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Abstract. In the last years, companies have adhered to PAIS (Process Aware Information Systems) for supporting the
control of their businesses. However, while normative PAIS may compromise the competitiveness of these companies,
flexible PAIS are a risk for security. In order to re-balance that trade-off, we present a new approach for anomaly
detection in logs of PAIS. It is an algorithm based on conformance threshold that is dynamically defined. The algorithm

was evaluated on two datasets of artificial logs (one with 360 complex logs, and other with 1800 simpler logs), with
different profiles on the number of anomalous traces and the number of times each anomalous traces was present in
the log. We also carried out a comparative study with a naive approach for anomaly detection that marks as potential

anomalies traces that are infrequent in the log.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Systems

Applications]: Office Automation; K.6 [Management of Computing and Information Systems]: System Man-
agement

Keywords: anomaly detection, business analysis, process aware systems, process mining

1. INTRODUCTION AND MOTIVATION

Management trends in the early 1990’s largely motivated the adoption of Process Aware Information
Systems (PAIS), or simply Process Aware Systems (PAS), by organizations[Dumas et al. 2005]. This
scenario represents a shift from data to process-oriented systems, which clearly separates business pro-
cess logic from application programs, facilitating redesign and extension of process model. Moreover,
such a separation supports the coordination and control of business, for example, either guarantying
that the execution of activities obey its prescribed control-flow definition, specially in normative sys-
tems like WFMS, or providing tools that identify bottle-necks paths. On the other hand, the business
process control of competitive companies should not be supported by normative tools like a classical
production WMS (Workflow Management System). These companies demand a flexible automation
of their business processes, for they need to respond rapidly to new market strategies or new busi-
ness models. However, a flexible system may be vulnerable to fraudulent or undesirable executions.
Therefore, there is clearly a trade off between flexibility and security.

In this context, process mining appears a promising technology for process analysis and discovery.
The idea of process mining is to discover, monitor and improve processes by extracting knowledge
from event logs readily available in today’s systems[Aalst et al. 2012]. Process mining is a technology
that may consider four different scopes or perspectives: control-flow, time, data, and organizational.
Moreover, there are three types of process mining: discovery (from an event log it outputs a model),
conformance (analysis how much reality, the log, conforms to the model), and enhancement (improve

Copyright c©2012 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012, Pages 316–331.



A Dynamic Threshold Algorithm for Anomaly Detection in Logs of PAS · 317

a model based on the reality, the log).

This research is restricted to control flow perspective, but it considers both discovery and confor-
mance types of process mining. It presents results in detecting anomalies in logs of PAS, where the
anomaly is detected solely based on the sequence and choices of activities that took place in that
anomalous execution. For example, a trace may be an anomaly because a pair of its activities are not
in an appropriate sequence. Of course, the anomalous nature of a case may be derived from the values
involved in some of the activities, or because of the people who executed some of the activities, or
because of time to perform an activity or the whole process was greater or less than normal. We call
these examples as data, organizational, and time anomalies respectively, to match the other aspects
of process mining[van der Aalst 2011; Aalst et al. 2012].

Previous research on process mining, in the context of anomaly detection, proposed three algo-
rithms based both on conformance analysis and process discovery[Bezerra and Wainer 2012; 2011;
de Lima Bezerra 2011]. For two of these algorithms, Iterative Algorithm and Threshold Algorithm, a
trace is an anomaly if its degree of conformance is lower than a given threshold. While in the third
algorithm, Sampling Algorithm, which presented the best results [Bezerra and Wainer 2012], a trace is
an anomaly if it does not conform 100% with a process model discovered from a sampling of the log.
These results are based on artificial logs, since there is no publicly available datasets or benchmarks
for anomaly detection in processes.

This work presents results of a new threshold approach for anomaly detection in PAS. This a
new approach is an extension of the previous Threshold Algorithm version[Bezerra and Wainer 2012],
but as opposed to the Threshold Algorithm, it does not require the threshold to be an externally
determined parameter of the algorithm. This new algorithm dynamically evaluates the threshold
based on the distribution of sample means, which is inspired by central limit theorem1. This new
algorithm represents our effort to develop a solution with a higher efficacy than the results reported
for Sampling Algorithm either in [Bezerra and Wainer 2012] and in [de Lima Bezerra 2011]. In
addition, similarly to previous anomaly detection algorithms, it is not a fully automatic detection
method. That is, anomalous traces, once discovered, must be analyzed to find out if indeed they are
examples of incorrect executions or if they are acceptable but uncommon executions. And if they
are found to be incorrect executions, the reasons for and consequences of these executions must be
further investigated. Therefore, it is an a posteriori method, a first automated step towards a more
comprehensive security auditing practice for flexible PAS.

Some important requirements were considered in the development of algorithms: on one hand, (i)
anomalous traces that are an indication of fraud may have serious consequences to the business, so the
algorithm must have a very low false negative rate; on the other hand, (ii) flagged anomalous traces
are forwarded to an analyst, which is a costly process, so the algorithm must have low false positive
rate; finally, (iii) a low false positive rate is less important than a low false negative rate.

This work is organized in the following way. In Section 2 we present the definition of anomalous
trace supported by the algorithm, which is presented in Section 4. In Section 3 we present previous
research on process mining and anomaly detection on PAS. In Section 5 we present the assessment
carried out using two synthetic datasets, while is Section 6 we present the results of assessment.
Finally, in Section 7 we present some conclusion and directions for future work.

2. TOWARDS A FORMAL DEFINITION OF ANOMALOUS TRACE

There are many semantics associated with the definition of anomaly. Only to cite some examples, an
anomaly can be an exceptional execution, a noise in the log, possibly caused by system failure or

1The central limit theorem states that when sampling from a large population of any distribution shape, the sample
means have a normal distribution whenever the sample size is 30 or more[Larson and Farber 2003].
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error in data input, or even a fraud attempt. An exception characterizes an abnormal or unusual
execution, but it can be supported by the business. Whereas a fraud attempt and an operational error
are unusual executions that provoke undesirable results to business. However, despite the different
meanings associated with the term anomaly, there are some common sense definition as follows: (i)
an anomaly in a rare or infrequent event; or (ii) it is a deviation from a normal form or rule; or (iii)
it is an unexpected result; or (iv) it is an state outside the usual range of variation from the norm.

Nevertheless, a precise definition of normal, norm, or rule is difficult, if not impossible, in some
application domains of PAS (e.g. health care systems). Besides, it is a naive approach to classify a
trace considering only its frequency in the log because some paths in a process model can be enacted
more frequently than others, so it is probable that some “normal” traces be infrequent. For that reason,
we believe that anomaly detection method should be based not only on the frequency of traces.

In this research we assume that anomalous traces are traces that are not instances of a process
model that “best explain” the non-anomalous traces in the set. For instance, given a set of traces T,
one can clearly say that there are no outliers since both the most general and the most specific models
explain all traces in T, but are these specific and general models the models that “best explain” the
traces? We assume that there are ways for partitioning the set T into two groups, anomalous and
non-anomalous (or normals), so that the model mined from the normal set is “reasonable” (not too
complex, not too generic, not too specific) and it does not fit the traces in the anomalous set. Thus,
we present below some formal definitions that lead us towards this assumption.

Throughout this article the term trace will be used to refer to an execution path (or process
instance) of a business process model, and it represents the order that the activities of this path
were completed. Thus, a trace [a b c d e] indicates that activity a finished before activity b, and
that activity b finished before activity c, and so on (Definition 1). Besides, Definition 2 is a formal
definition for a set of traces which we call log.

Definition 1. Trace.

Given that A is a set of activities. Then, a trace t represents a sequence of activities such that t ∈ A∗.
That is, assuming that A is an alphabet, and A∗ denotes all possible words over A, then t is a word
based on this alphabet.

Definition 2. Log.

Given T = {t | t ∈ A∗} a set of all traces defined over A and T ′ ⊆ T , then a log L is a multiset defined
over T ′, where L = {(t, n)|t ∈ T ′ ∧ n ∈ IN}.

Normally the log that will be applied for anomaly detection needs to be filtered, for removal of
those traces that are clearly anomalous instances or removal of those activities that are not important
for the analysis. For example, when a log is generated for analysis, there may be a lot of instances in
execution that were not concluded yet; these instances can not be provided for the anomaly detection
algorithm. Definition 3 present a formal definition for the filtered log. While in Definition 4 we
formally present what we call conformance degree between a model and a log, that is, how much of
log adheres to the model.

Definition 3. Filtered Log.

Given:

—a log L (Definition 2);

—a set AS of activities that were filtered from the log (scoped), such that AS ⊆ A;

—a function filter(t, AS) that removes all activities in a trace t that are not in AS;

—a boolean function complete(t) that outputs false if t is an incomplete trace and true if t is complete,
given that initial and final activities are known.
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Then, a filtered log LS ⊆ L is a multiset of traces t based on activities of AS, as follows:

LS = {filter(t, AS) | (t, n) ∈ L ∧ complete(t)}

Definition 4. Conformance Degree of Log.

It is a function f : {(M,L)|M is a model ∧ L is a log} → [0, 1] that measures the degree of confor-
mance between the model M and the log L. This function outputs a continuous value, ranging from 0
to 1. The value 1 means that the log L completely conforms to the model M , while the value 0 means
that the log L does not conform to the model M .

Then, in order to select the anomalous traces from the log we can initially suppose that every
trace from the log may be an anomalous trace. However, some heuristics should be applied in order to
select those instances that are more likely to be an anomaly. For instance, those frequent traces cannot
be an anomaly, by virtue of our own definition of anomaly as an infrequent case. For that reason
we present below, in Definition 5, what we call candidate anomalous trace. A trace is a candidate
anomalous trace if its class has a frequency less or equal a given frequency. For the purpose of this
work, we adopt a frequency of 2% to classify a trace as a candidate anomalous trace. The choice of
2% as the threshold for anomaly is arbitrary but it reflects the assumption made in this research that
anomalies are fraud (and thus the requirement of very low false negative rates). The 2% threshold
seems reasonable for this fraud perspective - a business in which more than 2% of the processes are
fraudulent are indeed in trouble.

Definition 5. Candidate Anomalous Trace.

Given:

—a filtered log LS (Definition 3);

—a set CL = {c|(c, n) ∈ LS} of classes of trace in the log LS;

—a real value x ∈ [0, 1];

—sL =
∑

(c,n)∈L n the number of traces from the log LS;

—fc = n
SL

the frequency of the class c in the log LS, where (c, n) ∈ LS.

Then, tc is an anomalous candidate trace if it is in the set TC , as follows:

TC = {c ∈ CL | fc ≤ x}

Once we have the set of candidate anomalous traces, its elements will be classified as anomalous
if they satisfy the Definition 6. It indicates that try to fit an anomalous trace in a “normal” process
model would require a lot of modifications in the model. Then, the conformance of the log with the
anomalous trace is much smaller than the conformance of the log without the anomalous trace.

Definition 6. Anomalous Trace.

Considering the following items:

—a filtered log LS (Definition 3);

—a set TC of candidate anomalous traces (Definition 5);

—a set TA ⊆ TC of anomalous traces;

—a set TN ⊆ LS of normal traces;

—LS can be partitioned into two multisets A (anomalous) and N (normal) such that A∪N = LS and
A ∩N = ∅;

—a function f(M,L) (Definition 4);

—a model MN mined from the log TN , where f(MN , TN ) is the maximum;
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—a model ML mined from the log LS, where f(ML, LS) is the maximum;

—a partial order “make more sense” between models denoted as M1 ≻ M2 which indicates that M1

“make more sense” than M2

Then ta is an anomalous trace if it is in the set TA, defined as follows:

TA = {tc ∈ TC |MN ≻ML }

3. RELATED WORK

Data mining community has published a large and growing body of literature in anomaly detection.
To cite a few as an example, in [Donoho 2004] the author presents how data mining techniques
can be used to early detect inside information in option trading. In [Fawcett and Provost 1997] the
authors present a system which is used to detect fraudulent usage of a cellular phone (cellular cloning).
Moreover, disease outbreak detection has been proposed by detecting anomalies in the event logs of
emergency visits [Agarwal 2005], or the retail data for pharmacies [Sabhnani et al. 2005]. There are
solutions concerned with the intrusion detection in networks [Lee and Xiang 2001; Noble and Cook
2003]. Other efforts are concerned with the detection of fraudsters in auctions or e-commerce sites
[Pandit et al. 2007]. In the next sections we reported how process mining have been supported the
anomaly detection field in the context of PAS.

3.1 Process Discovery

Process discovery is a method used to reconstruct a process model from a log generated by a system.
Such a technology is an alternative to construct models from scratch, and in the last fourteen years it
has raised the attention of researchers around the world [van der Aalst et al. 2003; de Medeiros et al.
2003; van der Aalst et al. 2004]. For this work, process discovery algorithms are important to help us
find a model that will be used as a classifier of traces as anomalous or normal.

The field of process discovery was first coined in the context of software processes. Cook and
Wolf, in [Cook and Wolf 1998], present process discovery as a tool to support the design of software
processes because it is a hard, expensive, and a error prone activity, specially for big and complex
processes. Also a forerunner work in process discovery, the paper of Agrawal et al, in [Agrawal et al.
1998], present an algorithm that mine models with three properties: completeness, minimality, and
no redundancy. Complete in the sense that a process model may contain all task and dependencies
between them that there is in the log; minimal in the sense that the mined process has the minimum
set of structural elements; and no redundancy in the sense that the process model does not play an
instance by different ways.

A lot of process discovery approaches have been proposed in the last years [van der Aalst et al. 2003;
van der Aalst et al. 2004; van der Aalst and Weijters 2004; Schimm 2004; Herbst and Karagiannis
2004; Wen et al. 2006; Hammori et al. 2006; de Medeiros et al. 2006; Wainer et al. 2005]. Among the
recent process discovery approaches, the most broadcast one is the α−algorithm [van der Aalst et al.
2003; van der Aalst et al. 2004; van der Aalst and Weijters 2004]. The efficacy of that algorithm was
formally proved for a class of process models, the WF-Nets (Workflow Net), which are petri nets that
require: (i) a single Start place, (ii) a single End place, and (iii) every node must be on some path
from Start to End. However, such an algorithm has some limitations, for example, to mine short loops
in the model and non-free-choice constructs, and for that reason some extensions were developed. For
example, in [Wen et al. 2006], the authors present an extension version of α−algorithm for solving
the detection of implicit dependencies between tasks from event logs.

Hammori et al. present an interactive process discovery algorithm in [Hammori et al. 2006]. The
resulting model is represented in block-structured manner. This work report an implementation of
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the approach in the ProTo system, which is an alternative of InWoLve [Herbst and Karagiannis 2004]
for supporting interactive discovery. Actually, ProTo uses InWoLve as its kernel.

Schimm presents a discovery approach that discovers a model after merging or rewriting the traces
of log with a set of formal rules (axioms) of an workflow algebra [Schimm 2004]. Besides, different
from more disseminated approaches, the output model is a block-oriented representation. It defines
that each workflow model consists of an arbitrary number of nested building blocks. Also, the models
meet three requirements: completeness, specificity (it does not introduce additional tasks or spurious
dependencies between tasks), and minimality. Similar to Schim’s approach, Wainer et al., in [Wainer
et al. 2005], argue that the process discovery problem is not well defined because a huge number
of solutions totally complied with a log can be inferred, then they present a sketch of a process
discovery algorithm that characterizes the stated problem. That algorithm is an incremental discovery
approach, where a model is created trace by trace until all traces from the log are used. For that
reason, the authors suggest a reformulation of the problem that consider the selection of the best or
more appropriate model for a given log.

Some process discovery tools may deal with noise in the log [Agrawal et al. 1998; van der Aalst
et al. 2003; Cook et al. 2004; Pinter and Golani 2004; Herbst and Karagiannis 2004; Hammori et al.
2006]. These approaches are limited to the frequency evaluation of dependency relation between two
activities. For example, infrequent dependency relations between two activities may not be modeled
in the resultant process model. Nevertheless, a more sophisticated and promising approach was
proposed in [de Medeiros et al. 2006; de Medeiros 2006], it is called genetic mining. It is based on
genetic algorithms, which is a search for a solution (an individual) that satisfies a selection criteria
(fitness function), and the individuals are defined based on some genetic operators (eg.: crossover,
mutation, and elitism).

The use of an appropriate process discovery tool is crucial for the accuracy of anomaly detection.
Bad results in the accuracy of an algorithm for anomaly detection can be associated to bad discovered
models, since the models are actually used to support anomaly detection. For example, if the miner
outputs a too generic model (the flower model), it can classify as normal the anomalous traces, while
if it outputs a too specific model (a model that is a branch for each class of trace), it can classify as
anomalous the normal trace not observed in the log the generated the model.

For the purpose of this work we utilized four different process discovery tools that can be used as
input for the anomaly detection algorithm (the miner parameter): (i) alpha algorithm[van der Aalst
et al. 2003; van der Aalst et al. 2004]; (ii) alpha++ that is an extension version of alpha algorithm
with support for non-free-choice constructs[Wen et al. 2006]; (iii) heuristic miner algorithm that is
also an extension of alpha algorithm, but it supports noise in the log and it considers the frequency of
dependencies between activities to represent them in the log[Weijters and van der Aalst 2003; Weijters
et al. 2006], so it is a more robust approach for process discovery; and finally (iv) multiphase algorithm
that outcomes an EPC model[van Dongen and van der Aalst 2004].

3.2 Anomaly Detection

All process mining methods mentioned in previous section are mainly concerned with the modeling
of normal behavior, yet some of them also deal with noisy logs. Therefore, abnormal behavior was
not deeply study by process mining community, although it is a clearly important subject to the
development of more accurate audit systems or systems that handle exception cases. For example,
it would be important to understand how “special clients” are assisted in exceptional situations, so
some process improvements would be suggested to handle such occurrences in a more appropriate way.
Moreover, in the case of audit systems, it would be a clue for identification of fraudsters. Therefore, in
order to fill this gap, more recent researches have been addressing the problem of identifying anomalous
trace in logs of PAS [van der Aalst and de Medeiros 2005; Yang and Hwang 2006; Bezerra and Wainer
2008a; 2008b; Bezerra et al. 2009; Bezerra and Wainer 2011; 2012].

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



322 · Fábio Bezerra and Jacques Wainer

In [van der Aalst and de Medeiros 2005], Aalst and Medeiros present two anomaly detection methods
that are supported by α-algorithm. A drawback of this work is that it demands a known “normal” log,
which is used to mine a process model that will classify the traces of an audit log. Unfitness instances
are the anomalous traces. However, a known “normal” log may not be available in applications
domains that demands a high flexible support because the normal instances change constantly. In
[Yang and Hwang 2006] the authors present a framework for automatic construction of a model for
detecting health care fraud and abuse. In that work clinical pathways are used to construct a detection
model, whose features are based on frequent control-flow patterns inferred from two datasets, one with
fraudulent instances and other with normal instances. Similarly, a dataset of normal and fraudulent
instances may not be available in some applications, which is clearly a serious limitation.

Closer related researchers to this work have been published in [Bezerra and Wainer 2008a; 2008b;
Bezerra et al. 2009; Bezerra and Wainer 2011; 2012]. In [Bezerra and Wainer 2008a; 2008b], we
present some approaches based on incremental mining[Wainer et al. 2005], but these algorithms can
not deal with longer traces and/or logs with various classes of traces. Then, in order to deal with
such constraints, we begun to develop other solutions based on process mining algorithms available in
ProM framework [Bezerra et al. 2009; Bezerra and Wainer 2011]. In [Bezerra et al. 2009], we proposed
an anomaly detection model based on the discovery of an “appropriate process model”, but we believe
that it has two drawbacks: (i) it is not an automated solution, since there is not an implementation
for it yet; and (ii) it considers a search for an appropriate model, which is still an open definition in
the process mining field. In [Bezerra and Wainer 2011], we started to use the process discovery and
conformance algorithms from ProM framework for implementing the anomaly detection algorithms.

More recent research findings into anomaly detection on PAS have been reported in [de Lima Bez-
erra 2011; Bezerra and Wainer 2012]. Among the algorithms reported in these work, the Sampling
Algorithm presented the best results. Such an algorithm is based on the following materialization
of the basic intuitions: since anomalies are infrequent, a random sample of the trace-instances from
the log will likely not include an anomaly. Then, models mined from this sample will probably not
include the anomalies as instances,and traces that are not instances of this model can be considered
anomalies.

The new anomaly detection algorithm proposed in this work is an attempt to implement a better
solution for the anomaly detection problem on PAS. Our intention was to develop an algorithm more
efficient than the Sampling Algorithm. The approach for anomaly detection proposed here represents
an extension of the Threshold Algorithm also reported in [de Lima Bezerra 2011; Bezerra and Wainer
2011; 2012], which uses process mining tools for process discovery and process analysis for supporting
the detection.

3.3 Process Analysis

In [Rozinat and van der Aalst 2005; 2008], Rozinat and Aalst present different dimensions for evalu-
ation of process models. Beyond fitness dimension, which describe how much of log can be correctly
played in a model, the authors also present the precision and structure dimensions. Precision dimen-
sion indicates how much behavior is supported by a model, whereas structure dimension indicates
how much complex is a model. The combination of these metric help us assess mined process models,
giving us confidence of among mined models which one “better” describes a log.

Genetic mining uses some similar metrics to evaluate the individuals that will be select to comprise
and be the matrix of next generation of individuals [de Medeiros 2006]. In [Rozinat et al. 2007] and
[van Aalst et al. 2010], the authors present a deeper analysis of different assessment metrics, comparing
different evaluation aspects of each metric (e.g. input, output range, dimension of assessment, and
computational complexity).

For the purpose of this work we utilized four different process analysis tools that can be used as
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input for the anomaly detection algorithm (the evaluator parameter): (i) fitness, which assess the
portion size of the log that can be correctly played by the model, that is, the degree of completeness;
(ii) behavioral appropriateness, which measures the degree of predictability to support the execution
of unseen trace in the log; (iii) structural appropriateness, which assess the degree of complexity; and
(iv) appropriateness[Bezerra et al. 2009], which was suggested to be a balance between structural
and behavioral appropriateness. The appropriateness metric is not directly available in the ProM
framework, but it is evaluated based on methods from conformance check plugin of ProM framework.

4. DYNAMIC THRESHOLD ALGORITHM

In this section we present the algorithm that represents a concrete implementation of previous defini-
tions. First, in Section 4.1 we highlight the main points of the original idea. Then, in Section 4.2, we
present the new algorithm, which is supported by some process mining tools reported in Section 4.3.

4.1 Threshold Algorithm: Original Idea

In the threshold approach, a candidate trace will be an anomaly if the conformance between the log
and the model mined from the same log, but without instances of the trace under analysis, is lower
than a given threshold provided as input for the algorithm[Bezerra and Wainer 2011; de Lima Bezerra
2011]. For each candidate anomalous trace, the algorithm is executed as follows: (i) it gets a new log
removing occurrences of the candidate trace from the original log; (ii) it creates a process model for
this new log; (iii) evaluates the conformance between the model and the original log, that is, the log
with occurrences of the candidate anomalous trace; and (iv) test if the conformance is lower than a
given threshold. Anomalous traces are those traces that has a conformance value below a threshold
provided as input for algorithm.

As reported in Section 3, the conformance check metrics available on ProM assess different char-
acteristics of a model, for example, since the degree of complexity of a model until the degree of
completeness of a model for a log. Therefore, the use of an appropriate metric is important for the
accuracy of detection, as well as the process discovery tool.

Other parameter that may impact the accuracy of detection is the threshold factor. Lower values
indicate lower tolerance for the degree of conformance – there may have normal traces classified as
anomalous (False Positive). On the other hand, higher values indicate higher tolerance – there may
have anomalous traces classified as normal (False Negative). Therefore, to choose a good value to the
threshold is not easy. Following, we propose an extension to the idea of threshold algorithm that does
not consider the threshold value as input, but it dynamically evaluates it.

4.2 Algorithm: Extended Idea

We present in Algorithm 1 the anomaly detection method that we called Dynamic Threshold
Algorithm, for it is inspired in the threshold algorithm, described in Section 4.1, but considering a
threshold value dynamically calculated (Line 18 in the Algorithm 1). The number of parameters is
the main difference of this algorithm when compared with its previous version, for it does not use
as input a threshold conformance value for classifying a trace. Now the algorithm has three input
parameters: the log, the process discovery miner, and the conformance analysis evaluator.

First of all, as defined in Definition 5, the algorithm selects the candidate anomalous traces (Line 4).
Then, a process model is discovered trough the process discovered miner and the log provided as input
for the algorithm (Line 7). Such a model represents a “description” of all the traces of the log, and it
is used as a reference for evaluating the conformance values. Next, the Dynamic Threshold Algorithm
evaluates the threshold value that will be used for classification of the candidate traces. Such an
evaluation is based on the central limit theorem, which defines that the distribution of an average
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Algorithm 1: Dynamic Threshold Algorithm

Input: A log L, which is a set of traces generated by a PAS.
Input: A process discovery algorithm PD.
Input: A conformance assessment algorithm CA.
Output: A set of traces TA that was classified as anomalous traces.

Define a set T with all classes of traces from the log L;1

Define a set TC = {} used to contain the anomalous candidate traces;2

Define a set Conformances = {} used to contain the evaluated conformances;3

foreach t ∈ T do4

if Frequency of t into the log ≤ 2% then5

Include t into set TC ;6

model ← Miner(L, PD);7

// 50 samplings

numberOfSamplings ← 50;8

// each sampling has at least 30 traces

if Size of L ∗ 2% >= 30 then9

numberOfTraces ← Size of L ∗ 2% >= 30;10

else11

numberOfTraces ← 30;12

while numberOfSamplings > 0 do13

sampling ← Sampler(L, numberOfTraces);14

tempValue ← Conformance(model,sampling,CA);15

Include tempValue into set Conformances;16

numberOfSamplings ← numberOfSamplings− 1;17

threshold ← Mean(Conformances) −1∗ Std(Conformances);18

foreach t ∈ TC do19

tempValue ← Conformance(model,t,CA);20

if tempValue < threshold then21

Include t into set TA;22

tends to be normal, even when the distribution from which the average is computed is decidedly
non-normal[Larson and Farber 2003]. To match the definition of such a theorem, which supports the
calculation of the threshold value, the algorithm plays as follows:

—In Line 8 we define how many samplings are going to be used for evaluation of the threshold value.
Increasing this number improves the shape of distribution to normal curve, but it demands a higher
processing cost, for it will be more samplings for the evaluation of conformance. Because we assume
the frequency of candidate traces of 2%, we arbitrarily use 50 (1/0.02) samplings of the log to define
the sampling distribution of means.

—In Line 9 we define the number of traces of the sampling, that is, how many traces are randomly
selected from the log to comprise a sampling. For populations with normal distribution, whatever
value could be defined. However, because we do not know a priori what is the conformance dis-
tribution of traces in the log, we guarantees a minimum of 30 traces. Otherwise, this value is 2%
of size of the log (again we arbitrarily adopted the frequency of candidate traces to support the
choice).

—In Line 13 we define a set of conformance values, one for each sampling of the log. A conformance
value represents a mean of conformances of every trace in the sampling. From these values the
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threshold is evaluated.

—In Line 18 we calculate the threshold value, which is based on the mean and standard deviation of
conformance set.

Once we have the threshold value, for each candidate trace (Line 19), we classify as anomalous
those ones that has a conformance value (Line 20) below the calculated threshold (Line 21). Finally,
we synthesize the differences between the algorithms in Table I.

Table I: Differences Between Algorithms

Threshold Algorithm Dynamic Threshold Algorithm

It demands from the user a threshold value The threshold value is not provide by the user, but it
is dynamically evaluated

For each candidate trace a process model for classify-
ing the trace is discovered

A unique process model for classifying the trace is dis-
covered, and it is based on the whole log

4.3 Process Mining Support

The implementation of algorithm is supported by ProM Framework2, which is an open source process
mining tool, comprised of a set of process discovery and process analysis tools. It integrates the
functionality of several existing process mining tools and provides many additional process mining
plug-ins[van Dongen et al. 2005].

The Dynamic Threshold Algorithm is mainly supported by ProM tools in two points: (i) first,
during the discovery of the process model; (ii) second, during evaluation of conformance between the
model and the log. Such an assessment is based on a conformance check tool of ProM or a combination
of them (for example, appropriateness is a balance between behavioral and structural metrics).

The tool used for process discovering is defined as an input parameter of the Dynamic Threshold
Algorithm. In addition it may be one of the following: alpha, alpha++, heuristic miner and mul-
tiphase algorithm. Regarding the conformance evaluation tool, it also needs to be defined by an
input parameter, and it may be one of the following: fitness, behavioral appropriateness, structural
appropriateness and appropriateness.

5. ASSESSMENT PROCEDURES

We have assessed the the algorithm with two datasets, both referred in [Bezerra and Wainer 2012]. The
first dataset has 360 logs with different configurations, supporting OR-blocks (exclusive), AND-blocks,
LOOP-blocks and sequences – the procedure used to create this dataset is available as a appendix in
[Bezerra and Wainer 2012]. The second dataset has 1800 synthetic logs, but they are simpler than the
ones in the first dataset, for they contain less activities (at most 20 different activities in them), and
they did not contain loops – the procedure used to create this dataset is available in [de Lima Bezerra
2011].

Two reasons influenced our choice for using synthetic data for the assessment. First, it is hard
(perhaps inexact) to identify an anomalous trace in a real log, so it would impose some limitations
on the assessment. For example, in [Pandit et al. 2007] the authors report some problems regarding
the assessment of their anomaly detection system with real data. The problems are mainly related
to subjective analysis of traces as an anomalous instance. Last but not least, a real dataset of process
instances is not available.

2http://www.processmining.org
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The assessment carried out in this work can be summarized in three steps, as follows: (i) first
we played the algorithm with a short subset of logs, in other to get a tunning of parameters among
16 possibilities available for algorithms (four miner algorithms and four evaluator algorithms); (ii)
since we have had the best set of parameters, we carried out the algorithm over the remaining logs
(Section 6); (iii) finally we assessed and compared the results.

5.1 Comparison Strategies

An algorithm that classifies all the candidate traces as anomalous would get a recall of 1. On the
other hand, its precision would be too low, mainly when there are few anomalous traces and many
normal traces among the candidate set. Because it is possible to occur infrequent normal traces in
the log (e.g. some paths of model are preferable than others, or application domains like health care
and hospital whose each case may be different of others), such a procedure for anomaly detection is
clearly very naive.

Therefore, it would be interesting to know if the Dynamic Threshold Algorithm is better than a
simple, fast, but naive approach. In order to get the performance data from this naive approach we
did as follows: (i) the recall is the constant value 1, since all anomalous occurrences in the set of
candidate trace will be correctly classified as anomalous; (ii) the accuracy is the ratio between the
number of anomalous and the number of candidate traces, since only the anomalous traces will be
correctly classified; (iii) the precision is equal to accuracy because all candidate traces are classified
as anomalous; and (iv) the f-measure is got from recall and precision values. Therefore, because we
have such performance data we can compare all approaches.

5.2 Quality Metrics

In order to discuss the quality metric, let us briefly review the standard metrics for a binary classifier.
The classes of a binary classifier are usually referred to as “positive” and “negative”. In our case,
“positive” refers to being an anomaly, and “negative” to being a normal trace. Furthermore:

—a true positive (TP) is an example (a trace in our context) that is classified as positive by the system
and it is indeed positive.

—a false positive (FP) is an example that is classified as positive by the system, but it is really a
negative example

—a true negative (TN) is an example that is correctly classified as negative by the system

—a false negative (FN) is an example that is classified as negative by the system, but it is really a
positive example

The standard metrics for quality of a binary classifier are:

—accuracy = (TP + TN)/(TP + TN + FP + FN)

—precision = TP/(TP + FP )

—recall = TP/(TP + FN)

In the case of this work, because of the emphasis on anomalies as frauds, we want to the false
negatives to be as small as possible, which implies that recall will be as close to 1 as possible. But
using only recall as the metric of quality of the algorithms is inappropriate, since by definition, the
naive algorithm will have recall equal to one. In this case, the naive algorithm will have the highest
recall, but in turn it will result on the lowest precision - since all infrequent traces will be marked
as positive. The f-measure family of metrics tries to balance (with different emphasis) both precision
and recall [van Rijsbergen 1979]. They are defined as:
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—f-measure = f1-measure = 2.precision.recall/(precision + recall)

—fβ-measure = (1 + β2).precision.recall/(β2precision + recall)

F1-measure is the harmonic mean between precision and recall. The fβ-measure weights the recall by
β when performing the harmonic mean. For β > 1, recall will be increasingly more important when
performing the harmonic mean, the larger t β.

As we discussed above, under the fraud perspective, recall should be as high as possible, but
precision should also be high. Thus we need a metric that places more emphasis on recall, and we
arbitrarily opted for the f4-measure. But we will also report the f1-measure and accuracy. The
accuracy calculations involve the true negative (TN) which will always be very high, so the figures
for accuracy will be deceptively high. So we only report the accuracy for the candidate traces, that
is, the traces with frequency lower than 2%. We also consider the f1- and f4-measures to be 0 when
either precision or recall are 0.

5.3 Parameterization of the Algorithm

Considering the set of parameters that can be applied over the new anomaly detection algorithm,
we can say that there are 16 detectors (detection solution), one for each combination of parameters
(four process discovery and four conformance analysis algorithms). In order to get the best set of
parameters, the logs were organized in two sets: (i) the training group, which were used to play the
algorithm using all the combination of input values for identifying the best set of parameters; and (ii)
the test group, which were the non observed set of logs used to play the algorithm, appropriately
tuned by parameters.

Finally, once we played the algorithm over the training group of logs, we organized the results of
parameterization in a descending way by f-measure, recall, and accuracy respectively in this order.
The objective was to discovery a set of parameters that produced the best results, that is, higher values
are better than smaller ones. Then, we defined the following parameters for the algorithm: (i) Process
discovery algorithm: Heuristic miner[Weijters and van der Aalst 2003; Weijters et al. 2006]; (ii)
Process model evaluation algorithm: Behavioral appropriateness[Rozinat et al. 2007; van Aalst
et al. 2010]. Such a combination of parameters is related to a detector that had a performance over
the training group, as follows: accuracy of 73,5%, f1-measure of 0.7206, and f4-measure of 0.8397. In
Section 6 we present the results of carrying out such a detector over the testing group of logs.

6. RESULTS

The results reported in the following subsections are related to the test group of logs. Result data
related to Naive, Threshold and Sampling algorithms were obtained from [Bezerra and Wainer 2012]
and [de Lima Bezerra 2011]. Because the Iterative algorithm did not reported interesting results,
we decided to withdraw it of analysis. Actually, we are interested to know if the performance of
Dynamic Threshold Algorithm is better than: (i) Threshold Algorithm, which follows similar ideas;
(ii) Sampling Algorithm, which presented best performance in previous comparisons [Bezerra and
Wainer 2012; de Lima Bezerra 2011]; (iii) and Naive Algorithm, which has higher recall, but lower
precision.

In the statistical analysis we applied One-way ANOVA, for identifying if there is at least one
algorithm with a significant difference of performance among others, followed by Tukey HSD, for
identifying pair-to-pair the best results[Steinberg 2010]. Finally, we use a ROC Graph for graphically
presenting the performance difference between the two best results (See Figure 1). In such a graph,
the perfect classifier would appropriately classify all the positive occurrences (TPR = 100%), and it
would not misclassify as positive the normal occurrences (FPR = 0%). In addition, a good classifier
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(a) Complete Logs. (b) Simpler Logs.

Fig. 1: ROC Graphs. Comparison between Sampling and Dynamic Threshold Algorithms

is plotted above the main diagonal. For example, the Naive Algorithm has 100% of TPR, but it also
has a 100% of FPR, so it would be plotted over the main diagonal.

6.1 First Set of Logs - Complete Logs

Table II: Performance Mean of Complete Logs - Accuracy, f1-measure and f4-measure

ACC F-Measure F4-Measure

DYNAMIC THRESHOLD 0.6595 0.6165 0.8054

SAMPLING 0.4665 0.5614 0.8863

THRESHOLD 0.4325 0.1808 0.3048

NAIVE 0.3285 0.4735 0.8659

We report in Table II the performance mean of algorithms over the complete logs (first dataset).
Considering accuracy and f1-measure, Dynamic Threshold Algorithm had best performance, while for
f4-measure, Sampling Algorithm had best performance.

It is worth notice that statistically, with 95% of significance: (i) the difference in the accuracy
between Dynamic Threshold and Sampling algorithms is significant (p-value is almost zero); (ii) the
difference in the f4-measure between Dynamic Threshold and Sampling algorithms is significant (p-
value is 0.0013007); (iii) the difference in the f1-measure between Dynamic Threshold and Sampling
algorithms is statically significant (p-value is 0.0345066); (iv) finally, we show in Figure 1a a ROC
Graph comparing the best two classifiers, and the Dynamic Threshold Algorithm is selected as the
best classifier.

6.2 Second Set of Logs - Simpler Logs

We report in Table III the performance mean of algorithms over the simpler logs (second dataset).
Considering accuracy and f1-measure, Dynamic Threshold Algorithm had best performance, while for
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Table III: Performance Mean of Simpler Logs - Accuracy, f1-measure and f4-measure.

Algorithm ACC F1-Measure F4-Measure

DYNAMIC THRESHOLD 0.8147303968 0.7532466836 0.8948376809

SAMPLING 0.7870617918 0.7526751987 0.9407704653

THRESHOLD 0.3790339921 0.3219208585 0.5512582595

NAIVE 0.3509796491 0.4742572677 0.8064932184

f4-measure, Sampling Algorithm had best performance.

It is worth notice that statistically, with 95% of significance: (i) the difference in the accuracy
between Dynamic Threshold and Sampling algorithms is significant (p-value is 0.0239637); (ii) the
difference in the f4-measure between Dynamic Threshold and Sampling algorithms is also significant
(p-value is 3e-07); (iii) the difference in the f1-measure between Dynamic Threshold and Sampling
algorithms is not significant (p-value is 0.9997922); (iv) finally, we show in Figure 1b a ROC Graph
comparing the best two classifiers, and the Dynamic Threshold Algorithm is selected as the best
classifier – in the simpler dataset, Dynamic Threshold Algorithm had a performance closer to Sampling
Algorithm.

7. CONCLUSION AND FUTURE WORK

Because detection of anomalies are a growing research area, data mining community has published
a large and growing body of literature in the subject. It has been realized that fraud and intrusion
detection in systems, novelty detection in time series, bio-threats discovery, and other similar tasks
are better understood as anomaly detection[Chandola et al. 2009]. Besides, a huge number of systems,
and therefore logs are available nowadays. This is a result of the interest of companies for supporting
the control of their businesses processes, for the coordination and control of the businesses supported
by these tools guaranties that the execution of activities obey its prescribed definition. On the other
hand, the companies that demand a flexible automation of their business processes, a rigid control
may compromise their response to new market strategies. Nevertheless, a flexible system may be
vulnerable to fraudulent or undesirable executions.

In order to provide a solution to balance the trade off between flexibility and security, we presented
in this work a new algorithm, the Dynamic Threshold Algorithm, for anomaly detection of traces in
logs of PAS. The algorithm was assessed through two datasets of logs, one with 360 complex logs and
other with 1800 simpler logs. The simpler log have shorter traces and none of the traces repetition
of activities (which means that their correspondent process models have no loops). The Dynamic
Threshold Algorithm has a statistically significant better accuracy for both dataset of logs against the
algorithms proposed in [Bezerra and Wainer 2012]. Besides, when considering the f1-measure, the
new algorithm also proved to be better.

However, because the emphasis of this work is on anomalies as frauds, we would choose f4-measure
as the most appropriate metric for selecting the best algorithm, for, as we stated in Section 5, such
an adoption increases the importance of the recall value. In this case, the Sampling Algorithm has a
statistically significant better performance. Moreover, when comparing the new anomaly detection ap-
proach with the Threshold Algorithm, which also classifies based on a threshold value, we can conclude
that the Dynamic Threshold Algorithm had better performance, in all metrics (see Tables II and III).

Those results are important to point out different characteristics of both Sampling and Dynamic
Threshold Algorithms. Sampling Algorithm is better at finding the anomalies in the logs, but pays
the cost of a higher false positive rate, while Dynamic Threshold has better accuracy, and a good
balance between precision and recall (f1-measure). Therefore, as future work, we believe that one
could combine the results of both algorithms into a single decision. We are currently exploring some
alternatives in this direction.
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We are also currently exploring the use of other perspectives of process mining in anomaly detection.
In real life, anomalies can be limited not only to the control-flow perspective, but also to the data,
time and organizational perspectives. For example, a particular execution path may be used only
when executed by senior roles, so a particular trace that followed that path is not in itself anomalous,
neither are traces whose activities were executed by junior roles. But a trace that followed that path
and had activities executed by a junior role are anomalous, and this determination involved both the
control-flow and the organizational flow perspectives taken together.

Finally, the models and the logs used in this article are available online3, so that researchers can
propose new algorithms and fairly compare them to ours, and future users of our algorithms may
evaluate if our models and logs are representative of the models and logs they will face in their
problems.
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