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Abstract. Although the materialization of views reduces the execution time of OLAP queries, the materialization of
a large number of views may exceed computer storage thresholds. Thus, given a certain storage cost threshold, there
is a need for selecting the best views to be materialized, i.e. views that fit the storage requirements and provide the
lowest response time to process OLAP queries. Several solutions have been proposed in the literature to solve this
problem. However, most studies have adopted strictly greedy or purely random approaches. Also, most of them do not
encompass the entire cycle of execution of multidimensional analysis, or do not specify and implement the whole cycle
of multidimensional query execution. In this article, we address these issues by proposing a novel method for selecting
and materializing views based on OLAP signatures and GRASP (Greedy Randomized Adaptive Search). On the one
hand, using OLAP signatures and their relationships with descriptions of the data cube, we are able to identify which
views should be materialized for being more beneficial to the user query processing. On the other hand, using GRASP
allows us to define a hybrid method, which traverses the solution space in a comprehensive manner as performed in
purely random approaches, while examines only the regions of the search space with a great concentration of good
solutions generated by a greedy approach. GRASP was compared to other VSP algorithms, namely Pick by Size (PBS)
and Ant Colony Optimization (ACO), and performance tests indicated that compared to PBS, the proposed method
obtained a time reduction of about 20.4% in query processing. In addition, GRASP was more scalable than PBS, since
it selected and materialized a smaller set of views, even when there was a wide range of possible views to be chosen.
Also, GRASP obtained nearly the same query runtime of ACO (i.e. a small performance loss of about 2.84% was
obtained by GRASP), but a shorter time for the selection of views than the ACO algorithm (i.e. a gain in processing
time of about 77% was produced by GRASP).

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Database Administration

Keywords: Data Warehouse, Materialized Views, Performance Evaluation

1. INTRODUCTION

Data Warehouse (DW) and On-Line Analytical Processing (OLAP) are widely used to aid the under-
standing of corporation data, aiming at increasing the productivity in decision-making processes that
are supported by business applications. A DW is a multidimensional database that stores subject-
oriented, integrated, time-variant and non-volatile data, and is often modeled through a star schema
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composed of fact and dimension tables. While fact tables store numeric measures of interest, dimen-
sion tables contain attributes that contextualize these measures. Also, attributes of a dimension may
have a relationship with other attributes of the dimension through hierarchies. Multidimensional data
of a DW are organized in different levels of aggregation. A lower level has detailed data, a higher level
has very concise data and several intermediate levels represent increasing degrees of aggregation. All
levels together compose a data cube that allows the analysis of numerical measures from different per-
spectives. For example, in a retail application, we can examine: (i) revenue per product, per customer
city, per supplier (lower level), (ii) revenue by customer country and product category, revenue per
year (intermediate levels), and (iii) total revenue (higher level). OLAP software enable the analytical
processing of DW’s multidimensional data according to different levels of aggregation.

In DWs, materialized views store precomputed aggregated data to eliminate overhead associated
to expensive joins or aggregations required by analytical queries. Thus, given a certain storage cost
threshold, there is a need for selecting the best views to be materialized, i.e. views that fit the storage
requirements and provide the lowest response time to process OLAP queries. Several solutions have
been proposed in the literature to solve this problem, that has been referred to as views selection
problem (VSP), such as algorithms for views selection and the specification of costs and of selection
criteria. Most studies do not encompass the entire cycle of execution of multidimensional analysis,
or do not specify and implement the whole cycle of multidimensional query execution. Also, most of
them have adopted approaches that are strictly greedy (e.g. [Chan et al. 2001; Nadeau and Teorey
2002; Aouiche et al. 2006; Vijay Kumar et al. 2011]) or purely random [Kalnis et al. 2002; Phuboon-ob
and Auepanwiriyakul 2007; Derakhshan et al. 2008].

In this article, we define OLAP signatures as a dataset that is extracted from the historical records
of OLAP queries previously issued by users. They characterize, throughout time, the behavior of
users to analyze multidimensional data cubes. Using these signatures and their relationships with
descriptions of the data cube, we propose a mechanism that is the main contribution of this article,
and that encompass the entire cycle of multidimensional analysis, ranging from query execution to
view materialization. We use these signatures for identifying characteristics of the views that will be
analyzed by our proposed VSP algorithm.

Another contribution of this article is the specification of a novel VSP algorithm based on the
metaheuristic GRASP (Greedy Randomized Adaptive Search) [Feo and Resende 1995]. Our hybrid
approach traverses the solution space in a comprehensive manner as purely random approaches do,
however it examines only regions of the search space that contain a great concentration of good
solutions that were previously generated by a greedy approach. Semi-greedy solutions are generally
more advantageous than a strictly greedy solution because they are expected to avoid local minimum
values. Also, although GRASP has been successfully applied to several case studies [Festa and Resende
2009], it has not been used to solve VSP so far.

We validated our VPS algorithm through performance tests that investigated the benefits of using
OLAP signatures together with the GRASP metaheuristic for selecting and materializing views. We
compared GRASP to other VSP algorithms, namely Pick by Size (PBS) [Shukla et al. 1998] and Ant
Colony Optimization (ACO) [Song and Gao 2010], and concluded that processing multidimensional
views selected by GRASP provided a shorter query response time than PBS and nearly the same query
runtime of ACO, but a shorter time for the selection of views than the ACO algorithm. In addition,
GRASP was more scalable than PBS, since it selected and materialized a smaller set of views, even
when there was a wide range of possible views to be chosen.

The remainder of this article is organized as follows. Section 2 describes the basic concepts used
throughout the article. The contributions of the article are described in Sections 3 to 5, as follows.
Section 3 lists the main reasons for having used the concept of OLAP signatures in this work and
presents a conceptual model schema to represent information concerning these signatures, Section 4
details the novel method used for selecting and materializing views that is based on OLAP signatures

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



A Novel Method for Selecting and Materializing Views based on OLAP Signatures and GRASP · 481

and the GRASP metaheuristic, and Section 5 presents and discusses performance results. Section 6
surveys related work, while Section 7 concludes the article and highlights future work.

2. THEORETICAL FOUNDATION

In Section 2.1, we discuss the importance of using signatures in OLAP environments that motivated
us to design a conceptual model schema for storing OLAP signatures. In Section 2.2, we describe the
VSP that is tackled by our novel VSP algorithm. In Section 2.3, we outline the metaheuristic GRASP
and the Ant Colony based optimization approach, which refer to the VSP problem and were used in
the experimental work reported in Section 5.

2.1 OLAP Signatures

The user profile is a collection of data that describes the characteristics of a given user and corresponds
to the signature of an individual, as the profile is the explicit digital representation of the user identity
[Alfonseca and Rodríguez 2003]. Signatures represent or identify individuals. The generation of user
profiles includes defining and maintaining signatures to determine, throughout time, the behavior of a
given individual in a given domain or activity of interest [Hildebrandt et al. 2008]. In OLAP systems,
user profiles are built from the analysis of multidimensional queries that were previously executed.
Thus, we define OLAP signatures as a set of information extracted from the historical records of
OLAP queries issued by users for specific purposes.

2.2 The Views Selection Problem

Recent studies show the importance of partial aggregation of multidimensional data to speed up the
execution of OLAP queries [Khan and Aziz 2010]. However, the materialization of all possible views
of a data cube is not feasible for the following reasons. Firstly, the materialization of each view has
a cost that is affected by several issues, such as storage space and processing time for materializing
views. Secondly, the number of possible views is usually very large and prohibitive. It is given by the
combination

∏d
i=1ni, where ni is the number of levels per hierarchy of the dimension i, and d is the

number of dimensions of the data cube.

Due to the impossibility of having a complete data materialization, it is crucial to define which views
should be materialized and how to select them. This definition has been refered to as views selection
problem (VSP) [Khan and Aziz 2010], which is an optimization problem with a set of possible views,
namely V, of a data cube C. It is essential to find the subset M ∈ V that maximizes the benefit
(or minimize the cost) of queries executed on C. In Section 6, we survey solutions proposed in the
literature for solving this problem, and compare our proposed method with these related work.

2.3 The GRASP and Ant Colony Metaheuristics

There has been a growing interest in problem solving systems based on Greedy Randomized Adaptive
Search Procedure (GRASP)[Feo and Resende 1995; Festa and Resende 2009]. Such systems are
based on a metaheuristic for combinatorial optimization that consists of an iterative process with two
phases: (i) a construction phase, in which a feasible solution is produced; and a (ii) local search phase,
in which a local optimum in the neighborhood of the previously constructed solution is obtained. This
process implies in the execution of two procedures until a certain stop criterion is reached. Firstly,
the construction phase produces a feasible solution by creating a list with the best candidates using a
greedy algorithm, such that one of its elements is randomly chosen and added to the current partial
solution. As a result, this solution is a semi-greedy solution, i.e. a randomized greedy solution.
Secondly, the local search phase obtains a local optimum in the neighborhood of the constructed
solution, then updating the best solution found so far. For GRASP stop criterion, it is possible to
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use a certain number of executions or a particular limit of execution time. Our main motivation for
applying the GRASP metaheuristic to the VSP problem involves the use of a probabilistic solution
construction phase to improve the quality of the GRASP initial solutions. Then, for a given searching
space, the GRASP local search phase allows the analysis of a good previous solution, by searching its
neighborhood for another solution that is equivalent or better than the earlier.

The Ant Colony Optimization (ACO) is a metaheuristic that has been applied to optimization
problems [Dorigo and Blum 2005] and to the VSP [Song and Gao 2010]. The ACO algorithm receives
as input parameters: a list of views, the space available for materialization, the pheromone evaporation
rate, the number of ants per vertex, the maximum number of attempts without improvements and the
amount of pheromone deposited by an ant along a given path. This last parameter denotes the total
size of all views given as input to the ACO algorithm. To solve VSP using ACO, ants build routes by
determining if a given view should be added to the solution or not. For each path built, a quantity of
pheromone is mapped to it. This pheromone information is used to guide the paths construction tasks
of other ants. In addition, the pheromone evaporation may occur on the paths to avoid a premature
convergence of the algorithm in a suboptimal region.

3. A CONCEPTUAL MODEL SCHEMA FOR REPRESENTING OLAP SIGNATURES

In this section, we define how characteristics of OLAP queries can be represented by OLAP signatures.
The information concerning OLAP signatures proposed here characterizes, throughout time and for a
given user, the kind of queries submitted by the user to a particular data cube. As a result, the most
significant elements of the data cube are identified. Acquiring such knowledge aids the process of view
selection, allowing us to choose the most beneficial views associated to the scope of previous queries
submitted by the user. Another goal is to timely provide necessary information for the materialization
of the chosen views. For this, we propose a representation for OLAP signatures and a conceptual model
schema to associate OLAP signatures with elements of the data cube.

We propose that OLAP signatures be represented as shown in Figure 1 and described as follows.
Each user query is related to a single OLAP signature. Also, each signature contains the following
information: (i) a data cube, characterized by an identifier, a description and the name of the fact
table whose data were used for generating the OLAP cube; and (ii) a set of combinations of levels
among different dimensions, such that each existing combination represents a view (i.e. a vertex) that
is described by an identifier, estimated number of tuples of the view, and size in bytes of each tuple
of the view. Each vertex is a combination of levels of distinct dimensions.

Figure 1 shows the proposed conceptual model schema, in which each vertex represents information
of a given data cube and is composed of several levels of aggregation. These levels have a precedence
relationship with other levels to model the data cube hierarchies, and each of them has the following
properties: an identifier, description, column name of the dimension table that is associated with
this level, column data type (e.g. integer or double), column size in bytes, name of the dimension
table associated with this level, a set of names of dimension tables used in the join operations and
a set of join conditions used for accessing the level. Also, each level is related to a given data cube,
which can have several measures. Each measure is described by an identifier, column name of its fact
table, column data type, column size in bytes, and the numerical expression used for computing it.
Therefore, information on measures, cube, levels and vertices are loaded by multidimensional data
extractor algorithms discussed in Section 4.1, while query and signature are used to record historical
information on the profiles of OLAP users as outlined in Section 4.2.

According to the conceptual schema of Figure 1, an user query is described by a MDX (MultiDi-
mensional eXpressions) expression [Whitehorn et al. 2005] and the date in which the user requested
the query execution. Our work is based on MDX because this multidimensional query language is
a well-known standard for processing OLAP queries. Data related to the submitted user query are
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Fig. 1. A conceptual model schema for OLAP Signatures.

also recorded, including user query expression, query execution date and the relationship between the
query signature and the view with the minimum cost (e.g. view with the smallest size) that may be
used to answer the user query. In our conceptual model schema, we store information about sizes in
bytes, since storage costs are given by multiplying the number of lines by the size of these lines. This
computation indicates the size of a view and is one of the aspects used to select views to be material-
ized according to the storage space available. The frequency information of views is also used to select
views to be materialized as further explained in Section 4.2 and is incremented when an instance of
the relationship between the query signature and the view with the smallest size is identified.

4. A METHOD FOR SELECTING AND MATERIALIZING VIEWS

In this section, we introduce the proposed method for selecting and materializing views, which is com-
posed of four phases: (i) extract data and metadada from a DW, from its corresponding star schema,
and from a data cube schema, and then, compute all possible vertices for this cube (Section 4.1); (ii)
record information about the user OLAP queries submitted so far and build the corresponding OLAP
signatures (Section 4.2); (iii) select the more beneficial vertices (i.e. views) for the execution of user
OLAP queries (Section 4.3); and (iv) materialize the chosen vertices (Section 4.4).

4.1 Extracting Multidimensional Data

This phase aims to extract information from a mapping schema between a DW and an OLAP cube and
to create and store the entities Cube, Measure, Level and Vertex shown in the conceptual metamodel of
Figure 1. This is performed by our multidimensional data extractor algorithm (Algorithm 1), which
works as follows. It receives as input a mapping schema from which the conceptual metamodel’s
entities of Figure 1 are created, instantiated and persisted. In line 1, the procedure ReadCubes is
called to obtain a set of instances of the entity Cube from schema, and to store them in the variable
setOfCubes. Next, in line 3, each instance a_cube of setOfCubes is stored. In line 4, a set of instances
of the entity Measure, which is defined in schema for a_cube, is read and written in the variable
setOfMeasures, and in line 5, the instances of setOfMeasures and their corresponding relationships
with a_cube are saved. In line 6, it is obtained the set of dimensions defined for a_cube from schema,
which is stored in the variable setOfDimensions. In line 7, the accumulator totalSetOfLevels, which
aims to store all sets of levels of each dimension, is initialized. Then, in line 9, for each dimension
a_dim of setOfDimensions, it is obtained a set of hierachies denoted by setOfHierarchies from
schema. Next, in line 10, the accumulator setOfLevelsByDim is created to store the set of levels
of a_dim, and is initialized to an empty set. For each hierarchy (indicated by a_hierarchy in line
11) of setOfHierarchies, a set of instances of the entity Level are read from schema and stored
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Algorithm 1: ExtractMultidimensionalData (schema)

Input: a mapping schema between a DW and an OLAP cube
Output: Void

1 setOfCubes ← ReadCubes(schema);
2 FOR (a_cube: setOfCubes) DO
3 StoreCube(a_cube);
4 setOfMeasures ← ReadMeasures(a_cube,schema);
5 StoreMeasures(setOfMeasures, a_cube);
6 setOfDimensions ← ReadDimensions(a_cube,schema);
7 totalSetOfLevels ← ∅;
8 FOR (a_dim : setOfDimensions) DO
9 setOfHierarchies ← ReadHierarchies(a_dim,schema);
10 setOfLevelsByDim ← ∅;
11 FOR (a_hierarchy : setOfHierarchies) DO
12 setOfLevels ← ReadLevels(hierarchy, schema);
13 FOR (a_level : setOfLevels) DO
14 precedents_levels ← GetPrecedents(a_level, a_hierarchy);
15 StoreLevel(a_cube, a_level, precedents_levels);
16 setOfLevelsByDim ← setOfLevelsByDim ∪ setOfLevels;
17 totalSetOfLevels ← totalSetOfLevels ∪ setOfLevelsByDim;
18 setOfVertexes ← GetVertexes(a_cube, totalSetOfLevels);;
19 StoreVertexes(setOfVertexes, a_cube);

Algorithm 2: GetVertexes (a_cube, totalSetOfLevels)

Input: an OLAP cube and the set of all levels of all dimensions
Output: set of vertexes successfully created

1 setOfVertexes ← ∅;
2 levelsOfCP ← CartesianProduct(totalSetOfLevels);
3 FOR (setOfLevels: levelsOfCP) DO
4 row_size ← 0;
5 number_Of_rows ← 1;
6 FOR (a_level: setOfLevels) DO
7 number_Of_rows ← number_Of_rows * GetNumberOfRows(a_level);
8 row_size ← row_size + GetRowSize(a_level);
9 row_size ← row_size + GetPrecedentsSize(a_level);
10 row_number_estimated ← GetEstimation(number_Of_rows);
11 row_size ← row_size + GetMeasuresSize(a_cube);
12 a_vertex ← NewVertex(row_size, row_number_estimated, setOfLevels);
13 setOfVertexes ← setOfVertexes ∪ a_vertex;
14 RETURN setOfVertexes;

in the variable setOfLevels (line 12). For each instance a_level of setOfLevels, their respective
precedent levels in the hierarchy are obtained in line 14. Then, each level (a_level) and their respective
relationships with a_cube are recorded (line 15). In line 16, the set of levels of each hierarchy
a_hierarchy is added to setOfLevelsByDim, while in line 17, the set of levels of each dimension (i.e.
setOfLevelsByDim of each a_dim) is added to totalSetOfLevels. Once stored the entities Cube,
Measure and Level, and having the whole set of levels of all dimensions (denoted by totalSetOfLevels),
the algorithm calls the procedure GetV ertexes (Algorithm 2) to generate the set of instances of the
entity Vertex that represent all possible views for a given cube (i.e. a_cube), and assigns this set
to setOfV ertexes (line 18). Finally, in line 19, all instances of setOfV ertexes, their respective
relationships with a_cube, and all levels that compose each view are stored.

The GetV ertexes algorithm (Algorithm 2) works as follows. It takes as input an instance a_cube
and all instances of the entity Level (indicated by totalSetOfLevels). In line 1, setOfV ertexes,
which represents a set of instances of the entity Vertex, is initialized to an empty set. It aims to store
the vertices that will be generated and returned by the algorithm. In line 2, a procedure is called
to calculate the cartesian product among all sets of totalSetOfLevels. From this computation, a
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collection of sets of instances of the entity Level is returned. To generate an instance of the entity
Vertex, the following information is needed: the line size (i.e. attribute row_size of the entity Vertex ),
the estimated number of rows (i.e. attribute row_number_estimated) and the set of levels that
compose the vertex (i.e. setOfLevels). The line size is given by the sum of the attribute column_size
of a given a_level, which denotes the memory size in bytes of a_level, with the sum of column_size
of each level that preceeds a_level, and plus the sum of each column_size of each measure of a_cube
(lines 7 to 9). In line 10, the row_number_estimated is obtained through the computation of an
estimated number that is based on the number of tuples of the fact table that is related to a given
cube a_cube and on the number of tuples resulting from the multiplication between the number of
rows (i.e. number of members) of each level of setOfLevels. As each instance a_vertex is created,
it is added to setOfV ertexes (line 13). Finally, in line 14, the set of instances of Vertex is returned.

4.2 Recording User OLAP Queries and Building OLAP Signatures

This phases aims to record information about the user OLAP queries submitted and build the cor-
responding OLAP signatures. It includes two subphases. The first one consists in the specification
of the association between the user and a data cube, which results in the signature computation and
in the determination of the relationship between the signature and the OLAP cube. The second
sub-phase consists in building the history of user OLAP queries and in tracking the levels involved in
the queries. Therefore, it identifies the vertices that when materialized will be used to answer these
queries. To achieve this, for each query submitted, the user responsible for its submission is identified
and the data cube over which the query is executed is determined as well. Using the pair (user, cube),
the signature, to which the query belongs, is identified. Thus, the OLAP query is stored, and its
relationship with the OLAP signature is identified.

Many vertices (i.e. views) can be used to solve a given user query. Once these vertices are known,
we must identify the vertex of smaller size, i.e. the vertex of minimum cost to answer the query in
question. Then, we register the occurrence of the relationship between the query signature and the
vertex of minimum cost. Finally, if the occurrence of the relationship has already been registered, we
only increase the frequency of the attribute that denotes this relationship.

4.3 Selecting Views

The objective of this phase is to select the vertices considered as more beneficial for processing the
OLAP queries, based on the data associated with the OLAP signatures generated in the previous
phases. The selection criteria are described in Section 4.3.1 and the optimization algorithm adopted
for selecting the views is explained in Section 4.3.2.

4.3.1 The Selection Criteria Used. Data stored during the first and second phases provide infor-
mation on the vertices of a cube associated with a given OLAP signature. This information is read
and handled as a set of quadruple (id_vertex,size,benefit,density), and is given as input for the selec-
tion process. The first element of this quadruple is the identifier of a vertex, which is used after the
selection phase for identifying the vertices selected for materialization. The second element is the size
of the vertex, which is obtained by multiplying the attributes row_size and number_Of_rows of the
entity Vertex of Figure 1. The third is the benefit given by the vertex in the case of being materialized
to assist in the execution of queries related to a given signature. The calculation of the benefit of
a vertex v of a given signature a is given by Equation 1, where maximumFrequency(a) denotes the
highest frequency of all vertices of the signature a. The maximum frequency is used in this compu-
tation to normalize the benefit calculated. The fourth element of the quadruple is the density that
is obtained by the ratio between the benefit and the size of the vertex. The density represents how
valuable the materialization of the vertex is, because the greater the benefit and the smaller the size
occupied by the vertex, the more valuable the vertex is to run a given query. Therefore, the density
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Algorithm 3: GRASP (ϕ, δ, γ, θ, ϑ, τ)

Input: a list of vertices (ϕ), amount of space available for materialization (δ), number of algorithm iterations
used as a stop criterion (γ), greedy rate to define the size of the LRC (θ), greedy rate to define
the size of the LRC in local search (ϑ), number of exchanges to be made in local search (τ)

Output: best solution
1 bestSolution ← θ;
2 k ← 1;
3 FOR (k: γ) DO
4 ϕ

′ ← ϕ;
5 solution ← ConstructionPhase(ϕ

′
, δ, θ);

6 solution ← ImprovementPhase(ϕ
′
, δ, θ, τ , solution);

7 UpdateSolution(solution, bestSolution);
8 RETURN bestSolution;

is used as the criterion for selecting the vertices by our optimization algorithm.

benefit(v,a) = frequency(v,a) / maximumFrequency(a) (1)

4.3.2 The Optimization Algorithm Proposed. The proposed optimization algorithm based on the
GRASP meta-heuristic (Algorithm 3) works as follows. It receives as input a list of the quadruples
described in Section 4.3.1 and sorted by density. Each quadruple of this list represents a vertex. It is
noteworthy that the algorithm will process only the vertices whose benefit is greater than zero. In line
1, the best solution is initialized to an empty set of vertices, i.e. at the beginning of the algorithm,
the benefit of the best solution is zero. In lines 2 to 7, the GRASP iteractions are performed. In
line 3, the variable ϕ is copied into ϕ

′
at each beginning of iteration, so that the list of vertices

given as input to the ConstructionPhase procedure of line 5 remains unchanged. In line 5, a partial
solution is obtained through the construction phase and is stored in the variable solution. Then, in
line 6, through the improvement phase, a new solution, which is equal to or better than the previous
solution, is obtained and stored in the variable solution. In line 7, the UpdateSolution procedure is
called to compare the current best solution (bestSolution) and the solution obtained in the previous
line (solution). It returns in bestSolution the solution with the best benefit. The benefit of a solution
is given by the sum of benefits of each vertex that composes the solution. Finally, at the end of the
iterations, in line 8, the best solution found so far, which consits in the best set of vertices for helping
in the execution of queries of a given signature, is returned.

In each iteration of the GRASP algorithm, the ConstructionPhase procedure is called. The
ConstructionPhase algorithm (Algorithm 4) aims at generating a good initial solution. In line 1,
Solution is initialized to an empty set of vertices. In lines 2 to 9, iterations are performed while the
size of the solution is not greater than the space available for materialization. Each iteration begins
with the definition of the restricted candidates list, i.e. RCL. This list contains the elements that
were best evaluated by the greedy approach, i.e. the vertices with higher densities. In line 4, it is
verified whether there are elements in RCL that can be added to the solution. If RCL is not empty,
the RandomSelection procedure, which randomly selects a vertex from RCL, is called in line 5. This
randomness is the differential of GRASP, since the choice of the vertices that comprise the solution is
based on a semi-greedy approach. Thus, solutions of good quality are generated due to greedy prop-
erty, and diversified due to the random feature. In lines 6 and 7, the selected vertex is removed from
ϕ

′
and added to the solution. In line 10, the solution built at the end of the iteractions is returned.

The CreateRCL procedure called by the GRASP construction phase algorithm (line 3 of Algorithm
4) first initializes the RCL list, which is returned by this procedure as an empty set of vertices. Then,
the values of minimum and maximum density for the set of vertices given by the first input parameter
(ϕ

′
) of this procedure are computed. Through the multiplication between the greedy degree (i.e. θ)

and the difference between maximum and minimum densities whose product is subtracted from the
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Algorithm 4: ConstructionPhase (ϕ
′
, δ, θ)

Input: a list of vertices (ϕ
′
), amount of space available for materialization (δ),

greedy rate to define the size of the LRC (θ)
Output: best solution

1 Solution ← ∅;
2 WHILE (SizeOf(Solution) < δ) DO
3 RCL ← CreateRCL(ϕ

′
, δ, θ);

4 IF (NotEmpty(RCL)) THEN
5 υ ← RandomSelection(RCL);
6 ϕ

′ ← ϕ
′
- υ;

7 Solution ← Solution ∪ υ;
8 ELSE
9 GO TO 10;
10 RETURN Solution;

Algorithm 5: ImprovementPhase (ϕ
′
, δ, ϑ, τ , solution)

Input: a list of vertices (ϕ
′
), amount of space available for materialization (δ), greedy rate to define

the size of the LRC in local search (ϑ), number of exchanges to be made in local search (τ),
solution built in the construction phase (solution)

Output: a similar or improved solution
1 numberOfTrials ← τ ;
2 WHILE (numberOfTrials > 0 ) DO
3 OutRCL ← SearchRCL(ϕ

′
, ϑ, bestVertices);

4 InRCL ← SearchRCL(Solution, (1 - ϑ), worstVertices);
5 IF (NotEmpty(OutRCL)) THEN
6 IF (IsOdd(numberOfTrials)) THEN
7 swapOneToTwo(OutRCL, InRCL, ϕ

′
, Solution, δ);

8 ELSE
9 swapOneToOne(OutRCL, InRCL, ϕ

′
, Solution, δ);

10 numberOfTrials ← numberOfTrials - 1;
11 RETURN Solution;

maximum density, a greedy threshold is calculed. This threshold defines the elements of ϕ
′
that will

compose RCL. In fact, each vertex of ϕ
′
is added to RCL if its density is not greater than this threshold

and if its size added to the size of solution is not greater than the space available for materialization.

The second phase of GRASP, the phase of improvement (or local search) aims at refining the solution
obtained in the construction phase in order to find better solutions. Given a solution s, the search
for better solutions is made by visiting neighboring solutions in order to find among the neighbors,
a better solution than s. The searching techniques used are swapOneToTwo and swapOneToOne.
The first is the exchange of one element of a given set by two other elements of another set, while
the second technique is the exchange of one element of a given set by another element of another
set. The permutations are performed over the vertices of the solution built in the constructive phase
(i.e. solution) and the vertices that were not chosen to compose the solution (i.e. the vertices of ϕ

′
).

Using ϕ
′
and solution, two RCLs, OutRCL and InRCL, are built respectively. OutRCL consists

in vertices of ϕ
′
with better density, while InRCL is composed of the vertices with lower density

contained in solution. The goal is to switch low density vertices of solution for high density vertices
that are out of solution. These lists are built by the SearchRCL procedure that works similarly to
the procedure for creating the RCL in the GRASP construction phase (algorithm 4). The differences
are that the space restriction is not considered and a new parameter is used to indicate if the best or
worst vertices are returned. The best vertices are those whose density values are found between the
maximum density and the greedy threshold, while the worst vertices are those whose densities belong
to the following boundaries: the greedy threshold and the minimum density value.

The GRASP ImprovementPhase algorithm (Algorithm 5) works as follows. In line 1, the number
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of trials is initialized to τ that denotes the stop criterion of this algorithm. In lines 2 to 10, a loop is
executed while the number of trials is greater than zero. In each iteration of this loop, the OutRCL
(i.e. a list composed of ϑ vertices with the highest density values) and InRCL (i.e. a list of ϑ vertices
with the lowest density values or a list of vertices that are not the best (1 - ϑ)) lists are created. In
line 5, it is checked if there are vertices to be exchanged. Then, for exchanging vertices, swapping
procedures are called according to the parity of the number of trials. These procedures verify whether:
(i) the size of the solution resulting from a possible exchange of vertices does not exceed the amount
of space available for materialization; and (ii) the benefit of vertices added to the solution is greater
than the benefit of vertices removed from this solution. At the end of each iteration, in line 10, the
number of trials is decremented by one. Finally, in line 11, the best solution found is returned.

4.4 Materializing Views

The last phase is the materialization of vertices chosen in the previous phase. The materialization of
a vertex consists in creating a data table and loading this table with appropriate aggregated data. To
build the table, information about the format of its columns format are needed. The table columns are
composed of cube’s measures and levels that compose the vertex. Once identified the measures and
levels, the attributes Column_Name and Column_Type of the entities Level andMeasure are used
for enabling the construction of the table creation script. Once created the tables, they are populated
with data originated from aggregations on measures of fact tables. These aggregations result from the
clustering of measures with the combination of levels of the vertex. To achieve this, a selection script
is built by using the attributes column_name and aggregation_expression of the entity Measure,
and the attributes column_name, column_table, tables and join_conditions of the entity Level.

5. EXPERIMENTAL EVALUATION

This section is organized as follows. Section 5.1 describes the experimental setup that was used to
evaluate the GRASP-based view selection algorithm proposed in this article. This experimental setup
aims at assessing the benefits of using a small number of materialized views to answer analytical
queries by giving as input to the optimization algorithm only those views with the minimal cost (see
Section 3). Experimental tests were carried to define the best values for the GRASP configuration
parameters and results derived from these tests are given in Section 5.2. The performance evaluation
results are discussed in Section 5.3.

5.1 Experimental Setup

Experiments were conducted on a computer with 3.33 GHZ Intel Core i7 processor, 16 GB of main
memory, 7200 RPM SATA II 2 TB hard disk, Windows Server 2008 R2 Standard, Mondrian 3.2.0 and
PostgreSQL 9.0. Algorithms of selection and materialization of views described in this article were
implemented in Java programming language to integrate them with Mondrian. We have chosen the
PostgreSQL to store the signatures. We also adapted the schema and the workload of the Star Schema
Benchmark (SSB) [OŠNeil et al. 2009] to increase the number of dimensions and levels and to have a
greater number of queries associated to a greater number of diversified views. These adaptations were
required firstly to measure the impact of executing varied and recurrent queries and then verify how
many times a given view can be used to answer queries, and secondly to investigate the algorithm
scalability and check its effectiveness when there is a wide range of possible views to be chosen.

Regarding the OLAP cube schema used in the experiments, it is available at http :
//www.cin.ufpe.br/~asf2/esquema.pdf . This multidimensional data schema is composed of 5 di-
mensions (i.e. Part, Supplier, Customer, Date and CommitDate), 35 levels and 2 measures (i.e.
Lo_Revenue and Lo_SupplyCost). This schema was created using SSB’s database with scale factor
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1. Data generation produced 6 million tuples in the fact table, and the algorithms 1 and 2 listed in
Section 4.1 have yielded 14,175 possible materialized views, whose estimated total size is 6,69 TB.

The workload was based on 1,280 query submissions randomly chosen from a set of 32 MDX dis-
tinct queries. These queries include Q2, Q3 and Q4 queries from the SSB, i.e., those queries that
can be translated to MDX without changing their original selectivity. The queries were designed
to access a large number of diverse views, in order to investigate the ability of VSP algorithms
on operating adequately even when there are several and diverse views available. The workload
has queries that vary the number of views accessed (i.e. cardinality) as well as vary the unique-
ness of the combination of levels involved (i.e. composability). As the queries were consecutively
submitted, the historical user profile was then built and enabled for assessing the performance of
materialized views. We grouped the queries according to the cardinality and reported them at
http : //www.cin.ufpe.br/~asf2/ConsultasMDX.pdf .

5.2 Parameters Tuning and Test Scenarios

The view selection algorithm proposed in this article receives as input data: (i) a set of views, where
each view is represented by a quadruple of type (id_vertex,size,benefit,density), and (ii) a set of
GRASP configuration parameters. It is important to note that changing the GRASP’s configuration
parameter values affects the quality of the solutions generated by GRASP for a given input set of views.
Therefore, we investigated the quality of solutions computed, varying the values of these parameters.
After completing these preliminary tests, the following values of GRASP configuration parameters
were seen as the best ones: {θ = 0,6; ϑ = 0,05; γ = 25; τ = 10}. Further details on these test results
are documented in http : //www.cin.ufpe.br/~asf2/GraspConfiguration.pdf .

Similarly to the GRASP, for a input set of views, when changing the ACO’s configuration parameter
values, the quality of the solutions generated is affected. Therefore, we investigated the quality of the
computed solutions by changing the values of these parameters and we noticed that the quality of
the solution was not changed from the following values: {the pheromone evaporation rate (ρ) = 0.93;
the number of ants per vertex(π) = 1; the maximum number of attempts without improvements(ε)
= 1} and thus, these were seen as the best ACO’s configuration values. Further information on
these configuration tests are found in http : //www.cin.ufpe.br/~asf2/AntConfiguration.pdf . It is
important to note that no parameter settings for PBS was needed because it lacks input parameters.

A query profile defines a sequence of queries randomly chosen from a set of 32 distinct MDX query
types. In the sequence, each MDX query type appears at least once, so that the total number of
repetitions of each query type in the sequence is equal to the cardinality of the sequence. A query
profile is the frequency distribution of MDX query types found in the sequence. For instance, in query
profile 10_90, 10% of the MDX query types have 90% of the frequency, i.e. in a sequence composed
of 100 queries and for 10 MDX query types, the frequency of one specific query type is equal to 90,
while the total frequency of the other types of MDX queries is 10. Therefore, the purpose of using
query profiles is to evaluate the response time in different scenarios of queries submissions, so that a
set of queries may have frequencies of submission that are greater or less than another set of queries.

5.3 Performance Results

In performance tests, we materialized views using GRASP and two other VSP algorithms, called
PBS (Pick by Size) [Shukla et al. 1998] and ACO (Ant Colony Optimization) [Song and Gao 2010],
and compared the quality of generated solutions. We adopted as units of quality measurements, the
response time of queries processed on materialized views, since they aim at reducing the execution
time of analytical queries. Also, we show that the quality of views chosen by each algorithm is not
related to the number of views selected nor to the algorithm’s execution time for selecting views.

PBS is a fast algorithm, has broadly been used in comparative analysis, providing good results

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



490 · Andresson da S. Firmino et al

Fig. 2. Performance Evaluation between GRASP, PBS and ACO

[Kalnis et al. 2002; Lijuan et al. 2009; Khan and Aziz 2010] and has a high cardinality of selection
because it uses a single criterion of selection that is the view size, while our GRASP proposal and
ACO are more complex, and are expected to have a greater runtime of selection of views and a low
cardinality of selection, once they adopt as selection criteria both the view size and the frequency of
user queries, and they receive as input a reduced set of views to be selected. Note that the small
number of selected views by GRASP and ACO did not reduce the storage costs of these views, once
the space available for materialization was always the same for all three algorithms.

Experiments considered the following values of the space available for materialization (in GB): {0,25;
0,5; 1; 2; 3; 4} that represent the following percentages {5; 10; 20; 40; 60; 80}, respectively, on the
total space of materialization of all views (i.e. 32 views occupying 5GB in total that were generated by
algorithms 3, 4 and 5 of Section 4.3) given as input to GRASP and ACO as well. Figure 2(a) displays
the number of views selected by the algorithms according to the percentages of space available for
materialization. Clearly, GRASP and ACO selected much less views than PBS for the same storage
space. Figure 2(b) shows the elapsed time spent by each algorithm to select these views.

Notably, PBS had the highest number of views selected with the 4 GB storage threshold. Therefore,
we conducted another test using this threshold in order to compare the query processing using the
views materialized by both the PBS and GRASP. We aimed at investigating if the selection of a large
number of views would imply in better performance to process OLAP queries. All views selected by
each algorithm were materialized and query profiles 10_90, 20_80, 50_80, 66_80 and UNIFORM
were used. The uniform profile means that all MDX query types have the same frequency. Also,
GRASP was configured with the same values of parameters, and we used the same set of 32 distinct
MDX queries that was used for generating historical queries that composed the OLAP signature. A
sequence of 580 MDX queries was submitted, and we gathered the elapsed time to process all 580
queries according to each profile. For the GRASP, views were selected and materialized according to
this signature, while for the PBS, views were selected according to their sizes. Each algorithm used
its own set of selected and materialized views, and had the same execution sequences of queries.

Figure 3(a) shows the results, which indicated that executing queries using views created by GRASP
is more efficient than executing queries using views selected by PBS, considering all query profiles.
We also highlighted the time reduction provided by GRASP over PBS, which ranged from 8% to
35%. Considering the sum of the elapsed time to process the 2,900 queries (580 for each profile),
there was also a 20% time reduction provided by GRASP over PBS. These results corroborated that
materialized views selected by GRASP should be used to obtain a better query processing performance.
Furthermore, they indicated that although we have used the storage threshold of 4 GB, so that the
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Fig. 3. Runtime of Query Profiles

largest number of views is produced by PBS, PBS could not process OLAP queries faster than GRASP.
Therefore, it means that the selection of a large number of views does not necessarily imply in a large
time reduction to process OLAP queries.

To compare GRASP with a recent approach that also selects a small number of views, further
experiments were conducted. These aimed at investigating whether GRASP would provide similar
reduction in time for selecting views to be materialized and for processing queries over these views
as well. Figure 2(a) shows that ACO and GRASP selected the same number of views. However,
the elapsed time spent by GRASP to choose these views was shorter than the corresponding time
of ACO, as shown in Figure 2(b). Also, these two search algorithms selected the same set of views,
except for the case of 3GB storage threshold, in which the sets of views are different solely because
of a single view. Thus, using the 3GB storage threshold, we compared the query processing using the
views materialized by both the ACO and GRASP. Figure 3(b) shows the results, which indicated that
executing queries using views created by ACO is a little more efficient than executing queries using
views selected by GRASP, because considering the sum of the elapsed time to process the 2,900 queries
(580 for each profile), there was a 2,84% time reduction provided by ACO over GRASP. Therefore,
our tests have pointed out that ACO is slightly faster than GRASP in query execution, but implies
in longer execution time for selecting views to be materialized than GRASP.

6. RELATED WORK

Several approaches have been proposed for solving the problem of VSP. The VSP algorithms can be
classified into four main categories according to the applied optimization technique:

—Greedy Heuristics: they always select what seems to be the best choice at the moment, making
a local optimum choice in the hope that this leads to the global optimum solution [Vijay Kumar
et al. 2011; Chan et al. 2001; Nadeau and Teorey 2002; Shukla et al. 1998]. Their implementation
are often easy and produce fast and efficient results. However, they have the disadvantage of
generating a very limited number of solutions, i.e. for a given input dataset, the solution obtained
is always the same. This occurs because greedy decisions, taken at the begining of the solution
construction process, strongly constrain the possibilities of building the solution in later phases,
and consequently, this impacts in the execution of restricted movements during the construction
process, usually leading to sub-optimum solutions.

—Random Search Heuristics: they traverse the solution space in order to find good solutions by
making pseudo-random movements [Derakhshan et al. 2008; Kalnis et al. 2002; Phuboon-ob and
Auepanwiriyakul 2007]. Within this group, there is a subclass of bioinspired techniques that are
based on the behavior of populations and aim to build an effective navigation approach for searching
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the solution space [Song and Gao 2010; de Albuquerque Loureiro 2006; Sun and Wang 2009; Li et al.
2010]. They avoid minimum and maximum local values and generate a large number of solutions.
However, depending on the degree of randomness of the search movement, the resulting solutions
may be widely dispersed and distant from the optimal value.

—Evolutionary Heuristics: they are based on concepts related to the biological evolution of individuals
and their goal is to evolve previously identified solutions in order to find optimum (or sub-optimum)
values [Lawrence 2006; Lee and Hammer 2001; Talebian and Kareem 2009; Yu et al. 2003; Zhang
et al. 2001]. It has the advantage of providing much better solutions than other heuristics. However,
some difficulties may be found for coding the problem and another limitation of these techniques is
that they usually require a higher computational cost than the other heuristics.

—Hybrid Heuristics: they use a combination of the aforementioned techniques. The goal is to explore
good properties of different techniques in order to solve problems more efficiently [Lin and Kuo
2004; Wang and Zhang 2005; Yuhang et al. 2010; Zhang et al. 2009].

—Model-driven Heuristics: are mostly based on mathematical models specifically designed for the
problem of VSP [Dobbie and Ling 2000; Gou et al. 2006; Smith et al. 2004; Lin et al. 2007; Serna-
Encinas and Hoyo-Montano 2007; Lijuan et al. 2009]. In some approaches, the acquisition of the
optimal solution is guaranteed, but for this, the number of views should be small due to the solution
building feasibility, making it impractical in real cases, where the number of views is very high [Yang
et al. 1997; Theodoratos and Bouzeghoub 2000; Chirkova et al. 2006].

For the sake of simplicity, the VSP configuration used in this work is static (i.e. views are selected
statically, materialized and maintained until changes are needed). In addition, the static approach
seemed to be more appropriate in scenarios where one knows in advance the scope of OLAP queries,
and one of our goals was to build the profile of these queries (i.e. OLAP signatures). Regarding the use
of workload queries, our approach also differs from other related studies because: (i) Firstly, besides
keeping information about OLAP queries that were previously executed, we also stored information
about the data scheme used to process these queries; and (ii) Secondly, using a data model, we defined
how the history of the OLAP queries is stored and subsequently, used to select and materialize views.
To select a view to be materialized, we needed to estimate the number of lines of the view being
analysed. We used the tuples estimation given in [Shukla et al. 1998], whose formula is Est (v) =
ne − ne ∗ (1− 1/ne)nf , where nf is the number of tuples of the fact table and n is the maximum
number of rows of the view v. The value of n was obtained by multiplying the number of distinct
members that compose each level of the view v. Another diferential of our approach is that most of
previous work have a coupling between the chosen data structure and the algorithm’s logic of selection,
while our approach is modularized, separating data structure issues from the adopted VSP logic.

7. CONCLUSION AND FUTURE WORK

This article proposed an algorithm for tackling the views selection problem (VSP) based on the
GRASP metaheuristic. GRASP is a hybrid heuristic that combines the features of both greedy
and random search heuristics and has been recognised in the literature as one of the most competitive
metaheuristic approaches in terms of the quality of the generated solutions. In fact, the impact of using
GRASP in the VSP has so far not been studied. In this article, we used as selection criteria both the
space requirements for the views and the frequency of execution of OLAP queries over these views. In
addition, we defined a conceptual model scheme that stores views and their relationships, registers the
scope of user OLAP queries, and provides information for the subsequent materialization of the views.
Then, a hybrid metaheuristic algorithm based on GRASP was discussed as part of an approach that
modularizes data structures as well as procedures for views selection and materialization, providing
a means of allowing the easy adoption of any other optimization algorithm that receives as input a
set of elements with constraints (e.g. possible views with their respective sizes) and a threshold (e.g.
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memory space available) and returns a subset of those elements that do not exceed the limit and
whose benefit is the maximum value or a value close to the maximum value.

Aiming at assessing the performance and quality of our proposal for VSP based on GRASP and
OLAP signatures, performance evaluations were conducted using an extension of the Star Schema
Benchmark. The results indicated that GRASP query processing was preferable to a PBS query
execution, since the former is a semi-greedy approach that selects a small number of views, representing
the profile of user OLAP queries and promoting a reduction in execution time of these queries. In fact,
performance tests indicated that compared to PBS, the proposed method obtained a time reduction of
about 20.4% in query processing. In addition, GRASP was more scalable than PBS, since it selected
and materialized a smaller set of views, even when there was a wide range of possible views to be
chosen. To compare GRASP with a recent approach that also selected a small number of views,
further experiments were conducted. These aimed at investigating whether GRASP would provide
similar reduction in time for selecting views to be materialized and for processing queries over these
views as well. GRASP obtained nearly the same query runtime of ACO (i.e. a small performance loss
of about 2.84% was obtained by GRASP), but a shorter time for the selection of views than the ACO
algorithm (i.e. a gain in processing time of about 77% was produced by GRASP).

The development of a self-configuration mechanism for GRASP input parameters and the complexity
analysis of the proposed algorithms are seen as suggestions of future work. Also, the definition of a
GRASP dynamic approach to consider costs of updates is another indication of additional research.
Finally, it would be interesting to conduct an empirical evaluation to further validate the current
version of our conceptual model schema.
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