
Towards a Better Quality Metric for
Graph Cluster Evaluation

Hélio Almeida1, Dorgival Guedes Neto1, Wagner Meira Jr1, Mohammed J. Zaki2

1 Universidade Federal de Minas Gerais, Brazil
{helio, dorgival, meira}@dcc.ufmg.br

2 Rensselaer Polytechnic Institute
zaki@cs.rpi.edu

Abstract. The process of discovering groups of similar vertices in a graph, known as graph clustering, has interesting
applications in many different scenarios, such as marketing and recommendation systems. One of the most important
aspects of graph clustering is the evaluation of cluster quality, which is important not only to measure the effectiveness
of clustering algorithms, but also to give insights on the dynamics of relationships in a given network. Many quality
metrics for graph clustering evaluation exist, but the most popular ones have strong biases and structural inconsistencies
that cause the quality of their results to be, at least, doubtful. Our studies showed that, while in general those popular
quality metrics do a good job evaluating the external sparsity between clusters, they do poorly when evaluating the
internal density of those clusters, ignoring essential information (such as a cluster’s vertex count) or having its internal
density component ignored in practice because of its computational cost. In this article, we propose a new method for
evaluating the internal density of a given cluster, one that not only uses more complete information to evaluate that
density, but also takes into consideration structural characteristics of the original graph. With our proposed method,
the internal density of a cluster is evaluated in terms of the expected density of similar clusters in that same graph,
in contrast to the traditional quality metrics available, where clusters from different graphs are compared by the same
standards. We believe that, if used in conjunction with a good external sparsity evaluation metric, like conductance,
this method will help to obtain better, more significant graph clustering evaluation results.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining
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1. INTRODUCTION

Graph clustering, the process of discovering strongly related groups in a graph [Schaeffer 2007], has
many applications in areas such as social network analysis (finding groups of related people), e-
commerce (recommendations based on a group’s opinions) and bioinformatics (gene expression data
classification, spreading of epidemics).

The basic structure of a well formed group is open to discussion, but the classical and most adopted
view is based on the concept of homophily, which states that similar elements have a greater tendency
to group with each other than with other, less similar elements [Newman and Girvan 2003]. When
working with simple and undirected graphs, homophily is usually evaluated in terms of edge densities,
with a cluster having more edges linking its own elements among themselves (higher internal density)
than linking them to the rest of the graph (sparser external connections). However, discovering such
edge-dense clusters in graphs is a complex task since, by this definition, a cluster can be anything
between a connected subgraph and a maximal clique, with the better results leaning towards the
latter.
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Since the problem of clustering does not have an exact solution, many heuristics have been proposed
to find clusters which maximize both intracluster density and intercluster sparsity. Examples of such
algorithms are MCL [van Dongen 2000; 2008], K-means [Steinbach et al. 2000] and Spectral [Kannan
et al. 2004; Schaeffer 2007]. However, since those algorithms are heuristics, there is no formal guarantee
that the results obtained through them are the best possible.

When a graph is small, with only a few vertices and edges, results of a clustering found for it can be
evaluated manually. However, as the size of the graph grows, manual evaluation becomes unfeasible. If
that is the case, quality evaluation metrics may be used as indicators of cluster quality. Those metrics
aim to evaluate a cluster (or clustering) in terms of the most important characteristics expected from
good clusters, providing scores that can be used to compare the quality of clustering results.

However, even the most popular and well regarded quality evaluation metrics for graph clustering,
such as modularity [Newman and Girvan 2004] and conductance [Kannan et al. 2004], possess strong
structural biases that make them favor clusterings mainly because of how many clusters they have,
making them unreliable [Almeida et al. 2011].

So, there is a great need to find other, more accurate ways to evaluate cluster quality. In this article,
we extend the evaluation of cluster quality metrics, and conclude that they do not correctly evaluate
one of the key elements of cluster quality: the cluster’s internal density. Also, they evaluate all clusters
by the same standards, causing clusters from naturally sparser graphs (such as technological networks,
for example) to be unfairly penalized.

With that in mind, we propose a new method to evaluate a cluster’s internal density. Our method
uses more complete information to evaluate the internal density of a cluster. Also, it uses the char-
acteristics of the studied graph in order to discover what are the density thresholds that identify
interesting clusters in that particular case. This allows for a more “local” evaluation, removing the
penalization that sparser graphs usually receive.

2. RELATED WORK

The automatic evaluation of cluster quality is crucial to graph clustering, as it is increasingly harder
and expensive to evaluate cluster quality manually as graphs grow in size. Many quality metrics were
proposed in the literature, such as modularity [Newman and Girvan 2004], conductance [Kannan et al.
2004], and silhouette [Tan et al. 2005], among others.

Many works rely on such quality metrics as a source of “ground truth”, using them to score clusterings
obtained by selected graph clustering algorithms in order to compare them in terms of result quality.
However, they do so assuming that those metrics are good enough, without any evaluation of the
correctness of the chosen metric. Examples of such works are [Satuluri and Parthasarathy 2009],
which uses conductance to compare its proposed clustering algorithm to normalized cut and multilevel
clustering algorithm implementations, and [Danon et al. 2005], which uses modularity to compare
agglomerative, divisive and modularity maximization techniques for graph clustering.

Other works try to do something similar, only using more than one quality metric in their evaluation
in order to minimize the impact of any possible biases of the quality metrics. For example, [Brandes
et al. 2008] compared three algorithms for graph clustering (Markov clustering, iterative conductance
cut and geometric MST clustering) using conductance, coverage and performance. Modularity and
silhouette are used in [Gustafson et al. 2006] to compare K-means and hierarchical clustering using.

Those popular quality metrics are not only used to compare clustering algorithms. In [Leskovec
et al. 2008], the authors try to evaluate what is the basic structure of a good community. To do
so, they used Network Community Profile (NCP) plots, which showed the best external conductance
values for communities of different sizes, which were obtained through traditional graph clustering
algorithms. In a follow-up work, the authors add other quality metrics, such as modularity, to the
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evaluation of the same problem [Leskovec et al. 2010]. Nevertheless, those two papers assume that
the quality metrics used are good enough to correctly evaluate the quality of a cluster, which is a
disputed claim. Also, the only clusters evaluated in said works are be the ones found by the clustering
algorithm chosen, and this might add the biases from the clustering algorithms to their final results.

All of those works assume that the metric or metrics used are good enough to be used as ground truth
in their evaluations. However, it has been shown in [Almeida et al. 2011] that even widely used quality
metrics such as modularity and conductance have strong biases which make them unreliable, specially
when working with larger graphs. Also, another paper from [Zaidi et al. 2010] claims that edge density,
one of the main characteristics observed by most of the popular quality metrics, might not be good
for cluster evaluation, as it alienates star-like formations, which are more common in technological
networks then edge-dense clusters. It proposes a metric that uses the distance between vertices
to evaluate internal density (like the silhouette index), comparing this new metric to modularity.
Although we agree that a star-like formation might mean a good cluster in cases like technological
networks, it doesn’t mean that they will be as good as more edge-dense clusters in complex networks
of a more social origin. Also, like silhouette, a distance-based metric might be biased towards smaller
clusters, as they will always have the smallest distances among the clusters studied.

The previously discussed papers used or proposed generic evaluation metrics for cluster evaluation,
which were based on graph characteristics. Another way to evaluate cluster quality is to use external
information that can be considered ground truth. This approach is good, but it is very dependent on
the existence of such adequate external information. One example of such work is [Qi et al. 2012],
where the authors try to cluster Flickr images using social links. They use image tags, which are
added by the community, as the ground truth for each image’s category. Another example is [Gargi
et al. 2011], that tries to find communities of similar YouTube videos and generate named clusters
that are coherent with their content, using the YouTube video graph. They use manual evaluation of
the discovered name for each cluster as a form of validation of their results. Such works assume that
the connections in a graph and the labels found in them are strongly related, which is not necessarily
the case in general. In our approach, we rely solely on the structure of the graph, which is available
in all cases.

3. CURRENT GRAPH CLUSTERING EVALUATION METRICS AND THEIR PROBLEMS

The most accepted definition of a graph cluster is based on the concept of homophily or assortative
mixing: elements have a greater tendency to form bonds with other elements with whom they share
common traits than with others [Newman 2003]. Applying this concept to graphs, a cluster’s elements
will display stronger than expected similarity among themselves, while also having sparser than ex-
pected connections to the rest of the graph. Element similarity can be derived from many graph
characteristics, such as edge density [Girvan and Newman 2002], vertex distance [Tan et al. 2005] or
labels [Zhou et al. 2009].

A theoretically perfect clustering, structurally-wise, would be one formed by clique-like clusters
completely disconnected from the others, as this configuration would allow for maximum internal
density for each of the clusters and maximum sparsity of connections between them. Graph clustering
quality metrics are models that try to evaluate how close to theoretically perfect a given cluster is,
scoring them accordingly.

Unfortunately, the most commonly used cluster quality evaluation metrics in the literature possess
fundamental flaws that make them strongly biased. In this section we will briefly present two of the
most popular quality metrics presented in the literature and show why they are inadequate for cluster
quality evaluation. We will also discuss if those metrics behave consistently with what is expected of
good clusterings, that is, high internal edge density and sparse connections with other clusters.

The metrics studied in this article use only a graph’s topological information, like vertex distance
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and edge density, to evaluate the quality of a given cluster. A discussion on the biases of those quality
metrics and others (silhouette, coverage and performance) can be found in previous work [Almeida
et al. 2011].

3.1 Modularity

One of the most popular validation metrics for topological clustering, modularity states that a good
cluster should have a larger than expected number of internal edges and a smaller than expected
number of inter-cluster edges when compared to a random graph with similar characteristics [Newman
and Girvan 2004]. The modularity score Q for a clustering is given by Equation 1, where e is a
symmetric matrix whose element eij is the fraction of all edges in the network that link vertices in
communities i and j, and Tr(e) is the trace of matrix e, i.e., the sum of elements from its main
diagonal.

Q = Tr(e)− ||e2|| (1)

The modularity index Q often presents values between 0 and 1, with 1 representing a clustering with
very strong community characteristics. However, some limit cases may even present negative values.
One example of such cases is in the presence of clusters with only one vertex. In this case, those clusters
have 0 internal edges and, therefore, contribute nothing to the trace. Sufficiently large numbers of
singleton clusters in a given clustering might cause its trace value to be so low as to overshadow other,
possibly better formed, of its clusters and lead to very low modularity values regardless.

3.2 Conductance

The conductance [Kannan et al. 2004] of a cut is a metric that compares that cut’s size (the number
of edges that, if removed, would make the graph disconnected) and the weight of the edges in either
of the two sub-graphs induced by that cut. The conductance φ(G) of a graph G is the minimum
conductance value between all of its clusters.

Consider a cut K = (S, V \ S) that divides G into k non-overlapping clusters C1, C2 . . . Ck. The
conductance of any given cluster φ(Ci) can be obtained as shown in Equation 2, where a(Ci) =∑
u∈Ci

∑
v∈V w(u, v) is the sum of the weights of all edges with at least one endpoint in Ci. This

φ(Ci) value represents the cost of one cut that bisects G into two vertex sets Ci and C̄i = V \ Ci.
Since we want to find a number k of clusters, we will need k − 1 cuts to achieve that number. In this
article we assume the conductance for the whole clustering to be the average value of those (k − 1) φ
cuts, as formalized in Equation 3.

φ(Ci) =

∑
u∈Ci

∑
v 6∈Ci

w({u, v})
min(a(Ci), a(C̄i))

(2)

φ(G) = avg(φ(Ci)) , Ci ⊆ V (3)

Based on this information, it is possible to define the concept of intracluster conductance α(C)
(Eq. 4) and the intercluster conductance σ(C) (Eq. 5) for a given clustering C = C1, C2, . . . , Ck.

α(C) = mini∈{1,...,k}φ(G[Ci]) (4)
σ(C) = 1−maxi∈{1,...,k}φ(Ci) (5)
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Intracluster conductance considers the conductance of a minimum cut with maximum flow ob-
tainable from a subgraph induced by a cluster c ∈ Ci (represented as G[Ci] in Eq. 4). A graph’s
intracluster conductance is the minimum of such conductances, with a low value meaning that at
least one of those clusters may be too sparse to be good. The intercluster conductance is the comple-
ment of the maximum conductance value of the clustering, so lower values might show that at least
one of the clusters have strong connections outside of it and, therefore, is externally dense. So, a good
clustering should have high values of both intra and intercluster conductance.

Alas, even though the use of both inter and intracluster conductance would give a better, more
complete view of cluster quality, many works use only the external conductance as the cluster eval-
uation metric [Leskovec et al. 2008; Leskovec et al. 2010]. Because of that, unless otherwise stated,
when we discuss conductance in this article, we mean external conductance.

3.3 The Problem with Internal Density

Observing the formulation of both modularity and conductance, it is possible to see something in
common - both metrics use edge counts, but not vertex counts, to infer internal density and external
sparsity. Modularity uses the matrix e, which counts edges connecting elements in and outside each
cluster as the base of its formulation, while conductance uses the ratio between edges connecting
elements from the evaluated cluster to other clusters and all edges with at least one endpoint on the
evaluated cluster.

When evaluating external sparsity, it is not a problem to use only edge counts and ignore the vertex
count, as this is a relationship between two clusters and, therefore, has little to do with the vertices
themselves.

(a) Two dense clusters. (b) Two sparse clusters.

Fig. 1: Very different clusterings that are equally good for current quality metrics.

However, internal cluster density does not benefit from such restrictions. Density is a measure of
concentration and, as such, needs to represent not only the number of elements observed, but the
space they occupy. In this case, it means that the concept of internal cluster density can not be fully
represented by just using the number of internal edges of a given cluster and ignoring the number of
vertices of said cluster. For example, a clustering with 2 clusters composed of 1 external edge and
12 internal edges can represent many different scenarios if we ignore the vertex count of each cluster,
like two 4-cliques connected by one edge (Figure 1a, definitely dense clusters) or two 6 vertex trees
connected by one edge (Figure 1b, not dense at all). As they were proposed, both conductance and
modularity would score those two clusterings equally, and with very good scores of 0.14 and 0.34,
respectively.

Another problem is that not all networks are made equal. Some networks represent some kind of
technological infrastructure, like airport flight connections, power grids or computer networks, where
the monetary cost of creating an edge tends to generate sparser, more deliberate structures. Other
networks can represent social networks, such as friendship networks on websites like Facebook or
Twitter, where the cost of creating new connections is negligible and, therefore, tend to be denser.
To assume that a cluster in a technological network with the same density as one from a social
network should be similarly scored can be unnecessarily unfair, but that’s what quality metrics like
conductance, modularity, and others do.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



Towards a Better Quality Metric for Graph Cluster Evaluation · 383

The edge count based scoring method adopted by conductance and modularity causes the results
obtained with those quality metrics to be always smaller for graphs that are naturally sparser, a
behavior that can be seen in different works in the literature [Almeida et al. 2011]. Because of that,
it’s difficult to compare how good a clustering algorithm is for graphs of different origins, as the metric
results will be mainly incomparable.

4. INTERNAL DENSITY EVALUATION METHOD

In the previous section, we saw that there is a strong need to find better ways to evaluate internal
cluster density. The currently used quality metrics have two problems that affect their ability to
correctly evaluate the internal density of a cluster: they only use edge count information and they
evaluate networks of the most diverse origins by the same standards.

To solve the first problem, vertex count information should be added to the cluster evaluation
process. One way this can be done is by comparing only subgraphs of the same size (vertex wise).
This way, edge counts can be correctly seen as density indicators.

As for the second problem, it is necessary that the quality metric use information derived from the
studied graph to identify the thresholds that indicate density/sparseness of the clusters found. Doing
so would allow our new method to positively score clusters that can be considered dense for a given
graph even if they would not be considered dense in other cases.

One way to employ those two kinds of information in order to evaluate a cluster could be as follows:
the population of all subgraphs of the same size could be used to identify what are the expected density
values for clusters of that size. This way, we can use the structural characteristics of that specific
graph to discover the threshold that separates rare and dense clusters from common and sparse ones.

(a) Original graph. (b) Population of size 3 subgraphs.

Fig. 2: A simple graph and its subgraphs.

For example, consider that we want to define the density thresholds for a size 3 cluster obtained
from the graph in Figure 2a. If we enumerate all possible size 3 induced connected subgraphs from
this graph (as shown in Figure 2b), we can see that the majority of them have only 2 edges, while
only one possible subgraph has 3 edges. Since this 3 edged subgraph has more edges than 80% of all
the possible subgraphs with the same size, then a size 3 cluster with 3 internal edges found in this
same graph should be positively scored based on this proportion.

However, the example in Figure 2 is small and very simple. As the graph grows in size, the
population of possible connected subgraphs of a given size becomes so large as to be intractable to
enumerate. So, it is necessary to use a sample of this population in order to use this kind of approach.

4.1 Sampling for Density Evaluation

Some works in the literature use clusters found through traditional graph clustering algorithms to
evaluate cluster characteristics [Leskovec et al. 2008]. Other works use cluster quality metrics to
evaluate results from traditional graph clustering algorithms [Brandes et al. 2008; Du et al. 2007;
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Brandes et al. 2003]. In all those cases, the universe of evaluated clusters is limited to what the
clustering algorithms identify as a (good) cluster. This kind of filtering may introduce biases on what
kinds of structures will be evaluated and, therefore, may bias the final quality evaluation results.

To avoid this kind of bias in our evaluation process, we can use samples from the universe of all
possible connected induced subgraphs with s vertices that exist in a given graph. Doing so, our
results will represent, within statistical guarantees, the expected internal density values for a size s
cluster found in a given graph. A sampling process that provides such guarantees will be discussed in
Section 5.

The internal density values obtained in a couple of instances of this form of sampling can be
seen in Figure 3, which plots the number of sampled 25-vertex subgraphs by edge count for three
complex networks of different origins: Amazon Co-purchase, Yeast protein interactions and Google
websites (social, biological and technological, respectively). Those networks will be better described
on Section 6.
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Fig. 3: Example of internal densities from subgraph samples (s = 25).

Since we are looking at induced subgraphs of a fixed vertex count, it is valid to equate edge counts
and density here. It is possible to see that those density curves have their maxima very near the
minimum density possible (since the subgraphs are connected), and that they are somewhat heavy
tailed. That means that not only most of the sampled subgraphs of the given size are way too sparse
to be considered good clusters, but also that there are a few subgraphs that are more dense than what
is expected from the average case. We believe that it is possible to use the information presented in
this kind of graph to evaluate cluster quality in a way that bears more significance to the studied
graph.

5. METHODOLOGY

The methodology used in our experiments will be described in this section, and their results will be
presented in Section 6. Our goal is to understand what are the expected values for internal cluster
density for clusters of a given size. We’ll use this information to generate inputs for a simple internal
density evaluation model, which will be described at the end of Section 6.

The experiments consist of the sampling of induced connected subgraphs of different sizes from 14
different real world complex networks. The details of the sampling process and datasets used will be
discussed shortly. We sampled subgraphs of 15 different sizes, from 5 to 300 vertices.
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5.1 Sampling Process

Given a graph G = (V,E), we want to identify what is the expected edge count for a connected
induced subgraph with s vertices. Also, we want to do it without having to enumerate all possible of
such subgraphs, as this can be unfeasible for larger graphs.

One way to do that is through sampling of the universe of all possible s-sized connected induced
subgraphs from G. In order to obtain an estimate of the proportion of edge densities of this universe,
with a confidence level of 99% and margin of error of 1%, we can perform a simple random sampling
without replacement of at least 2477 subgraphs from this universe, a value obtained through Eq. 6,
where Z = 1 − α

2 (α is the confidence level desired), ME is the margin of error desired and p is
the probability for one sampled element to have a given characteristic. Variable p was set with the
suggested (and conservative) value of 0.5, which guarantees that a sample of the calculated size would
have at least the level of confidence and measurement error chosen1 [Lohr 2010]. We were even more
conservative and did samples of 16000 subgraphs, more than enough to assure the measuring error
and confidence level desired.

n =
[Z2 × p× (1− p)] +ME2

ME2
(6)

The process of choosing one random connected subgraph from said universe is done as follows:
we pick one vertex randomly from all vertices in the graph (Figure 4a). We pick the next vertex
randomly from the immediate neighborhood of the chosen vertex (Figure 4b). For the third and
following vertices to be chosen, we pick randomly one of the vertices from the set of the immediate
neighbors from all vertices already chosen (Figure 4c). It is important to note that if one vertex is in
the neighborhood of more than one vertex already chosen, this does not make it more nor less likely to
be picked. This process aims to be as random as possible in order to emulate the process of randomly
picking one element from the universe of all s-sized connected induced subgraphs of G.

(a) One vertex chosen. (b) Two vertices chosen. (c) Three vertices chosen

Fig. 4: Example of the sampling process. Black vertices were chosen and gray vertices are the extended neighborhood.

We applied this sampling process to each one of the studied graphs, for s values of 5, 10, 15, 25,
30, 40, 50, 75, 100, 125, 150, 200, 250 and 300.

5.1.1 Subgraph and Graph Sampling. It is important to notice that what we are doing is different
from the problem of graph sampling. We use a sample from the set of all possible subgraphs of the
same size in order to identify the internal edge density from that set, based on the results obtained
from the sample. Graph sampling, as discussed in works such as [Leskovec and Faloutsos 2006]
, [Ribeiro and Towsley 2010] and [Clauset and Moore 2005], aims to discover subgraphs that present
the same characteristics (such as degree distribution, clustering coefficient and diameter, for example)

1http://www.stattrek.com
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as the original graph, only in a smaller scale. This kind of sample is used when the original graph is
too large to be analyzed.

Graph sampling adds many restrictions to the sampling process, making simple random sampling
inadequate to obtain a sample that can be considered valid, as can be seen in the already cited
works. Fortunately, our situation is not as complex as graph sampling. For example, consider that
the universe we want to sample is a cake with filling and frosting. For a simple random sampling, one
could cut the cake into small cubes and randomly pick some of them. With a large enough sample, it
would be possible to identify the proportion of each one of the components on the original cake. This
kind of information is good enough for our problem, but would be inadequate for the problem of graph
sampling, as it would not be possible to infer the structure of the cake, i.e., you could not guarantee
that the frosting was indeed covering the cake. For graph sampling, a slice would be a better sample.

5.2 Graphs Used

We have studied graphs from different origins. Doing so allows us to evaluate different kinds of complex
graph cluster structures. Table I shows the graphs we have used in our experiments. All graphs used
were presented in other works in the literature and made available to the community by their authors.

Type Network # Vertices # Edges

Social

Les Miserables 77 254
Epinions 75879 508837
Slashdot (11/2008) 77360 905468
Slashdot (02/2009) 82168 948464
General Relativity Collab. 5242 28980
Condensed Matter Collab. 23133 186936
Amazon Co-Purchasing 262111 1234877

Technological

Google Web Graph 875713 5105039
College Football 115 616
Power Grid 4941 6594
Gnutella Snap. (31/08/02) 62586 147892
Gnutella Snap. (30/08/02) 36682 88328

Biological C. Elegans Neural Net. 297 2359
Yeast 2361 7182

Table I: Datasets studied.

Those graphs can be roughly grouped in 3 different kinds of complex networks: social, biological
and infrastructure (or technological). In social networks, edges represent relationships between people
(or other social animals). The Les Miserables character interaction [Knuth 1993], the Epinions trust
relationships, the Slashdot user discussions, the General Relativity and Condensed Matter scientific
collaboration relationships and the Amazon.com product co-purchase2 graphs are examples of this
kind of network.

In biological networks, edges represent connections that happened between biological entities. Ex-
amples used here are the protein-protein interaction network in yeast [Bu et al. 2003] and the C.
Elegans neural network [Watts and Strogatz 1998].

The edges in an infrastructure or technological network connect its vertices through an algorith-
mically defined process. Also, each edge has a real world cost, making them generally sparser then
other kinds of complex networks. Examples of such networks are the World Wide Web site network
(collected and published by Google)2, the topology of the Western States Power Grid of the United
States [Watts and Strogatz 1998] and the network of American football games between Division I-A
colleges during regular season Fall 2000 [Girvan and Newman 2002].

2http://snap.stanford.edu/snap/index.html
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6. EXPERIMENTS

This section will show the experiments we’ve made in order to test our proposed method for internal
cluster density evaluation. We will discuss the results obtained and propose a simple and naive model
as an example of how our method could be used for internal cluster density evaluation.

6.1 Results

We now discuss the results from our experiments. For space reasons, not all results will be shown.
Results for just one graph in each broad origin category will be shown and discussed. However, results
for graphs in the same category show very similar behavior, so this poses no great problem. Also,
although results for all subgraph sizes are not shown, the ones presented are enough to point out the
most interesting tendencies in subgraph density behavior.

Figure 5 presents the density curves obtained from our samples for three networks: the condensed
matter collaboration (social), the Google websites (technological) and the C. Elegans neural network
(biological). It is possible to see that all three curves have very similar formats for the smallest of our
sample sizes (s = 5). As s grows, however, the curves’ behaviors begin to differ.

The Google websites’ density curves have tree-like densities as their maxima for s values up to 30,
something that is not surprising, given the natural sparsity of technological networks. Nonetheless,
for all values of s sampled, even s ≤ 30, the density curves show a heavy tail, with the highest edge
count values far from their curves’ maximum values. Those denser subgraphs (which are also denser
than the average, as presented in Table II) show us that even sparser graphs, such as the ones from
technological networks, may have components that are dense, even if only in its own context. It is
also interesting to notice that, for s > 30, the density curves start to change shape, becoming more
bell-like as their maximum and average values get farther from the minimum density possible. This
process might mean many things: the subgraphs of this size might be agglomerations of smaller,
tree-like subgraphs; or they might just become more similar to social or biological networks, which
also have more bell-shaped curves. Unfortunately, since we are just evaluating one of the two main
cluster characteristics, we can not yet say what this change in curve shape means in regard to cluster
quality.

The density curves of the condensed matter collaboration network already show a tendency for a
bell-like shape since values of s > 5. However, its curves have a sharper increase and a smoother
decrease rate. That is interesting, because it means that the denser spectrum of observed densities,
the ones we are most interested in, have a greater spread of possible values. This allows our kind of
proposed evaluation to be more responsive. It is curious to notice that the bell-shape of the density
curves from this network are slimmer than the curves from the other networks, which means that there
is a large concentration of subgraphs with a significantly small difference in edge counts. This can also
be seen on this network’s sharply increasing Cumulative Distribution Function (CDF), as presented
in Figure 6. This probably happens because of the origin of this network, as scientific collaborations
groups might have a most common size of participants that most groups follow. Fortunately, a metric
that uses the method we are proposing would use this kind of structural information and score clusters
found here based on this particularities.

Compared to the other two, the C. Elegans neural network (biological) has the most normal-shaped
density curves, which is slightly wider and shorter than the collaboration network discussed before.
That means, and this is confirmed by its CDF (Figure 6), that subgraphs of the same size in this
network tend to be a little more spread through different densities than the ones in the collaboration
network. Another interesting thing to notice is that, as s grows, the density curve of this network
becomes more right-shifted in relation to the curves from the other graphs, which could indicate that
the larger clusters from this algorithm would be way denser than clusters of the same size from other
networks. Nonetheless, if we pay attention to the size of this network (297 vertices) and the size of
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(c) s = 15
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(d) s = 20
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(e) s = 25
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(f) s = 30
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(g) s = 40
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(h) s = 50
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(i) s = 75
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(j) s = 100
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(k) s = 125
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Fig. 5: Internal densities for different subgraph sizes - Condensed Matter collaboration, Google webpages and C. Elegans
neural networks.

the larger s evaluated (150), it is possible to see that those subgraphs are almost half the size of the
whole graph. Also, we couldn’t make samplings larger than s = 150, since we could not pick enough
random samples in order for the process to converge. So, it is highly probable that the size of universe
of all subgraphs for larger values of s in this network is not as large as we assumed and, therefore,
breaks our statistical guarantees. So, as cluster sizes approach the size of the graph, the proportion
of cluster densities found becomes untrustworthy.

Also, it is interesting to notice that, as subgraph sizes grow, even the densest subgraph will be
much sparser than a clique of the same size and, therefore, farther away from the canonical view of
a dense cluster. For example, the largest 150-vertex subgraph sampled from the Condensed Matter
collaboration network had 388 edges, which is equivalent to 3.47% of the edges of a same sized clique.
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Fig. 6: Internal densities for different subgraph sizes - Condensed Matter collaboration, Google webpages and C. Elegans
neural networks.

In comparison, largest 25-vertex subgraph sampled from the same graph had 132 edges, 44% of a
clique of the same side.

6.2 Simple Model for Internal Density Evaluation

With those internal density distributions in mind, we should be able to define one model that imple-
ments the proposed method for internal density evaluation. We will now propose a very simple and
naive example of such model.

For this model, in order to evaluate the density of one given cluster of size s and e edges from a
given graph, we will use the expected density for a subgraph of the same size in this same graph. To
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C. Elegans Cond. Matter Google webpages
s Avg. SD Median Avg. SD Median Avg. SD Median
5 4.551 0.968762 4 5.15331 1.41056 5 4.939 1.80163 4
10 11.7176 2.23384 11 12.3592 3.52315 11 12.7496 5.69013 11
15 20.1366 3.54596 20 19.5486 5.68677 18 20.9241 10.1242 17
20 29.7542 5.11063 29 26.7346 7.42872 25 29.1843 14.0542 24
25 40.5176 6.65246 40 33.7707 7.56748 32 37.4639 17.4538 32
30 52.1579 8.30064 51 40.8651 8.32429 39 45.7049 21.4857 39
40 79.0847 11.7994 78 55.298 9.75313 53 62.4682 28.7237 54
50 109.94 15.4519 109 70.0061 10.9282 68 78.9287 34.4551 69
75 205.707 24.9589 204 107.424 14.1964 105 119.905 46.6871 107
100 327.322 35.1251 326 146.622 17.5158 144 161.672 59.3562 146
125 475.018 44.1401 474 186.669 20.9741 183 204.363 69.4035 186
150 650.167 52.7181 650 227.666 24.1786 224 247.72 83.509 227
200 313.032 31.5184 309 332.867 101.615 309
250 401.726 38.3786 397 419.19 123.792 389
300 493.788 45.6575 489 509.185 144.865 475

Table II: Average, standard deviation and median for some of the studied graphs.

do so, we could use the percentile of value e in the internal density curve obtained from the sampling
of size s clusters in the studied graph as the quality score for this cluster. This simple model would
allow better scores for larger internal density values, with the 50th percentile of the distribution being
assumed to be a “neutral” density score. Greater percentiles would mean better scores, and lower
percentiles, worse.

However, this schema would have poor discerning power to compare internal density values in the
tail section of the curve. For example, Figure 7 presents 3 different clusters of the same size, but with
different densities, obtained from the college football graph. If we use this simple percentile model,
than the cluster in Figure 7a would be scored with 0.2598, the one from Figure 7b would receive
0.9623 and the one from Figure 7c would score 0.9999. The first cluster, which is almost as sparse as
a tree, scored poorly, as expected. The two other graphs received high, but very approximate, scores.
The problem here is that the third cluster has more than 50% more edges than the second one, and
their scores should better reflect that disparity.

(a) 12 Edges (b) 20 Edges (c) 32 Edges

Fig. 7: Example of sampled size 10 subgraphs from the College Football graph.

One way to improve this model would be to create a two-phase scoring system. In such a system,
we could shift the percentile value that would score as the “neutral” value of 0.5 to a higher value,
so that the first scoring phase (lower than the shifted percentile) would cover more sparser density
values, leaving less possible density values to be scored in the second phase of the model.

IDI =


P (X<x)

2D if [P (X < x)] < D

[P (X<x)]−2D+1
2D−2 if [P (X < x)] ≥ D

(7)
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This simple model is presented in Eq. 7. It has a parameter D, which represents the percentile
value that should be scored as “neutral”. For example, if we assumed a value of D = 0.75, it would
mean that the 75th percentile would score 0.5 in our internal density index (IDI). This shift allows
for an amplified descriptive power when evaluating the density values that matter the most: the ones
in the tail section of the density curve. One description of how this scoring method would work for
D = 0.75 can be seen in Figure 8, with the values of the IDI rising slowly until the defined percentile
and faster afterwards.

 0
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ID
I

Percentile

Fig. 8: Representation of the scoring method of the IDI naive model (D = 0.75).

For the same example in Figure 7, the first subgraph would be scored with 0.1732, the second with
0.9246 and the third with 0.9998. This simple adjustment penalized even further the sparser subgraph,
while punctuating (even if slightly) the difference in density of the other two.

7. FUTURE WORK

The method proposed here is interesting, as it gives us a greater insight on the internal density of a
cluster. However, it still presents some limitations that must be addressed in the future.

First, the model proposed in this article was very simple and done just as a proof of concept. Also,
our method only evaluates half of the evidences for cluster quality. A better model that represents
both our method for internal cluster density and an external sparsity index will be proposed in the
future, in order to supply a complete evaluation of cluster quality.

Second, our method gives more specific results, but it comes with a cost: a relatively large sampling
that has to be done for all cluster sizes of interest. At the moment, we are working on ways of using
a graph’s structural characteristics to derive a probability density model that can give us the same
kind of answer without sampling. It is our expectation that such relations can be found for graphs
with the same origin, based on the observation of our results so far. Nevertheless, a wider analysis
will be necessary to find a derivation that fits each case.

8. CONCLUSION

In this article, we have studied the reason that causes some very popular and widely used graph
cluster quality metrics to present undesired biases in their scores. We observed that those quality
metrics did not correctly evaluate the clusters’ internal density, one of the two key aspects that define
a well-formed cluster. Also, they used the same standards to evaluate clusters from graphs with wildly
different structural characteristics, such as social and technological ones. This causes clusterings from
naturally sparser graphs to be severely penalized in their quality scores.
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To solve this problem, we proposed a novel method to evaluate internal cluster density. To evaluate
a cluster, it uses the expected edge count from subgraphs of the same size as the cluster, induced
from the graph being considered. This way, not only are we using both vertex and edge information
to evaluate internal density, but we are also using the graph itself to determine the threshold that
identifies what is dense and sparse in the context at hand. We also presented a naive model as
an example of how our method could be used to evaluate a cluster’s internal density. Results are
promissing, and we hope new ways to apply this method will be devised in the near future.
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