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Abstract. A computing device is usually comprised of a processing unit, a volatile memory area (primary memory)
and a persistent memory area (secondary memory). Nowadays, in most of mobile computing devices data is persisted
in flash memory, which is a kind of non-volatile memory that may be electrically recorded and erased, i.e., an EEPROM
(Electrically Erasable Programmable Read-Only Memory) chip. Such memory is also used to implement memory cards,
USB sticks and solid state drives. Data persisted in flash memory need to be recorded in a structured way, such
that organizing, searching and accessing the data may be done in a transparent way. In other words, efficient file
systems should be designed and implemented for flash memory. There are file systems designed for flash memory.
Notwithstanding, most of them have not been designed to take into account severe computing resources restrictions,
such as low processing power and available primary memory area. In this work, we present a flash file system, denoted
Nano-FS, which is quite efficient to run in computing devices with rigid computing restrictions. Nano-FS has been
implemented to run in a hardware platform, which was in fact a control board for managing data produced by multiple
measurement devices (sensors).

Categories and Subject Descriptors: H.3.0 [Information Storage and Retrieval]: General; H.3.2 [Information
Storage and Retrieval]: Information Storage—File organization; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Retrieval models
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1. INTRODUCTION

A computing device is usually comprised of a processing unit, a volatile memory area (primary mem-
ory) and a persistent memory area (secondary memory). Data in secondary memory is arranged in
an abstraction called file. The key idea behind the concept of file is to make transparent to users how
their data is physically stored in a storage device, which is used as secondary memory. In order to
efficiently manage several files, file systems have been proposed [Tanenbaum 2007; Giampolo 1998].

Cell phones, media devices (players, digital cameras, tablets etc.) and the most common mobile
computing devices also have a persistent memory area. In the case of most mobile devices, the
memory in which the data is persisted is called flash [Boboila and Desnoyers 2011; Chen et al. 2009],
which is a kind of non-volatile memory that may be electrically recorded and erased, i.e., an EEPROM
(Electrically Erasable Programmable Read-Only Memory) chip [Gal and Toledo 2005b]. Such memory
is used to implement memory cards, USB sticks and solid state drives, for example.

Flash memory stores data in an array of floating-gate transistors, called cells. Bits are represented
by means of the voltage level in a cell. Typically, a flash device is composed of several planes, each
of which has a set of blocks. In turn, each block is divided into pages. There are three operations
which may be performed on a flash device: read, erase and program [Gal and Toledo 2005b]. A read
operation may randomly occur anywhere in a flash device. An erase operation is applied to a given
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block of a flash device and sets all bits to 1. A program operation sets a bit to 0. It is important to
note that a program operation can only be performed on a “clean” (free) block, which is a block with
all bits set to 1.

A NAND flash device is page-addressable for executing read and program operations. Pages are
typically of 512, 1024 or 2048 bytes [Hudlet and Schall 2011]. However, the erasing unit in NAND
flash memory remains a block (set of pages). Since a program operation can only be applied to clean
blocks, in order to change the values of a set of bytes in a block B of a NAND flash device, the entire
block should be first erased (i.e., all bits must be set to 1). Thereafter, it is possible to perform the
program operation on B, and change the values of the set of bytes. Thus, having a clean block B,
any location in B can be programmed, but once a bit in B is set to 0, it is mandatory to erase the
entire block to change this one bit to 1. In other words, flash memory offers random-access read and
program operations, but does not offer arbitrary random-access rewrite or erase operations.

Naturally, data is stored in flash memory devices by means of file systems. By using an additional
software layer over the flash memory [Regan 2009], it is possible to run a traditional file system
(FAT, NTFS or ext, for example) over that kind of storage media. That solution is simpler from the
implementation perspective, but quite ineffective due to the following reasons:

—Erasing blocks: due to the way flash memory works, it is mandatory to erase a physical block
before it can be recorded with new data [Gal and Toledo 2005b; Regan 2009]. In addition, the
required time to erase blocks may be substantial, depending on how many blocks are supposed to
be erased. Traditional file systems have not been designed around this limitation, since erasing
blocks in a hard disk is a straightforward operation.

—Random access: traditional file systems have been designed for mechanical storage media, where
read and write operations rely on the displacement speed of moving parts. Indeed, all operations are
optimized to increase the speed of accessing random data, since the cost of a seek operation (a search
for random data in the storage media) is too high when its response time is measured. However,
there is no lag in seek operations over flash memory, which renders the optimization strategies and
design decisions of a traditional file system useless. Indeed, they introduce yet another bottleneck
to the system [Gal and Toledo 2005b; Regan 2009].

—Physical blocks lifetime: each write operation lessens the flash memory blocks lifetime, hence its
lifetime is measured by the amount of operations it may have before it is no longer possible to use it
[Gal and Toledo 2005b; Lin et al. 2006; Regan 2009]. However, before the block is isolated from the
system, it is necessary to copy its data to another block and update the control structures of the file
system, which is done to maintain the integrity of the file in which the isolated block belonged. One
strategy to mitigate this effect is to evenly distribute data over the media. Traditional file systems
have not been designed to deal with such a limitation [Gal and Toledo 2005b].

Evidently, new file systems need to be designed in order to deal with this new media storage
paradigm, mostly due to its limitations. There are file systems designed for flash memory [Wu and
Reddy 2011; Jung et al. 2010; Gal and Toledo 2005b; Lin et al. 2006; Regan 2009]. Notwithstanding,
most of them have not been designed to take into account extreme computing resources restrictions,
such as processing power and available primary memory area. On the hand, several devices which use
flash memory as persistent storage are affected by those restrictions.

In this work, we present a flash file system, denoted Nano-FS, which is quite efficient to run in
computing devices with rigid computing restrictions. Nano-FS has been implemented to run in a
hardware platform, which may be in fact a control board for managing data produced by multiple
measurement devices (sensors). In order to read data from the sensors and to process them, a main
system is installed in the control board to run continuously. Moreover, the control board has the
following restrictions:
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—Low processing power microcontroller.

—32 bit architecture.

—64 KB of in-chip volatile memory.

—No operating system, no memory management unit, no dedicated cache area and no multitask
support.

The aforementioned main system occupies 56 KB of primary memory. For that reason, the file
system itself cannot take more than 8KB of memory to run. Furthermore, there are I/O and processing
restrictions. The main system should read data from 8 sensors and write them in secondary memory
in cycles of 1s. Thus, the main system has to read, process and write data into flash memory under
the 1s mark.

Such an I/O restriction may be hard to enforce, since the control board has no multitask support,
and the time to write and erase data is usually an order of magnitude greater than the time to read
it in NAND flash memory [Gal and Toledo 2005b; Lin et al. 2006].

Although the system has particular restrictions, one could think of adapting an already tried and
proven flash file system, before designing a new file system with all the presented restrictions in mind.
However, as will be presented in the next section, the former was not a viable choice for such restrictive
scenario.

This article is organized as follows. In the next section, file systems for flash memory devices are
described and analyzed. Section 3 presents the proposed file system. In order to evaluate Nano-
FS experiments have been carried out, whose results are presented in Section 4. Finally, Section 5
concludes the article.

2. RELATED WORK

Roughly speaking, a flash file system may work as follows. Whenever a given block B has to be
updated, a clean block (an unused one) is chosen to receive data from B (the older block) and the
data is recorded in it. After that, the control structures are updated (including a data structure that
maps physical blocks into logical ones). As one can see, the older block B is not erased right away,
since it takes too much time to erase it (this could be a problem if too many blocks are supposed to
be erased at once). Thus, B is marked to be physically erased later in the logical block map. At a
given time, marked blocks will be physically erased [Gal and Toledo 2005b; Regan 2009].

The behavior of a log-based file system may be used as a model to design a flash file system. This
is because the erase algorithm of log-based file systems avoids that the system loses a lot of time
when updating files. Moreover, the lifetime of physical blocks in flash devices may be increased,
since log-based file systems does not make in-place writes (updates) [Gal and Toledo 2005b; Regan
2009]. Besides, log-based file systems are naturally journalized, which means that in the occurrence
of system failure or an emergency shutdown, the file system may resume from a point in time just
before the failure event [Gal and Toledo 2005b]. One could further extend that by implementing a
way to navigate through those versions, and select a version of a file from a week ago, or even use it
to recover a file that has been accidentally deleted by the user (like the Time Machine component in
Apple’s Mac OS X).

There are already flash file systems, which have been implemented based in a log file system model,
like the ones presented in this section.
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2.1 JFFS2

The JFFS21 (Journalling Flash File System version 2) is a log-based file system designed by Red Hat
(based on the original JFFS) to be used in embedded systems equipped with flash memory, like cell
phones and digital cameras, and its first version is part of the first generation of flash file systems [Gal
and Toledo 2005b]. This system has got some noteworthy disadvantages, like the fact that it needs to
scan all its nodes (blocks) when the storage media is being mounted by the operating system. This
behavior may be critical when used on contemporary devices, which may easily reach 64GB or more,
like SSDs (Solid State Drives).

It also implements data compression, which may be a bottleneck in devices with low processing
power. Besides, writing small data blocks may lead to negative compression rates (the stored data
may be greater than the actual data), forcing applications to use larger write buffers, increasing
response time, since the buffer needs to be filled before flushing it to the storage media. That could
be even more aggravating in a sensor device [Gal and Toledo 2005a], because it always generates
small data blocks from its measurement equipment, and large buffers are out of question, since those
devices are already very memory-constrained. In JFFS2 there is no deterministic way to tell how
much memory is left available at a given time, since that depends on the writing sequence of the log,
and the compression rate of each buffer that needs to be flushed in the future.

In reality, JFFS2 is not suitable for restrictive platforms for the following reasons:

—Resource usage: JFFS2 is not a viable choice for devices that need to handle a large amount of
data (like a continous stream of sensor data), since its computing resources usage is quite aggressive,
mainly due to the way its RAM usage increases in linear proportion to the number of nodes (data
units to be stored) [Namihira 2009; Korolev 2007].

—Overall performance: JFFS2 performance on applications that mostly run read operations may
be acceptable. However, for devices whose applications perform mixed operations or a continuous
stream of write operations, it is most likely to be subpar. Besides slow write operations, it requires
a large amount of time to mount itself, and it is worsen as the amount of data stored increases
[Namihira 2009; Korolev 2007].

—Slow recovery: power failure events trigger JFFS2 to check/rebuild the file system data structures
from the log, which is a costly operation, specially if the media is already near-capacity, since it
requires a large amount of free space to run its recovery procedure2. The device is most likely to
remain halted for the entire duration of this operation.

—Inefficient space usage: JFFS2 will work very inefficiently if the application upon it generates
many small writes. Unless and until it is garbage collected, each write operation will take its own
JFFS2 node (a block structure) on the media, and so will incur overhead from the node header
(the metadata portion of the block). A JFFS2 filesystem is likely to fill up very fast if its data is
written a few bytes at a time (like the writes generated by sensors), rather than in large chunks.
Small write operations may also remove the benefits of compression entirely, as there is not enough
data to compress effectively [Namihira 2009].

—Operating system dependency: this filesystem has been designed to run under the Linux kernel,
so it depends on it to operate, which makes it harder to adapt to run over platforms with no operating
system whatsoever, like embedded systems based in microcontroller architectures [Namihira 2009;
Korolev 2007].

1http://sources.redhat.com/jffs2/jffs2.pdf
2http://www.ecoscentric.com/ecospro/doc/html/ref/fs-jffs2-usage.html
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2.2 YAFFS

YAFFS (Yet Another Flash File System) has been designed with JFFS2 in mind (it is also a log-based
file system) [Gal and Toledo 2005b; Lin et al. 2006; Regan 2009]. However, it is prepared to deal with
storage media larger than 64MB. This system has no built-in data compression, since it assumes that
most data formats are already compressed, like music encoded with MP3 and videos encoded by the
H.264 codec, for instance.

Although YAFFS has been designed for use with flash memory devices, it is not prepared to deal
with devices in the gigabyte range, like solid state drives, and devices used to store lots of static data
(like data generated to be analyzed and then stored, like the log of a sensor device). In truth, it is
not suitable to run over microcontroller-based devices, mostly due to the following reasons:

—Wear leveling: when YAFFS has been designed, the file system itself was supposed to take care
of wear leveling (in contrast with wear leveling implemented directly into the hardware controller,
like it is implemented nowadays), so it has been implemented with it in mind. However, it only
implements dynamic wear leveling, and wear leveling is not performed for static data, which may
cause a great number of blocks to be rendered useless at a faster rate than if both static and
dynamic wear-leveling algorithms were implemented [Wu and Reddy 2011; Wookey 2007]. This is
not suitable for devices that generates lots of static data, since it may greatly decrease the lifespan
of the flash media devices attached to it, be it a NAND flash chip or a solid state drive. Since wear
leveling is a main feature of this file system, it may impact its performance in devices where wear
leveling is performed by the flash controller.

—Code size: YAFFS code is around 55 KB in size, so it is not a choice for restricted platforms.
That amount would be fine for a device running Linux, but not a choice for a microcontroller-based
system with a few kilobytes of RAM. Recall that our embedded system has only 64KB of main
memory, and most of it is already used by its main system (see Section1).

—Run-time data structures: according to another estimation made by the YAFFS team, it takes
around 355 KB (it needs a total amount of 410 KB including its own code) to handle a NAND flash
device with 64 MB and 500 files. Moreover, its main data structure, the tnodes make up for 256
KB of the total amount3.

—Operating system dependency: as with JFFS2, this filesystem has also been designed to run
under the Linux kernel.

2.3 UBIFS

The Unsorted Block Image File System4 (UBIFS) has been designed to surpass JFFS2 shortcomings,
namely the lack of a cache subsystem for write operations, and a worse-case free memory calculation
(JFFS2 uses a best-case free space calculation [Korolev 2007]. It performs better than JFFS2 when
handling larger NAND flash devices [Namihira 2009]. Like JFFS2, it does real-time compression of
data using the deflate algorithm (zlib) or the LZO (Lempel-Ziv-Oberhumer) algorithm. Unlike JFFS2,
UBIFS stores its control data structures in the flash media itself, while the former stores it in main
memory, which might take a long time to rebuild, since it needs to read all the file system metadata
from flash in order to rebuild its control structures in memory (at mount time). Another relevant
difference between JFFS2 and UBIFS is that the latter uses a B+ tree to index the file system blocks,
while JFFS2 uses a linked list.

Although UBIFS might be a better choice for larger NAND flash devices, it is not a viable choice
for resource-restricted platforms for the following reasons:

3http://www.yaffs.net/node/348
4http://www.linux-mtd.infradead.org/doc/ubifs.html
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—Code size: Since UBIFS depends on the UBI layer of the linux kernel, its size must be included
in the code size calculation, which leads to a total of 250 KB [Namihira 2009].

—RAM comsumption: According to a benchmark that has been conducted by Toshiba Corp.
[Namihira 2009], UBIFS takes almost 600 KB of RAM to handle a file with 1 MB. This may seem
reasonable for a system running a operating system, but it is not viable for a device with 1024 KB
of main memory, for instance.

—Metadata overhead: Also according to the same benchmark by Toshiba [Namihira 2009], UBIFS
takes around 10% of the space required to store a single file, to store its own metadata (this could
be so due to the indexing structures used by UBIFS). Again, this could be a problem in small flash
devices, since a large portion of its space is being used by the file system itself.

2.4 Discussion

The file systems presented in this section have not been designed to handle a scenario in which there
are extreme computing resources limitations, a scenario in which the following limitations may apply:

—Low processing power microcontroller.
—Small amount of available RAM, in the kilobytes range.
—No operating system.
—No memory management unit.
—No dedicated cache area.
—No multitask support.
—I/O and synchronization restrictions (like the ones presented in Section 1).

For that reason, we advocate that the proposed file system is quite adequate for applications running
on very restrictive computational environments. In addition, existing flash file systems have been
designed to solve another class of storage problem. This is more evident if one takes into account
that most of them needs a Linux operating system to run, which is not a viable choice for restrictive
scenarios.

3. NANO-FS: A LIGHTWEIGHT FLASH FILE SYSTEM

As already mentioned, there are file systems designed for flash memory. Notwithstanding, most of
them have not been designed to take into account harsh computing resources restrictions, such as low
processing power and available primary memory area. Nano-FS is a lightweight file system designed
to run on flash media.

Nano-FS implements four types of blocks: metadata, file header, bitmap and node (Figure 1(a)).
The first type of block is the metadata block, which contains the file system metadata: total amount
of available storage memory and an authentication key. The authentication key is verified at the file
system mount time and has the functionality of identifying whether or not the file system has already
been installed. If the key does not match, it indicates that the system has to be installed. Installation
consists in writing the first block with the corresponding key and available storage memory, and the
mounting process consists in loading that metadata and the file system control structures.

Manipulating a file requires loading a file header block and binding it to a file handle. A file handle
is an in-memory data structure holding a hash representation of the file name and a file pointer, which
is a single integer that points to the current position (in bytes) of the file being manipulated. The file
pointer is needed because a logical file is manipulated as a contiguous list of bytes, in contrast to its
physical counterpart, which is a list of scattered blocks of 512 bytes. Hence the need for an in-memory
pointer to precisely browse the file data, and mark the last byte that has been modified or read.
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Free blocks management is done using a bitmap block, which maps used blocks as “1” and free blocks
as “0”.File header blocks contain the file metadata, such as the file name, the file size, the number of
node (data) blocks being used, and the address of the first node block which contains the file data.
Data belonging to a given file is stored in node blocks. Besides file data, each node block stores the
following control data: the actual block size and a pointer to the previous node block (depicted in
Figure 1(a).

In order to understand how those blocks interact, let us describe a scenario of creating a file of
4096 bytes. A file is created by allocating a file header, which will hold the file metadata. After that,
one node block is allocated to hold its data. However, one node block can hold only 500 bytes of file
data. A node block is 512 bytes in size, but 12 bytes of it are used for its metadata, like its used size.
Thus, more node blocks are allocated, and linked together by means of a list. So far, we have the
following block configuration: one file header and several node blocks. Roughly speaking, a file is a
list of blocks, where the file header is the head of the list, and it points to the first node holding file
data, which points to a second node block, which points to a third node block, and so on and so forth,
until all file data is being held by the nodes in the list. The bitmap block role is to keep track of which
blocks are being used at a given moment, i.e. free space management. Since a bitmap block (512
bytes) may map up to 2048 blocks (of 512 bytes), we can see that only one bitmap block will suffice.
In this case, bitmap block maps itself, the file header and node blocks. Recall that a bitmap block is
an array of bits, where a bit set as 0 is a free block, and a bit 1 is an used block. New bitmap blocks
may be allocated to keep track of a greater quantity of blocks. Once all blocks have been stored, the
file system will update the total amount of space used in the metadata block.

It is important to emphasize that Nano-FS loads only one block of the types bitmap, file header
and data node at a given time in order to perform any operation over a single file. This is a very
important feature, since it ensures low memory consumption (3 blocks takes 1536 bytes of volatile
memory to load).

Nano-FS allocates blocks by means of a reverse linked list. Files are composed by node blocks
(blocks designed to hold file data), which may be scattered along the storage media. This way, those
blocks are linked together by a single pointer in each block, which points to the previous block in
order to compose a file. A conventional linked list is inefficient in this context, since one would need
to write the new block and update the previous block pointer to point to the new one (which is now
the tail of the list). Accordingly, such a characteristic would induce the file system to write the flash
media twice (three times if one considers that the file header metadata needs to be updated as well)
for each newly allocated block. On the other hand, making new blocks point to the last one only
requires one write operation, since one just needs to make the new block point to the previous one
before the write operation itself. Furthermore, the proposed node-block allocation policy reduces the
number of writes in a given block. Consequently, it extends the flash lifetime and decreases the overall
time to run write operations.

Next, we describe in details the file-block allocation policy implemented by Nano-FS. For the sake of
clarity, let Wa be a stream of write operations for a given filea (say those operations are related to the
creation of the file), where Wa = (w1, w2, w3, w4, w5, w6, w7, w8) is the sequence of write operations,
and each operation writes a single block of data (each operation fills a single node) into the flash
media. Each numbered node i holds the data of write operation wi ∈Wa.

Algorithm 1 describes the assembly of a reverse linked list based in the write operations of Wa and
Figure 1(a) depicts it. For each write operation wi the algorithm allocates a new node block Ni. If it
is the first node block (i = 1), then a new file header must be allocated as well, since it is needed to
hold the metadata of the file in question. After that, the file header pointer is updated to point to the
new node block (N1), and the new node block is set to point to null, since it currently is the tail of
the list. Then the file header is written to the media (line 16 of Algorithm 1), and node N1 is written
as well. When i > 1, i.e., from the second block to the last; a new block node N(i>1) is allocated,
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(a) Nano-FS reverse linked list.
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(b) Conventional linked list allocation.

Fig. 1. Physical data allocation.

then the file header previously written is loaded. The newly allocated node block must point to the
previous block N(i−1), in order to keep the blocks linked together. Then the file header metadata is
updated, like the file size. The next step is to make the file header point to the new block N(i>1),
which is now the first node block in the list(the last written node block becomes the first node block
of the list, as seen in Figure 1(a)). After that, the file header is written again, and the new block
N(i>1) is written as well (lines 16 and 17 of Algorithm 1).

In order to emphasize the benefits of the proposed file-block allocation policy, consider that the
conventional linked list holding the data of filea would be the one illustrated in Figure 1(b). Recall
that each numbered node i holds the data of write operation wi ∈ Wa. A conventional linked list
allocation would be managed by an algorithm such as the one showed in Algorithm 2.

As one can see in Algorithm 2, the last node pointer (the tail of the list) needs to be updated to
point to the new node in order to make the new node part of the list. Thus, for each new node to be
added into the file list, the allocation algorithm needs to write the flash media three times: updating
the file header, updating the tail of the list (previous node) and writing the current block (new tail).
Lines 11, 16 and 18 of Algorithm 2. However, having a reverse linked list decreases the amount of
write operations needed, as one can see in Algorithm 1.

Comparing Algorithms 2 and 1, one can see that the latter has fewer write operations; two (lines 16
and 17) against three in Algorithm 2 (lines 11, 16 and 18). Having fewer write operations guarantees,
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Algorithm 1: Reverse linked list allocation for filea.
1 foreach wi ∈Wa do
2 Allocate a new node Ni;
3 //i = 1 means its the first node of filea;
4 if i = 1 then
5 Allocate a new file header with filea metadata;
6 Make the file header point to Ni;
7 Make Ni point to null;
8 end
9 else

10 Load the file header;
11 Make Ni point to N(i−1);
12 Update the file size in the file header;
13 //Other file metadata may be updated as well;
14 Update the file header pointer to point to Ni;
15 end
16 Write the file header;
17 Write Ni with data from wi;
18 end

Algorithm 2: Conventional linked list allocation for filea.
1 foreach wi ∈Wa do
2 Allocate a new node Ni;
3 //i = 1 means its the first node of filea;
4 if i = 1 then
5 Allocate a new file header with filea metadata;
6 Make the file header point to Ni;
7 end
8 else
9 Load the previous node N(i−1);

10 Update the pointer in node N(i−1) to point to Ni;
11 Write node N(i−1);
12 Load the file header;
13 Update the file size in the file header;
14 //Other file metadata may be updated as well;
15 end
16 Write the file header;
17 Make Ni point to null;
18 Write Ni with data from wi;
19 end

that a physical data allocation algorithm based in a reverse linked list spends less time writing blocks.
In Algorithm 1, only two write operations are performed: updating the file header and writing the
current node block. This means, that for each write operation, only two blocks are written into the
media. Ergo, it performs better than the one based in a conventional list. The resulting reverse linked
list is presented in Figure 1(a).

The algorithm to implement write operations has been designed with the I/O restrictions presented
in the previous section in mind. The algorithm first reads the file pointer position, and checks if it is

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



172 · E. Werbet and A. Brayner

an append or overwrite operation. In case of an append operation, new node (data) blocks are added
to the node list, and the new blocks are marked as used (bit 1) in the corresponding bitmap block,
and then the bitmap block is updated.

However, overwrite operations need a different strategy, since overwriting a flash block implies in
erasing it and then writing it again, which takes way longer than writing into a “clean” block [Gal
and Toledo 2005b; Lin et al. 2006; Regan 2009]. In order to avoid having the write function blocked
for a long period of time, we have chosen to always write into clean blocks. Instead of performing an
in-place overwrite operation in the block, the data from the old block is updated, and then stored in
a clean block. The pointer to each obsolete block is stored in a list, the “dirty” blocks list. Once the
media storage starts running out of clean ones, a garbage collection routine is triggered.

The garbage collector runs when the system is in idle, reading the dirty blocks list and “cleaning”
(erasing) them to be used again by the write algorithm. The collector always try and erase contiguous
chunks of data, since it is faster to erase adjacent blocks than individually scattered ones [Choi et al.
2009; Gal and Toledo 2005b; Regan 2009]. Besides, the collector operates in 1s intervals, to synchronize
its operation with the possible arrival of new data from the sensors. If the cleaning operation takes
more than an estimated duration of 1s, it is rearranged (a different set of dirty blocks is chosen) to
clean a feasible quantity of blocks in 1s.

Wear leveling [Wu and Reddy 2011; Jung et al. 2010; Gal and Toledo 2005b] has not been imple-
mented, since the flash circuitry controller already implements that, and bad block management as
well.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In order to investigate the performance of Nano-FS, we have implemented a prototype in ANSI C,
and performed several experiments, which have been conducted to measure its speed, and the time
required to perform a given set of operations. We have not compared it to the file systems in section
2, mostly because those have been designed to run under a Linux operating system, while Nano-FS
has been designed to operate without it.

The testbed is comprised of a custom-made control board equipped with a 32-bit microcontroller,
64KB of in-chip volatile memory, and a 4GB NAND flash class 4 SD memory card. Recall that our
system runs with no operating system due to memory and processing power constraints (see section
1).

The following parameters have been measured:

—Mount time in miliseconds.
—Throughput in megabytes per second.
—Number of sequential write operations required to write a given file.
—Time required to randomly read and write several files.
—Number of dirty blocks freed by the garbage collector procedure in a given time interval.
—Time required to perform a given set of operations with and without the garbage collector.

Mount time is an important parameter for our scenario, since a fast mount time mostly guarantees
a smaller loss of sensor data accuracy due to power oscillations, for example. Likewise, if the system
is to be embbeded in a consumer product in the future, it is important to have a fast boot time to
avoid having the end-user waiting for it.

This test has been performed by filling the flash memory with several files of 1MB, and then
mounting the file system. After that, the media has been completely erased, and the test has been
performed again, but with a greater quantity of files, in order to observe how the mounting procedure
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Fig. 2. Mount time versus number of files.

scales. As one can see (in Figure 2), the mount time is barely noticeable for a human being, even with
1000 files being mounted (under 250 ms), since our mounting procedure needs to read only one block
of data (the file header) for each file being mounted.

We have also performed throughput tests, in order to observe Nano-FS performance overhead over
the NAND flash media nominal throughput. The file system buffer size has also being taken into
consideration, since a bigger buffer should translate in greater throughput.
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Fig. 3. Throughput versus buffer size.

The throughput tests have been performed by writing and reading a 256 MB file several times,
and then computing the average read and write speed for each buffer size. Recall that we are in a
resource-constrained platform, so we had to implement small buffers of 512, 1024 and 2048 bytes, and
those correspond to one, two and four blocks in size. This means that, instead of loading one block per
read operation, we are able to load four blocks using a read buffer of 2048 bytes, and the same applies
to write operations as well. As one can see in Figure 3, increasing the buffer size does increase the read
speed in a substantial way. However, write operations have been only slightly benefited by the bigger
buffer. According to the SD Association5 (the standards body for the SD card technology), the NAND
flash card class 4 has a nominal minimum write speed of 4 MB/s (hence the class 4 designation), and
a minimum read speed of 10 MB/s, where the read speed is capped at 12.5 MB/s (spec 1.01), which

5https://www.sdcard.org/developers/overview/bus-speed
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is the bus interface maximum speed. As a matter of fact, we have achieved 4.4 MB/s write speed
with the smaller buffer and 5 MB/s with the biggest one (2048 bytes). Likewise, we have achieved
10.7 MB/s of read speed with the 512 bytes buffer, and 12.1 MB/s with the biggest buffer, which is
a relevant mark over the nominal speeds.

Since the write operation takes more time to complete than the read operation, thus becoming
the bottleneck in a plataform with a flash media device, one must investigate how the file system’s
write algorithm scales when handling files of increasing size. In fact, we have measured the number
of sequential write operations required to store files of varying sizes.

0

50000

100000

150000

200000

250000

300000

350000

400000

100 128 164 192 216 256 300 328

N
u

m
b

e
r 

o
f 

O
p

e
ra

ti
o

n
s 

File Size in Megabytes 

Sequential Write Operations 

Write Operations

Fig. 4. Number of sequential operations versus file size (linear growth).

The test has been perfomed by writing a single file into the media, then writing another file greater
than its predecessor, and so on and so forth, until all files have been written. The chart in Figure 4
shows the number of operations required to store files ranging from 100 MB to 328 MB with a buffer
size of 1 KB. In that experiment, the number of operations is directly proportional to the file size
(as expected), thus increasing the file size in a linear way, also increases the number of operations
linearly. Another set of tests have been performed, in which we increased the file size non-linearly. As
one can see in Figure 5, raising the file size in a exponential fashion (2x), also increases the number
of operations exponentially, which was the behavior we were expecting.

We have also observed the file system behavior when dealing with random read and write operations.
In this test, we were interested in observe its responsiveness in a scenario where read and write
operations could randomly occur, like when reading and writing data belonging to different files. In
fact, the time required to operate over a stream of read and write operations has been measured. In
this experiment (see Figure 6), we have randomly sorted the read and write operations from different
streams (produced by two different files in the megabytes range), where the order of a given stream
is kept intact, but both streams are intertwined.

For the sake of clarity, let Ra be a stream of read operations for a given filea, and Wb a write stream
for a given fileb, where Ra = (r1, r2, r3, r4, r5), and Wb = (w1, w2, w3). A valid randomly intertwined
stream would be I1 = (r1, r2, w1, r3, r4, w3, r5) or I2 = (r1, w1, r2, w2, w3, r3, r4, r5) for instance, or any
combination where the order of precedence of the read and write operations is kept for both streams,
in order to guarantee that the intended effect of each stream (say read the first 1KB of filea, and
append 2KB to fileb) is achieved for both files. We have measured the time required to complete
each set of read and write operations, while varying the buffer size, as seen in Figure 6. As expected,
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the time to write a given file is way greater than the time required to read it. However, increasing
the buffer size has proved to be advantageous, since it decreased the overall time to read and write a
given file (recall Figure 3). It is important to mention, that having a reverse linked list as the physical
allocation structure has sped up the write streams, since it only takes two write operations to store
each file block, instead of the three operations needed by a conventional linked list of blocks (recall
Section 3).

All the aforementioned tests have been conducted without the need to trigger the garbage collector,
since the media has been completely erased between tests. Thus, we have performed another set of
experiments to measure its efficiency. Recall that the garbage collector is triggered once the media
has run out of fresh (clean) blocks, say at 75% of its capacity (3 GB). In fact, we have filled the media
until the 75% threshold has been reached, then we marked all those blocks as “dirty”, i.e., they have
been marked as targets to the collector. After that, we started writing several new files to the media
in order to trigger the garbage collection routine. Additionally, we have set increasingly idle time
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intervals between each stream of write operations, in order to observe how the collector scales when
it has more time to run.
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Fig. 7. Number of obsolete blocks erased versus the time.

As one can see in Figure 7, as we increase the time in which the collector is allowed to run, the
steeper is the rise of the curve that displays the quantity of blocks that have been erased. This
exponential efficiency is due to the fact that having more time, makes the collector erase greater
chunks of adjacent dirty blocks, in contrast to choosing scattered blocks, which is slower [Gal and
Toledo 2005b; Regan 2009].

In the experiment displayed in Figure 6 we have not activated the garbage collection, since there
were no update operations involved. However, we have used that experiment as a template, changing
it in a way that the garbage collector could be trigged. To achieve that, we have first filled the media
up to 90% of its capacity then marked all blocks as dirty, and proceeded with the random operations
portrayed in Figure 6. We have also set a fixed idle time interval of 1s every 5s, in order to provide
the time needed by the collector to operate.

Comparing the experiments of Figure 6 and Figure 8(a)(sizes in megabytes), one is able to see that
the required time to perform the random set of operations from Figure 6 has substantially risen. That
behavior occurs mostly due to the fact that we have now a massive quantity of dirty blocks, which
need to be erased before they can be used again. In fact, one can see that the performance impact is
greater in the write operations, since we have added the time required to erase the dirty blocks.

Although the time required to perform the random set of operations has increased, it could be
way worse without the garbage collector, so we have turned it off and have performed the test in
Figure 8(a) again, in order to gather evidence to back up that assumption. As expected, the overall
performance of Nano-FS has been greatly impacted as one can see in Figure 8(b).

Besides being efficient (as seen in the presented charts), Nano-FS is light on RAM usage as well,
since it needs to load only the following data to operate: a file header (512 bytes); 64 file handles (512
bytes); a bitmap block (512 bytes); a garbage collector block (512 bytes); a node block (512 bytes),
and; an internal buffer area (512 to 2048 bytes). Furthermore, Nano-FS’s code itself is around 3 KB
in size. As such, the file system takes as low as 6 KB (6 · 512 bytes + 3 KB from its code) to run, and
a maximum of 8 KB (with a buffer area of 2 KB).
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Fig. 8. Time to randomly read and write different file sizes.

5. CONCLUSIONS

We have designed and implemented a flash file system denoted Nano-FS, which is the subject of this
work. Nano-FS has been designed to be efficient and light on resources usage. As presented in the
Experimental Results section, we have achieved those design objectives, since the file system is quite
efficient in storing and retrieving data from a flash memory device.

As a matter of fact, Nano-FS is a viable choice for resource restricted platforms due to the following
reasons:

—RAM usage footprint: in order to operate, Nano-FS needs to load only 3 KB worth of data, and
its code is around 3 KB as well.

—Efficient physical data allocation: its data allocation algorithm (Section 3) has been designed
to decrease the number of write operations. Thus, reducing the time in which the write function

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



178 · E. Werbet and A. Brayner

remains blocked (write operations takes more time than read operations in flash memory).
—Log-based operation: as presented, Nano-FS write algorithm always choose to write into free
blocks, preventing in-place update operations, whose cost in time is too high.

—Garbage collector: since its write algorithm always choose to write into free blocks, it is paramount
to have a fast garbage collector to clean those blocks at an opportune time. The implemented col-
lector efficiency scales with the time available to clean adjacent blocks, as presented in Section
4.

—Fast mount operation: its mount time is barely noticeable, even when having a thousand files
in the flash media.

—High throughput: its lightweight design and efficiency enables it to have a high throughput, and
it might have room for performance gains with an increase in its buffer size (recall Section 4).

Although Nano-FS has been designed to solve a specific problem, it has been implemented to be
easily modified and extended, in order to be used in another devices and scenarios. If the target
platform has more volatile memory, one can easily change its behavior to load more data blocks at
once (increasing its internal buffer), for instance. One may also change the way the garbage collector
operates, replacing its “idle behavior” by a more aggressive behavior, for example.

Future work in this subject may include modifications and extensions to Nano-FS, in order to enable
it to run under the Linux operating system, for instance.
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