid integer -""“---..__
mmmmmmmms ettt | trid integer T~ 1Y ST 1
: <<DIMENSION>> ! evlitinterval ! <<DEGENERATEDDIMENSION>> |
1 1 1
| EVENT_CATEGORY ! geometry line . TRAJECTORY j
1 1 1
:

Eew
info string ' _TRID

Fig. 3. Trajectory Design Pattern for Multidimensional Environment

FEventType facts contain an attribute referring to the trajectory identification, (¢rid), which is used to
specify the degenerated Trajectory dimension. We assume that, for some trajectory applications, it is
important to apply aggregations to trajectory ids, for instance, to compute the number of events of
type "delivery gas" in trajectory id "13052".

Multidimensional modeling should include a process to extract and transform data from the source
OLTP systems to feed a data warehouse, called ETL process. In our scenario, the first step of the ETL
process is to populate all levels from the hierarchy dimensions with values from the TrajectoryType and
EventType attributes stored in the transactional schema. For example, the time dimension must be
populated with values ranging over trajectories lifespan, and the EventCategory dimension must cover
all event categories of interest. For the region dimension, a topological spatial function (e.g. inside,
crosses and near by) must be provided by the application designer to establish the spatial relationships
between TrajectoryType facts and the Region dimension. We observe that a region dimension may
not have a well-defined hierarchy (e.g. a predefined spatial hierarchy with a 1:N relationship among
higher and lower attribute levels), as a trajectory geometry may not be associated with all levels of
the region hierarchy. For example, a trajectory may be inside the State of Sao Paulo, but not inside
any of its cities. A solution to this problem is to set null to all region levels that do not match.

After populating the dimensions, we are able to extract the facts. Algoritm 2 populates the Tra-
jectoryType facts (line 1) and create links to the dimensions (lines 3-12). Lines 5 to 12 create links
to the asymmetrical hierarchy [Malinowski and Zimanyi 2004] of the Region dimension.

The process for populating the FventType facts is very similar. We must apply the same steps,
except that we must replace TrajectoryType by FEventType and add one more instruction to link
events to values of the FventCategory dimension, which must be supplied by a function provided by
the designer (similar to the category function for trajectories, shown in line 12 of Algorithm 2).

4.3 Aggregation Functions for Trajectories
From an analytical point of view, it is fundamental to provide summarized information from a large
collection of trajectory data. Aggregation functions have been widely used in database and decision-

support applications with this purpose. However, the available aggregation functions for transactional
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Algorithm 2 Populate Multidimensional Schema
1: for each trajectory ti of TrajectoryType table in transactional schema do
2 copy ti to the trajectory fact in the multidimensional schema
3:  create two links to the lowest level of Time dimension using ti.trbegin and ti.trt End properties
4:  create one link to the lowest level of Moving Object dimension using ti.oid;
5. for each hierarchical level rl of Region dimension ordered in ascending order do
6: if SpatialTopological Function(ti.geometry,rl.geometry)=true then
7
8
9

create a link to the level rl of Region dimension
break
else
10: set null to link to the level 7l of Region dimension
11: end if
12: create one link to the lowest level of Trajectory Category dimension using ti.category() func-
tion;
13:  end for
14: end for

and multidimensional environments are not appropriate to aggregate complex objects such as trajecto-
ries. Therefore, we propose to enhance the analytical processing capabilities of trajectory applications
by introducing a new family of analytic functions for trajectory data.

The proposed family of aggregation functions for trajectories reduces a set of trajectories to a single
trajectory, to a line, to a time interval, or to a scalar value. However, we do not propose specific
aggregation functions, since we believe that it is the responsibility of the designer to identify which
functions are of interest to her/his application and to define their semantics. Instead, we introduce a
generic signature that helps specifying a large number of trajectory aggregation functions, defined as
follows:

OP : T x F — D where

—OP represents the following aggregation operations: SUM, COUNT, AVERAGE, MIN, and MAX;
—T is a trajectory data set;

—F defines which trajectory feature type is used by the aggregation operation OP. A trajectory
feature is any information that can be computed or obtained from a trajectory (for instance, geom-
etry, length, lifespan, set of sample points/events, etc). The possible trajectory feature types are:
TRAJECTORY, SPATIAL, TEMPORAL, SET, and NUMERIC.

—D is the output data type

For example, Table I illustrates some functions that have this generic signature. In the examples, the
variable t is of type TrajectoryType and represents the set of trajectories being aggregated. Trajectory
feature values are computed by trajectory functions that must be implemented in the TrajectoryType
data type. For example, in the second line of Table I, the function t.events(” LUNCH”) returns a set
of events with description "LUNCH".

5. EXPERIMENTAL RESULTS

In this section, we present experiments carried out in the real-world scenario described in Section 3.1.
We first instantiated a transactional and multidimensional trajectory schema in a relational database.
Next, we implemented algorithms for constructing and populating those schemas. In the sequel, we
developed trajectory aggregate functions for both environments. We have also used an open source BI
OLAP tool for building data cubes from the trajectory multidimensional schema that was instantiated.
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Table I. Examples of Trajectory Aggregation Functions

SIGNATURE Example Meaning
COUNT (T, T.ATTR) : NUMERIC tr_aggr count (t, t.events("LUNCH")) returns the number of events of type
"LUNCH" in a set of trajectories
AVERAGE (T, T.ATTR) : TEMPORAL tr_aggr avg temporal (t, t.lifespan()) returns the average interval of a set of
trajectories
MIN (T, T.ATTR) : TRAJECTORY tr_aggr min_spatial (t, t.geometry()) returns the shortest trajectory in space
from a set of trajectories
MAX (T, T.ATTR) : SPATIAL tr_aggr_max_spatial (t, t.geometry()) returns the geometry line from the
longest trajectory in space of a set of tra-
Jjectories
- = [T T Tt 1
<<MovingObjectTYPE>> . ! <<Application ObjectType>> |
Truck carries out i Delivery E
truckid integer e R |
codigo integer 1 0. ! deliverydate timestamp | 0.*
! gasQuantity real —
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Ll |
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eventid integer ittty 1
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type string - | name string p—
0-. 0..1 | location point Pt

Fig. 4. DBMS Object-Relational schema for the Truck Fleet Control Application

Finally, we performed some queries and analysis in both environments, using the aggregation functions
to illustrate the importance of their application.

5.1 Implementation of the trajectory schema in Object-Relational DBMS

Due to the complex nature of trajectory data, we decided to use a DBMS equipped with object-
relational features (Oracle). The use of this DBMS helped us define and implement trajectory data
types and their corresponding functions. Figure 4 shows the logical schema implemented in Oracle
DBMS based on the transactional design pattern described in Section 4.1. Note that, with this design
pattern, it is possible to link application thematic information with trajectory data and its events.
For example, the Region table is linked to the Travel table, which stores truck trajectories. This
relationship is instantiated when a truck trajectory is inside a region. Similarly, application thematic
information is associated with events. For example, the Customer table is linked to Events denoting
that some events may be related to a customer (e.g. delivery event).
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<<Event_Category Dimension>> <<Region Dimension>>
Dim_Event_Category Dim_Region
event category .
categoryid number region rid number
category varchar2(30) <<EventType Fact>> country varchar2(30)
FACT_EVENT ™| state varchar2(30)
factid number " district varchar2(30)
event EventType _‘c‘li
o a |c
£ 5 |§
e jo)) jo))
5 > s |°
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% moid number
: enterprise varchar2(30)
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_ _ _ = base varchar2(30)
<<Time Dimension>> | | factid number truck integer
Dim_Time travel TrajectoryType moving object
timeid number
year Integer -
month integer begin time
day integer trajectory category *
A <<Trajectory_Category Dimension>>
end time Dim_Travel_Category

categoryid number
category varchar2(30)

Fig. 5. DW Object-Relational schema for the Truck Fleet Control Application

5.2 Trajectory DW implementation

The multidimensional schema was also implemented in a relational database. However, the proposed
multidimensional design pattern is not oriented to any specific data model. Although this design
pattern is represented in the object-oriented model, its implementation can be done in whatever
target data model. Indeed, the choice of a target model is a decision that concerns the application
designer. In our experiments, we decided to use the object-relational model since it facilitates the
mapping between the design pattern model and the implementation model.

Figure 5 depicted the logical multidimensional schema generated from the instantiation of our multi-
dimensional design pattern for trajectories. This logical model contains application-defined hierarchies
for the Moving Object dimension (Dim_Truck) and two links for the T%me (Dim_Time) dimension,
corresponding to the begin and end time for the travel and event facts. The link named trajectory
between Fvent and Travel facts represents the trajectory degenerated dimension, illustrated in Fig-
ure 3.

5.3 Aggregation function implementations

We used the generic signature for trajectory aggregation functions to implement some functions re-
garded as crucial to the application scenario. Since these functions have a parameter that is a complex
object (i.e. TrajectoryType), we used the ODCIAggregate framework built in Oracle to implement
them. The creation of user-defined aggregation functions requires the implementation of four routines
that are mandatory by the framework interface. Some of the functions that have been created in our
experiments are:

—TR_AVG_DURATION - computes the average trajectory duration
—TR_AVG_SPEED - computes the average trajectory speed
—TR_MAX DURATION (and MIN) - computes the maximum and minimum trajectory duration
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select tru.codigo, tr_count(t), tr_avg duration(t), tr_avg evt delivery(t)
from trucks tru, table(tru.travels) t, areas a
where a.name = ’OSASCO’ and a.category = ’'CITY’ and
sdo_inside(t.get trline(), a.geometry) = 'TRUE’ and
t.trbegin.instant >= to_timestamp(’01-01—-2010") and
t.trend.instant <= to_ timestamp(’30—06—2010")
group by tru.codigo;

Fig. 6. Query returning the amount of trips, the average duration and the number of events for each truck within a
given time period and spatial region

(a)
select t.get trline()
from trucks tru, table(tru.travels) t
where tru.codigo = 11 and
(t.trbegin.instant , ’DD-MM-YYYY’)=(current date, 'DD-MM-YYYY’);

(b)
select e.evtbegin.geometry
from trucks tru, table(tru.travels) t, table(t.events) e
where tru.codigo = 11 and
(t.trbegin.instant , ’DD-MMYYYY’)=(current date, 'DD-MM-YYYY")
and e.type = ’Atendimento’;

Fig. 7. Real time queries for retrieving (a) geometry of a truck trajectory and (b) beginning location for the events of
type "Atendimento"

—TR_MAX LENGTH (and MIN) - computes the maximum and minimum trajectory length

—TR_AVG_QTD_DURATION (LENGTH) - computes the average volume of product delivered
per duration (per LENGTH)

—TR_ AVG_EVT DELIVERY - computes the average number of deliveries per trajectory

5.4 Analysis in transactional environment

Transactional environment is used for real-time analysis. In this application scenario, typical queries
are to list where trucks are, or which deliveries they have done along the day. For example, we present
below two such queries that have been submitted to the transactional schema:

—for each truck, list the amount of travels done in Osasco city, its average trajectory duration and
the average number of deliveries (i.e. attendance) (see Figure 6);

—for truck 11, list its route (Figure 7 a) and the location of its deliveries that had already been
accomplished in the current day (Figure 7 b). Figure 8 displays the results using Google Maps.

5.5 Analysis in multidimensional environment

Analysis in a multidimensional environment is useful for discovering patterns of behavior. For example,
an interesting analysis is to identify the trucks exceeding the speed limit over a hundred times within
"Sudeste" region. In addition, do this verification for trucks that belong to the "Company X" during
the first semester (Figura 9). We also present an example of trajectory cube created with Pentaho BI
Server! to analyse the average speed and average length of moving object trajectories that travelled

Thttp://community.pentaho.com/projects/bi_platform/
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Fig. 8. Query results of Figure 7 plotted on Google Maps

select dti.month, dt.truck, tr avg speed(ft.travel)
from fact travel ft, dim_ time dti, dim_ truck dt, dim region dr
where ft .begintime fk = dti.timeid and dti.year = 2010 and
dti.month >= 01 and dti.month <= 06 and
ft .truck fk = dt.moid and dt.branch = ’'5’ and
ft .region fk = dr.rid and r.state = ’SAO_PAULO’ and
dt.truck in (
select dt2.truck
from fact event fe, dim_ time dti2, dim event category dty, dim truck dt2,
dim region dr2
where fe.truck fk = dt2.moid and dt2.branch = '5’ and
fe .begintime fk = dti2.timeid and dti2.year = 2010 and
dti2 .month >= 01 and dti2 .month <= 06 and
fe.region fk = dr.rid and r.state = ’SAO PAULO’ and
fe.eventcategory fk=dty.categoryid and dty.category='ExcessoDeVelocidade’
having count(fe) > 100
group by dt2.truck )
group by rollup(dti.month, dt.truck);

Fig. 9. DW query for recovering the average speed of trucks with more than 100 events of type "Excesso de Velocidade"
within a given time interval grouped by month and truck

inside some specific areas (Figure 10).

In summary, the multidimensional environment maintains aggregate information in data cubes,
which allows speeding up query execution for trajectory aggregation functions, group-bys, cross-tabs,
and subtotals whereas the transactional environment is more adequate to non-aggregate queries that
retrieves small number of records at a given time.

6. CONCLUSION

In this article, we presented a set of requirements for trajectory modeling and analysis that allow users
to: (i) represent and query trajectories of moving objects as first class objects; and (ii) add semantics
from the application domain to moving object trajectories thereby allowing real-time and historical
analyses. To meet these requirements, we proposed two design patterns, one for semantic trajectories
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Fig. 10. Truck Fleet Control Data Cube

in a transactional object-relational DBMS and another for semantic trajectories in a multidimensional
database. We also specified two algorithms to help the construction of trajectory objects from a raw
dataset in a transaction environment, as well as to populate multidimensional schemas from the object-
relational database. To validate our main contributions, we illustrated our proposals by developing a
real world application scenario based on large datasets concerning truck fleet management.

Trajectory management applications require using decision-support tools in both environments to
perform both real-time and historical analyses. In addition, specific aggregation functions over moving
object trajectories should be developed. This article contributes with an integrated solution to these
requirements. To the best of our knowledge, this is the first article in the trajectory data management
literature that copes with all these issues together.

As future work, we are interested in performing a more formal and detailed requirement analysis
and in creating a complete and optimized application for a long period of tests in a real corporation
environment. Another point that requires further investigation concerns the design of aggregation
functions for trajectories, which needs a formal and complete study to treat trajectories as complex
and first class objects, including aggregation with respect to the semantic information (i.e. events)
and to other spatial structures, such as polygon geometries (e.g. areas or regions of interest) and
points (e.g. clients or truck fleet bases).
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