
Using a Foundational Ontology for Reengineering
a Software Process Ontology

Ana C. O. Bringuente, Ricardo A. Falbo, Giancarlo Guizzardi

Universidade Federal do Espírito Santo, Brazil
{acobringuente,falbo,gguizardi}@inf.ufes.br

Abstract. During project planning, knowledge about software processes is useful in several situations: software
processes are defined, activities are scheduled, and people are allocated to these activities. In this context, standard
software processes are used as basis for defining project processes, and tools are used to support scheduling, people
allocation, and so on. Ideally, people and tools should share a common conceptualization regarding this domain for
allowing interoperability, and correct use of the tools. A domain ontology can be used to define an explicit representation
of this shared conceptualization. Moreover, for a domain ontology to adequately serve as a reference model, it should
be built explicitly taking foundational concepts into account. This paper discusses the reengineering of part of a
Software Process Ontology based on the Unified Foundational Ontology (UFO). The part reengineered concerns standard
processes, project processes, and activities, which are analyzed at the light of UFO concepts.

Categories and Subject Descriptors: D.2.13 [Software Engineering]: Reusable Software—Domain engineering, Reuse
models

Keywords: Domain Ontology, Foundational Ontology, Ontology Reengineering, Software Process, Unified Foundational
Ontology

1. INTRODUCTION

Managing a project involves applying knowledge, skills, tools and techniques to project activities in
order to meet its requirements. Such knowledge application requires the effective management of
suitable processes [PMI 2008]. Among these processes, we can highlight the importance of the Project
Management Process, which is responsible, among others, for defining activities, scheduling them, and
allocating human resources for each planned activity.

Regarding software projects, project management is a critical process. During project planning,
software processes should be defined, their activities should be scheduled, and people should be al-
located to them. In this context, standard software processes are used as basis for defining project
processes. Once the processes are defined, tools are used to support scheduling, team allocation, and
so on. During project execution, activities are performed and people accomplish their tasks, recording
the time they spent on them.

Generally, different tools are used to support such tasks. Considering that these tasks are iterative
and interrelated, ideally these tools should interoperate. On the other hand, in order to correctly
use the tools, developers and tools should share a common conceptualization regarding the domain
of software processes. In fact, for both purposes of interoperability aforementioned, we need a shared
conceptualization regarding the software process domain. In this context, a domain ontology can be
used to define an explicit representation of this shared conceptualization.

This research is funded by the Brazilian Research Funding Agencies FAPES (Process Number 45444080/09) and CNPq
(Process Numbers 481906/2009-6 and 483383/2010-4).
Copyright c©2011 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011, Pages 511–526.



512 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

For being able to adequately serve as a reference model, a domain ontology should be constructed
using an approach that explicitly takes foundational concepts into account. The use of foundational
concepts that take truly ontological issues seriously is becoming more and more accepted by the on-
tological engineering community, especially for representing complex domains [Guizzardi et al. 2010],
such as is the case of software processes. A reference ontology is developed with the aim at repre-
senting the subject domain with truthfulness, clarity and expressivity, regardless of computational
requirements. The main goal is to help modelers externalize their knowledge about the domain, to
make their ontological commitments explicit to support meaning negotiation, and to improve the tasks
of domain communication, learning and problem solving [Guizzardi et al. 2010].

This paper discusses the reengineering of part of the Software Process Ontology (SPO) originally
proposed in [Falbo and Bertollo 2009],based on the Unified Foundational Ontology (UFO) [Guizzardi
2005; Guizzardi et al. 2008]. This ontology was partially reengineered at the light of UFO in [Guiz-
zardi et al. 2008]. This first reengineering initiative focused on distinguishing between process/activity
and process/activity occurrence, among others. In this paper, we still follow the approach adopted
in [Guizzardi et al. 2008],i.e., to align the SPO concepts and relations to the concepts and relations
of UFO. However, we focus on improving these distinctions analyzing concepts such as standard soft-
ware processes, project processes and activities, at the light of UFO concepts of events, commitments,
appointments and normative descriptions. Our focus is directed towards concepts involved in man-
agement activities that are related to process definition, scheduling and resource allocation, since we
intend to use the reengineered version of this ontology as basis for integrating tools supporting these
activities. Thus, other parts of the SPO were not analyzed and reengineered in this work.

The paper is organized as follows. Section 2 talks briefly about the domain of interest: software
process and project planning. Section 3 presents the concepts of UFO that are relevant to this work.
Section 4 discusses the first initiative in reengineering the SPO [Guizzardi et al. 2008]. Section 5
presents the advances in reengineering the SPO. Section 6 discusses some related works, and, finally,
Section 7 presents our conclusions.

2. PROJECT AND PLANNING SOFTWARE PROCESS

According to ISO 10006:2003, Project Management, in general, includes planning, organization, su-
pervision and control of all aspects of the project in a continuous process to achieve their goals. A
desired result is achieved more efficiently when the project activities and related resources are man-
aged as a process [ISO 2003]. The Project Management Processes are used to establish and evolve
project plans, to assess actual achievement and progress against the plans and to control execution of
the project through to fulfillment [ISO/IEC 2008].

Processes are decomposed into smaller pieces. In the context of software engineering, some processes
are decomposed into activities and others into lower-level processes. A lower-level process is described
when the decomposed portion of the process itself satisfies the criteria to be a process, i.e., it has
a purpose, is cohesive, and it is placed under the responsibility of an organization or a party in the
software life cycle. An activity is used when the decomposed unit does not qualify as a process and
can be considered as simply a collection of tasks [ISO/IEC 2008]. The project processes should be
identified and documented, and the activities should be carried out and controlled in accordance with
the project plan [ISO 2003]. Software project processes should be defined considering the activities to
be accomplished, the required resources, the input and output artifacts, the adopted procedures (such
as methods, techniques, templates) and the life cycle model to be used [Falbo and Bertollo 2009].

During project process definition, the organization should take account of the experiences gained in
developing and using its processes. This may be accomplished by identifying the appropriate processes
for the project, identifying inputs, output and objectives for the project’s processes, and assigning
authority and responsibilities for the processes, among others [ISO/IEC 2008]. Although different

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 513

projects require processes with specific features, it is possible to establish a set of software process
assets that should be present in all project processes of an organization. This set of process assets
is called an organizational standard software process. The organization’s set of standard processes is
tailored by projects to create their defined processes. Other organizational process assets are used
to support tailoring and implementing defined processes. A standard process is composed of other
processes (i.e., subprocesses) or process elements that describe activities and tasks to consistently
perform the work [SEI 2010]. This tendency in using standard processes is advocated by almost every
process quality models and standards, including ISO/IEC 12207 [ISO/IEC 2008] and CMMI [SEI
2010]. All of them suggest the use of a standard process as the starting point from which project’s
processes can be defined.

The main goal of project planning is to define a scope for the project, refine the goals and develop
the necessary actions to achieve them [PMI 2008]. So, the Project Planning Process should [SEI
2010]: (i) determine the scope of the project and technical activities, (ii) identify process outputs,
project tasks and deliverables, (iii) establish schedules for project task conduct, including achievement
criteria and required resources to accomplish project tasks. It involves, among others, determining
effort estimation, activities and tasks to be done, adequate resources needed to execute these tasks,
schedules for the timely completion of tasks, allocation of tasks, and assignment of responsibilities.

In the context of project management, resource-related processes aim to plan and control resources,
including equipments, facilities, materials, software, services, personnel and space. Personnel in the
project organization should have well-defined responsibility and authority for their participation in
the project. The authority delegated to the project participants should correspond to their assigned
responsibilities. The quality and success of a project will depend on the participating personnel.
Therefore, special attention should be given to the activities in the personnel-related processes, such
as the allocation of personnel. When assigning members to project teams, their interests, strengths
and weaknesses should be considered. The job or role to be played should be understood and accepted
by the person assigned [ISO 2003].

Time-related processes aim to determine dependencies and the duration of the activities, and to
ensure timely completion of the project. They include planning activity dependencies, estimation
of duration, and schedule development and control. Scheduling can impact on the resources of the
project. In fact, time-related processes and resource-related processes (including personnel-related
processes) are very interrelated. Decisions or actions taken in the context of one of them should be
carefully analyzed, taking into account their implications for the other processes [ISO 2003].

3. THE UNIFIED FOUNDATIONAL ONTOLOGY - UFO

UFO is a foundational ontology that has been developed based on a number of theories from Formal
Ontology, Philosophical Logics, Philosophy of Language, Linguistics and Cognitive Psychology. It
is composed by three main parts. UFO-A is an ontology of endurants [Guizzardi 2005]. UFO-B is
an ontology of perdurants (events). UFO-C is an ontology of social entities (both endurants and
perdurants) built on the top of UFO-A and UFO-B [Guizzardi et al. 2008]. A complete description
of UFO falls outside the scope of this paper. However, in the sequel we describe some of its concepts
that are important for this paper. This description is based mainly on [Guizzardi et al. 2008].

As shown in Figure 1, a fundamental distinction in UFO-A is between particulars and universals.
Particulars are entities that exist in reality possessing a unique identity, while universals are
patterns of features, which can be realized in a number of different particulars. Substantials are
existentially independent particulars. Moments, in contrast, are particulars that can only exist in
other particulars, and thus they are dependent of them. In this sense, moments are existentially
dependent on other particulars. Existential dependence can also be used to differentiate intrinsic
and relational moments: intrinsic moments are dependent of one single individual (e.g., a color,

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



514 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 1. A Fragment of UFO-A – An Ontology of Endurants

a temperature), while relators depend on a plurality of individuals (e.g., an employment, a medical
treatment, a marriage). Most distinctions made for particulars apply to universals. Thus, we have
the counterparts Substantial Universal, Moment Universal, Intrinsic Moment Universal and Relator
Universal, although the last two were not shown in Figure 1.

Regarding substantial universals, while persisting in time, substantial particulars can instantiate
several substantial universals. Some of these types, a substantial instantiates necessarily (i.e., in every
possible situation) and define what the substantial is. These are the types named kind . There are,
however, types that a substantial instantiates in some circumstances, but not in others, such as is
the case of roles. A role is a type instantiated in a given context, such as the context of a given
event participation or a given relation (e.g., student). Both kind and role are sortal substantial
universals, but kind is a rigid sortal , while role is an anti-rigid sortal . Although not represented
in Figure 1, Sortal Universal , Rigid Sortal and Anti-rigid Sortal are concepts of UFO-A. For
details see [Guizzardi 2005].

Relations are entities that glue together other entities. Formal relations hold between two or
more entities directly, without any further intervening individual. Material relations, conversely,
have material structure of their own. In other words, for a material relation to exist, a relator that
mediates the related entities must exist. Thus, relators are particulars with the power of connecting
entities. The relations between relators and the connected entities are said mediation relations.

UFO-B makes a distinction between enduring and perduring particulars (endurants and perdurants).
Endurants are said to be wholly present whenever they are present, i.e., they are in time, (e.g., a
house). Perdurants or Events, in contrast, are particulars composed of temporal parts, i.e., they
happen in time in the sense that they extend in time accumulating temporal parts (e.g., a party). The
concepts Event and Event Universal , because they are not part of UFO-A, were shown detached
in Figure 1. Figure 2 depicts a fragment of UFO-B.

The main category on this ontology is Event . Events can be Atomic or Complex. Atomic events
have no improper parts, while complex events are aggregations of at least two events (that can
themselves be atomic or complex). Events are possible transformations from a portion of reality to
another, i.e., they may change reality by changing the state of affairs from one (pre-state) situation to
a (post-state) situation. Events are ontologically dependent entities in the sense that they existentially
depend on their participants in order to exist. Moreover, since events happen in time, they are framed
by a time interval. The model of Figure 2 depicts these two aspects on which events can be analyzed,

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 515

Fig. 2. A Fragment of UFO-B – An Ontology of Events

Fig. 3. A Fragment of UFO-C: Distinction between Agent and Object

namely, as time extended entities with certain (atomic or complex) mereological structures, and as
ontologically dependent entities which can comprise of a number of individual participations.

The third layer of UFO is an ontology of social entities (both endurants and perdurants). As shown
in Figure 3, one of the main distinctions made in UFO-C is between agents and non-agentive objects.
An agent is a substantial that creates actions, perceives events and to which we can ascribe mental
states (intentional moments). Agents can be physical (e.g., a person) or social (e.g., an organization).
A human agent is a type of physical agent . An object , on the other hand, is a substantial unable
to perceive events or to have intentional moments. Objects can also be further categorized into physical
(e.g., a book, a car) and social objects (e.g., money, language). A normative description is a type
of social object that defines one or more rules/norms recognized by at least one social agent and
that can define nominal universals such as social objects, social roles and descriptions of plans (action
universals). A plan description is a special type of normative descriptions that describes complex
action universals (complex plans).

Agents are substantials that can bear special kinds of moments named Intentional Moments.
Intentional moments can be social moments or mental moments. Intentionality in UFO should
be understood in a broader sense than the notion of “intending something”. It refers to the capacity
of some properties of certain individuals to refer to possible situations of reality. Thus, “intending
something” is a specific type of intentionality termed Intention in UFO. Intentions (or internal
commitments) are mental moments that represent an internal commitment of the agent to act towards
that will. They cause the agent to perform actions. The propositional content of an intention is a
goal . Figure 4 shows a fragment of UFO-C dealing with these concepts.

Besides internal commitments (intentions), there are also social commitments. A social commit-
ment is a commitment of an agent A towards another agent B. As an externally dependent moment, a
social commitment inheres in A and is externally dependent on B. The social commitments necessarily
cause the creation of an internal commitment in A. Also, associated to this internal commitment, a

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



516 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 4. A Fragment of UFO-C: Commitments and Appointments

Fig. 5. A Fragment of UFO-C: Delegation

social claim of B towards A is created. Commitments and claims always form a pair that refers to
a unique propositional content, and a social relator is an example of a relator composed of two or
more pairs of associated commitments/claim. For sake of simplicity, these aspects are not shown in
Figure 4. See [Guizzardi et al. 2008] for details.

Commitments can be atomic or complex. Complex commitments are composed of other com-
mitments. A closed commitment is a commitment that is based on an Action Universal (Plan).
The closed commitment is fulfilled by the agent only if the agent satisfies the commitment goal by
executing an action which is an instance of the plan. A special type of commitment is an appointment.
An appointment is a commitment whose goal explicitly refers to a time interval. Like commitments,
appointments can be either Internal (Self-Appointment) or Social Appointments. Moreover, a
closed appointment is a closed commitment whose goal explicitly refers to a time interval.

A special type of material relation is delegation. Delegation is a material relation derived from a
social relator delegatum . When an agent A (called delegator) delegates a goal to an agent B (called
delegatee), a social claim of B towards A is created. By B assuming the achievement of the goal
on behalf of A, a social commitment of B towards A is also created. The commitment/claim pair
composes the delegatum from which the delegation is derived from, as shown in Figure 5.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 517

Fig. 6. A Fragment of UFO-C: Actions and Participations

Finally, actions are intentional events, i.e., they have the specific purpose of satisfying some inten-
tion (e.g., a business process, a communicative act). As events, actions can be atomic or complex. A
complex action is composed of two or more participations. These participations can themselves be
intentional (i.e., be themselves actions) or unintentional events. It is worthwhile to point out that it
is not the case that any participation of an agent is considered an action, but only those intentional
participations – termed here Action Contributions. Only agents (entities capable of bearing inten-
tional moments) can perform actions. An object participating in an action does not have intention.
Figure 6 shows a fragment of UFO-C dealing with these concepts.

4. THE SOFTWARE PROCESS ONTOLOGY

As discussed in Section 2, during project planning, we need to define the project process, schedule its
activities, and allocate people to perform them. For purposes of project monitoring and control, we
need to track the accomplishment of the activities, and the time spent to perform them.

During the definition of a software process for the project, the project manager should identify the
activities that have to be performed in order to achieve the project goals. This is done by tailoring
organizational standard processes, taking the project particularities and team features into account.
The project process is the basis for the further project management activities. After defining the
process, the project manager has to create a network of activities, define how long each activity will
last, and allocate people to perform it. For a good understanding of these tasks, we need a shared
conceptualization regarding software processes.

The Software Process Ontology (SPO) originally developed in [Falbo and Bertollo 2009] was built
aiming at establishing a common conceptualization for software organizations to talk about software
process. It was divided into four sub-ontologies, namely: activity, resource, procedure and software
process ontologies. Figure 7 shows a fragment of its first version that includes concepts from the
activity, resource, and software process sub-ontologies. We chose this fragment, because in this paper
we are interested in the portion of the SPO conceptualization that is more relevant for project planning.

According to [Falbo and Bertollo 2009], the model depicted in Figure 7 aims to represent the
following universe of discourse. A software process can be decomposed into activities or other processes,
called sub-processes. An activity is a piece of work that requires resources (humans, software and
hardware) to be performed. An activity can be decomposed into sub-activities, and can depend
on the accomplishment of other activities, said pre-activities. Resources are things required to the
accomplishment of an activity, such as people, hardware and software. A standard process is a generic
process institutionalized in an organization, establishing basic requirements for project processes to

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



518 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 7. A fragment of the Software Process Ontology (Original Version)

Fig. 8. A Fragment of the SPO reengineered in [Guizzardi et al. 2008]

be performed in that organization. A project process refers to the process defined for a specific project,
considering the particularities of that project.

As said before, the original version of the SPO was object of a partial reengineering in [Guizzardi
et al. 2008] by mappings some of its concepts to concepts of UFO. Figure 8 shows a fragment of this
reengineered version of SPO, showing concepts from UFO detached. Again, we chose this fragment
because our focus is on project planning. By interpreting the original version of the SPO in terms
of UFO, Guizzardi, Falbo and Guizzardi [Guizzardi et al. 2008] pointed out that the former collapses
the notions of action universals and actions. To solve this problem, they introduced the concepts of
Activity Occurrence and Software Process Occurrence to denote particular actions that take place
in specific time intervals. Moreover, they said that a software process occurrence is an instance of a
software process, which is, in turn, a Complex Action Universal. Analogously, an activity occurrence
is an instance of an activity, which is an Action Universal (Plan).

The notion of resource in the original version of SPO was mapped to the notion of (Non-Agentive)
Object in UFO. The concept of human resource was no longer considered a resource, but is considered
a type of Agent. This opened space for distinguishing object participations from agent participations.
Thus the relation requires in the original version of SPO subsumes different modes of participating in
an activity occurrence, namely object participations and action contributions. An action contribution
of a human resource actually denotes a social commitment of that agent (with consequent permissions
and obligations) of performing part of that activity occurrence. Thus, the requires relation for the
case of human resources is a type of dependence relation between agents that will lead to a delegation
relation when the process is instantiated or scheduled. Others changes were made, but they are out

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 519

of the scope of this paper. For more information, see [Guizzardi et al. 2008].

Although an important ontological analysis was done in [Guizzardi et al. 2008], there are many
aspects that remained open. What is a standard process? What is the difference from an activity
that is defined in the project process and the one that is scheduled and performed? How can we treat
people allocation? To answer these and other questions, we go a step ahead in the SPO reengineered
process. The next section presents the results we have already achieved.

5. A STEP AHEAD IN REENGINEERING THE SOFTWARE PROCESS ONTOLOGY

In the first initiative of reengineering the SPO, some important issues were not addressed, namely: (i)
the distinction between standard software processes and project processes; (ii) the distinction between
planned but not scheduled activities, scheduled activities, and activity occurrences. In this paper, the
main purpose is advancing in these aspects, as well as addressing the problem of allocating people to
perform the scheduled activities. In the sequel, we elaborate in these distinctions.

5.1 Standard Process

Although the original version of the SPO distinguishes between standard software processes and
project processes, the reengineering performed in [Guizzardi et al. 2008] did not take this distinction
into account. As discussed in the previous section, a standard process refers to a generic process
defined by an organization, establishing basic requirements for processes to be performed in that
organization. Looking to the conceptualization established by UFO, a standard process should be
viewed as a Complex Action Universal , described by a Plan Description . Recognizing that, we
introduced the concept of standard process definition document as the plan description that describes
the standard process. As a normative description, the standard process definition document defines
rules recognized by the organization for conducting its projects.

According to the domain (see Section 2), a general standard process is a standard process that is
composed of specific standard processes, allowing an organization to define sub-processes of a standard
process. For instance, the organizational standard process of an organization can be decomposed into
standard sub-processes for software development and project management. A specific standard process
(e.g., a standard Project Management Process), in turn, is decomposed into standard activities, which
are Action Universals. As action universals, standard activities can be atomic or complex.

Figure 9 introduces these concepts in the new version of SPO. Concepts from UFO are shown
detached, as well as the subtype relationships that map concepts and relations from SPO to UFO. It
is worthwhile to point out that the way of structuring standard processes and standard activities is
perceived in the domain of software processes. It is not directly inspired in UFO, although it is aligned
with UFO. In this work we attempted to be more precise than in the first reengineering effort [Guizzardi
et al. 2008] regarding the relation’s multiplicities. Aspects such as weak supplementation, for instance,
have been considered. Thus, we stated that a general standard process should be composed of at least
two specific standard processes. The same applies to complex standard activities.

5.2 Project Process Definition and Scheduling

In contrast with standard processes, project processes refer to the processes defined for specific projects,
considering the particularities of these projects. When a project manager defines a project process,
he/she is performing a communicative act that creates an internal commitment (an Intention in
UFO) of the organization: the commitment of performing the activities defined in the project process.
Thus, in terms of UFO, a project process is a type of Intention , as shown in Figure 10.

A project process is also a complex commitment, since it is composed by other commitments.
Analogously to standard processes, a general project process is a project process that is composed of

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



520 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 9. Standard Process as a Complex Action Universal described by a Plan Description

Fig. 10. Project Processes and Activities as Internal Commitments of the Organization

specific project processes, allowing an organization to define sub-processes that are part of a general
project process. A specific project process, in turn, is decomposed into project activities, which are also
internal commitments (Intention) of the organization and can be atomic or complex. Project
processes can be defined by tailoring standard processes. Analogously, project activities can be defined
by tailoring standard activities. When the project process follows the standard process without adding
or changing its assets, we can say that it is a closed commitment , since the organization must fulfil
the commitment by executing a specific action. The same applies to project activities.

Once defined the project process, its activities can be scheduled. Scheduling refers to defining
start and end dates for each process/activity. In other words, the time intervals in which the project
processes and activities should occur are defined. In terms of UFO, this corresponds to appointments,

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 521

Fig. 11. Scheduled Processes and Activities as Appointments

Fig. 12. Software Product Type and Hardware Type as Object Kind; Human Role as a Social Role

i.e., commitments that explicitly refer to a time interval, as shown in Figure 11.

5.3 Resource Types

Standard activities indicate the software product types (e.g., a UML modeling tool) and the hardware
types (e.g., a notebook) to be used, and the human roles (e.g. requirements engineer) that shall
perform activities of such type. The same occurs when defining project processes: project activities
indicate the software product types and hardware types to be used and the human role people should
play when performing the actions (activity occurrences) for satisfying such intentions 1.

Software product types and hardware types are object kinds in UFO, as shown in Figure 12, while
human roles are social roles in UFO, defined by a normative description (in the case, a job plan)
recognized by the organization. It is worthwhile to point out that in the definition of a standard
process or even in the definition of a project process, we are not defining which specific software
product or hardware is to be used, but only their types (object kinds, in UFO), and thus we are not
talking about resources, but about resource types. The same applies to human resources. Again, we
are not allocating people, but only defining the social roles that people should play when performing
the corresponding activity occurrences (see subsection 5.5).

1Remember that project activities are intentions in UFO and, thus, actions (activity occurrences, in SPO) are
performed for satisfying such intentions.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



522 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 13. Team Allocation as Social Relators

Fig. 14. Human Resource Allocation as Delegatum

5.4 Human Resource Allocation

As pointed in Section 2, for a project to succeed, special attention should be given to personnel-related
tasks, such as assigning members to project teams and allocating them to perform project activities.
A person is assigned to a project team for performing certain human roles. Thus, according to UFO,
project team allocation (allocation of a person to a project team) is a type of Social Relator , which
is composed of a commitment of the person to the team in performing according to the human roles
assigned to her/him, and a claim of the team towards the person. Moreover, the person is now a
human resource for the project, since she/he can be allocated to the project activities. In terms of
UFO, person is a type of Human Agent , while project team is a type of Collective Social Agent .
Figure 13 shows these concepts.

Once we have assigned members to the project team, we can allocate these human resources to
perform scheduled activities. In this case, the project team is delegating responsibilities to human
resources and thus human resource allocation is a type of delegatum in UFO, in which the project
team is the delegator and the human resource is the delegatee . The team is delegating to the
human resource the responsibility of performing an action to satisfy the goal of the scheduled activity,
by performing a specific human role. In other words, the delagatum Human Resource Allocation
derives a material relation between human resource and project team, where the project team acts as a
delegator , while the human resource acts as a delegatee aiming at achieving the appointment goal
of the Scheduled Activity. Figure 14 shows the model capturing this conceptualization. It is important
to emphasize that there is a relation of existential dependence between Human Resource Allocation
and Project Team Allocation, indicating that, for a human resource allocation to exist (for a human
resource be allocated to a scheduled activity), she/he has to be first allocated to the project team.
For sake of simplicity, goals are not shown in Figure 14.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 523

Fig. 15. Process and Activity Occurrences as Actions

5.5 Activity Occurrence

Finally, actions are performed in the context of the project, in order to achieve its objectives. As
pointed in [Guizzardi et al. 2008], process and activity occurrences are effectively the actions in the
sense of UFO. Actions are intentional events, i.e., they have the specific purpose of satisfying some
intention. In other words, actions are caused by intentions. Process occurrences are Complex
Actions caused by scheduled processes, while activity occurrences are Actions caused by scheduled
activities. As shown in Figure 15, both scheduled processes and scheduled activities are intentions,
and the relations “caused by” between process occurrence and scheduled process and between ac-
tivity occurrence and scheduled activity are types of the relation caused by between actions and
commitments in UFO.

Like project activities, activity occurrences can be complex or atomic. In this case, complex ac-
tivity occurrences are Complex Actions, while atomic activity occurrences are Atomic Actions.
Moreover, we can distinguish human resource participations. A human resource participation is the
participation of a specific human resource in a complex activity occurrence. Since this participation
is an intentional one, then human resource participations are Action Contributions. This concept
is very important for the purpose of controlling the project. Almost all organizations require that
their human resources register the time they spent in doing a task. Human resource participations, as
events, are framed by a time interval , capturing this important aspect. In contrast, hardware and
software resource participations are non intentional participations of objects (hardware equipments
and software products) and thus they are object participations in UFO’s sense. Moreover, a hard-
ware equipment plays the role of a hardware resource when it is used in an activity occurrence. The

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



524 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

Fig. 16. The current version of the Software Process Ontology

same applies to a software product.

The new version of the Software Process Ontology (Fig. 16), obtained as a result from our reengi-
neering efforts. Contrasting it to the original version (Fig. 7) or to the first reengineered version
(Fig. 8) of the same ontology, we can see that there was much knowledge missing. This corroborates
the fact that using UFO as basis for ontology reengineering helped us to externalize the knowledge
about the domain, making the ontological commitments explicit, as pointed in [Guizzardi et al. 2010].

6. RELATED WORKS

There are some works that have proposed ontologies for the software process domain. This is the case
of [Falbo and Bertollo 2009], analyzed in this paper, and [Liao et al. 2005]. In the latter, an OWL-based
ontology is proposed for software processes. As an OWL ontology, it is, in fact, an implementation of
an ontology and, thus, it is full of encoding bias. As pointed out by Thomas Gruber [Gruber 1995],
an ontology should be specified without depending on a particular symbol-level encoding. Encoding
bias results from choosing a representation purely for the convenience of implementation, and should
be minimized. In this paper, we are interested in a reference domain ontology, as defined by Gizzardi
[Guizzardi et al. 2010] as an ontology developed with the aim at representing the subject domain
with truthfulness, clarity and expressivity, regardless of computational requirements. Concerning the
conceptualization of the Liao’s and colleague’s ontology, it is too simple and focuses on processes
and practices, where processes can be basic and composite, while practices can be basic or atomic.
Moreover, a process is defined by an organization and belongs to a process category. However, like
[Falbo and Bertollo 2009], it is not clear what a process or a practice means. Is a process/practice a
standard process/activity, a project process/activity or an occurrence? This is not explicitly stated in
the ontology. We should highlight that we are interested in building a reference domain ontology, and
thus we are looking for software process ontologies developed using an approach that explicitly takes
foundational concepts into account. At the best of our knowledge, this is only the case of [Guizzardi

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



Using a Foundational Ontology for Reengineering a Software Process Ontology · 525

et al. 2008], whose results were the base for the improvements done in this paper.

Regarding studies dealing with the evaluation and improvement of conceptual models based on
foundational ontologies, recently some have been developed, specially using UFO [Guizzardi et al.
2010]. In the software engineering domain, Barcellos and Falbo [Barcellos and Falbo 2009] reengineered
a Software Enterprise Ontology based on UFO. This is also the case of [Falbo and Nardi 2008], where
Falbo and Nardi developed an Ontology of Software Requirements. Finally, in [Barcellos et al. 2010],
Barcellos, Falbo and Dal Moro developed a Measurement Ontology. In all cases, these ontologies were
developed or reengineered taking concepts and relations of UFO into account, as in this work.

However, there are other approaches that are not based on UFO. Guarino and Welty [Guarino
and Welty 2002] developed the OntoClean methodology. OntoClean aims at providing guidance on
which kinds of ontological decisions need to be made, and on how these decisions can be evaluated
based on general ontological notions drawn from philosophical ontology. In [Welty et al. 2004], Welty,
Mahindru and Chu-Carroll report the results of experiments that measure the advantages achieved
from the use of ontologies improved based on OntoClean. Finally, Silva et al. [Silva et al. 2008] applied
a technique that is based on OntoClean, called VERONTO (ONTOlogical VERification), to improve
analysis patterns in the geographic domain.

As OntoClean, UFO is being used to evaluate, re-design and give real-world semantics to domain
ontologies. However, since UFO’s conceptualization is broader than the distinctions considered in
OntoClean, other aspects can be analyzed, and thus the approach using UFO gives more guidelines
to evaluate conceptual models than OntoClean does.

7. FINAL CONSIDERATIONS

In this paper we presented the new advances made in reengineering a fragment of the Software Process
Ontology (SPO) originally defined in [Falbo and Bertollo 2009], making further distinctions than the
ones made in [Guizzardi et al. 2008]. The newest version was obtained from the conceptual alignment
of the concepts and relations defined in the SPO with the concepts and relations of the Unified
Foundational Ontology (UFO). The focus was to address the conceptualization related to software
processes at the light of software project planning.

The use of UFO proved to be useful for identifying problems and for driving the ontology reengineer-
ing, especially expliciting the ontological commitments that differs between standard process, project
process, scheduled process and process occurrence. It became clear that a standard process is a plan
described by a normative description (plan description) recognized by the organization. A project
process is an internal commitment of the organization; while a scheduled process is an appointment,
which refers to a time interval. Finally, process occurrences are complex actions. These distinctions
also apply to the activity level. Moreover, we treated human resource allocation.

The new version of the SPO is now being used as the basis for integrating software tools for support-
ing software project planning. Three of these tools were developed in the context of the Ontology-based
software Development Environment – ODE [Falbo et al. 2003]: DefPro, ControlPro and AlocaODE.
DefPro supports defining standard software processes and tailoring them to define project processes;
AlocaODE deals with allocating people to perform the project activities; and ControlPro supports
project tracking, showing the project process and the state of its activities, as well as allowing people
to register the hours spent in performing them. Since these tools are developed in the context of
the ODE Project, they share the same conceptual model. Endeavour Agile ALM (http://endeavour-
mgmt.sourceforge.net/), on the other hand, is an open source tool supporting project management
and tracking, among others. We are interested in integrating Endeavour to ODE in order to add
facilities for supporting scheduling by means of project Gantt charts.

Endeavour and ODE has several commonalities, but their conceptual models are very different. Our

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.



526 · A. C. O. Bringuente, R. A. Falbo and G. Guizzardi

approach is to use the new version of the SPO as an interlingua to align the concepts and relations
from their conceptual models. To illustrate how this alignment is being done, take the case of project
activities. In ODE, there is a class Activity that has an attribute status. This class is related to the
class Activity Execution, in the following way: an Activity has none or one (0..1) Activity Execution.
An Activity Execution, in turn, is related to exactly one (1..1) Activity. Activity Execution has two
attributes (startDate and endDate) that represent the period of the activity execution. In Endeavour,
there is a class Task with several attributes, among them status, startDate and endDate.

Both ODE and Endeavour do not explicitly distinguish from project activities (as intentions),
scheduled activities (as appointments), and activity occurrences (as actions), as done in SPO (see
Figure 15). In ODE, an Activity is a Project Activity in the sense of SPO when it does not have
an Activity Execution associated to it. It is a Scheduled Activity when it has an Activity Execution
associated to it, and its status is “Inactive” or “Awaiting Authorization”. Finally, it is an Activity
Occurrence when it has an Activity Execution associated to it, and its status is “In Execution” or
“Completed”. In Endeavour, a Task is a Project Activity in the sense of SPO when its start and end
dates are null. It is a Scheduled Activity when dates are set to these attributes and the task status is
“Pending”. Finally, a task is an Activity Occurrence when its status is “In Progress” or “Completed”.
These mappings are being used to integrate the tools.

REFERENCES

Barcellos, M. P. and Falbo, R. A. Using a foundational ontology for reengineering a software enterprise ontology.
In The Joint International Workshop on Metamodels, Ontologies, Semantic Technologies and Information Systems
for the Semantic Web. Lecture Notes in Computer Science 5833. Gramado, Brazil, pp. 179–188, 2009.

Barcellos, M. P., Falbo, R. A., and Dal Moro, R. A well-founded software measurement ontology. In Proc. of
Int’l Conf. on Formal Ontology in Information Systems. Toronto, Canada, pp. 213–226, 2010.

Falbo, R.A. Natali, A., Mian, P., Bertollo, G., and Ruy, F. ODE: Ontology-based software development
environment. In Proc. Congr. Argentino de Ciencias de la Computación. Argentina, pp. 1124–1135, 2003.

Falbo, R. and Nardi, J. Evolving a software requirements ontology. In Proceeding of Conferencia Latinoamericana
de Informática. Santa Fe, Argentina, pp. 300–309, 2008.

Falbo, R. A. and Bertollo, G. A software process ontology as a common vocabulary about software processes.
International Journal of Business Process Integration and Management vol. 4, pp. 239–250, 2009.

Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing. International Journal of
Human-Computer Studies, 43 (5-6): 907–928, December, 1995.

Guarino, N. and Welty, C. Evaluating ontological decisions with ontoclean. Communications of the ACM 45 (2):
61–65, 2002.

Guizzardi, G. Ontological foundations for structural conceptual models. Ph.D. thesis, Centre for Telematics and
Information Technology, Enschede, 2005.

Guizzardi, G., Baião, F. A., Lopes, M., and Falbo, R. A. The role of foundational ontologies for domain ontology
engineering: An industrial case study in the domain of oil and gas exploration and production. International Journal
of Information System Modeling and Design 1 (2): 1–22, 2010.

Guizzardi, G., Falbo, R. A., and Guizzardi, R. S. S. Grounding software domain ontologies in the unified
foundational ontology (UFO): The case of the ODE software process ontology. In Proceedings of the Iberoamerican
Workshop on Requirements Engineering and Software Environments,. pp. 244–251, 2008.

ISO. ISO 10006: Quality management systems – guidelines for quality management in projects, 2nd edition, 2003.
ISO/IEC. ISO/IEC 12207: Systems and software engineering – system life cycle processes, 2nd edition, 2008.
Liao, L., Qu, Y., and Leung, H. K. N. A software process ontology and its application. In Proceedings of the First
International Workshop on Semantic Web Enabled Software Engineering, 2005.

PMI. A Guide to the Project Management Body of Knowledge. PMBOK guide. Project Management Institute, 2008.
Silva, E. O., Lisboa Filho, J., and Gonçalves, G. Improving analysis patterns in the geographic domain using

ontological meta-properties. In Proc. of Int’l Conf. on Enterprise Information Systems. pp. 256–261, 2008.
SEI. CMMI for development, version 1.3, technical report CMU/SEI-2010-TR-033. , November, 2010.
Welty, C., Mahindru, R., and Chu-Carroll, J. Evaluating ontology cleaning. In Proceedings of the National
Conference on Artifical Intelligence. pp. 311–316, 2004.

Journal of Information and Data Management, Vol. 2, No. 3, October 2011.


