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Abstract. Cluster analysis is the study of algorithms and techniques for grouping objects according to their intrinsic
characteristics and similarity. A widely studied and popular clustering algorithm is K-Means, which is characterized
by its ease of implementation and high computational cost. Although various performance improvements have been
proposed for K-Means, the algorithm is still considered an expensive alternative for clustering large scale datasets. This
work proposes a new heuristic for reducing the number of calculations needed in the classification step of K-Means,
without significant loss of quality reduction, by using statistical information about the displacement of centroids at each
iteration. Our heuristic, called Early Classification (EC for short), identifies and excludes from future calculations those
objects that, according to an equidistance threshold, have low likelihood of cluster change in subsequent iterations. To
validate our proposal, a set of experiments is performed on synthetic and real-world datasets from the UCI Machine
Learning repository. In addition, we compared our heuristic against two other state-of-the-art variations of K-Means.
The Wilcoxon signed-rank test was used for calculating the statistical significance. The results are promising since
the execution time of K-Means was reduced up to 82.49%, with a quality reduction of only 3.31%. Moreover, as the
experiments will show, the superiority of our method is even more evident on large datasets.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Clustering, K-Means, Performance Optimization, Unsupervised Learning

1. INTRODUCTION

Clustering is a widely used and flexible method for grouping objects into clusters [Myatt and Johnson
2009]. The objects within a cluster are supposed to have high similarity to one another and high
dissimilarity to objects in other clusters. Clustering has been successfully used in a wide variety of
scientific and commercial applications, including medical diagnosis, insurance underwriting, financial
portfolio management, organization of search results, marketing, pattern recognition, data analysis,
and image processing [Jiawei and Micheline 2006].

Several clustering algorithms have been proposed in the literature [Ankerst et al. 1999; Dempster
et al. 1977; Ester et al. 1996; Kaufman and Rousseeuw 1987]. In general, these algorithms partition
the set of objects into a given number of clusters according to an optimization criterion. One of the
most popular and widely studied clustering algorithms is K-Means [MacQueen 1967], also known as
Lloyd’s algorithm [Lloyd 1982]. The main steps of the standard K-Means are enumerated as follows1:

1A detailed description of the K-Means algorithm can be found in [MacQueen 1967]
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1. Initialization. Consists in defining the objects to be partitioned, the number of clusters, and
a centroid for each cluster. Several methods for defining the initial centroids have been devel-
oped [Agha and Ashour 2012; Zhanguo et al. 2012], although randomly selecting the centroids is
still the most widely used approach;

2. Classification. For each object, its distance to the centroids is calculated, the closest centroid is
determined, and the object is assigned to the cluster associated with this centroid;

3. Centroid calculation. The centroid is recalculated for each cluster generated in the previous step;
4. Stopping criteria. Several convergence conditions have been used, such as: stopping when reaching

a given number of iterations, when there is no exchange of objects among clusters, or when the
difference of the centroids at any two consecutive iterations is smaller than a given threshold. If
the convergence condition is not satisfied, then steps 2, 3, and 4 are repeated.

Clearly, a factor that greatly affects the computational cost of K-Means is the number of iterations
that the algorithm needs to carry out since, for each iteration, it calculates the distance of each object
to each centroid. In this work, we propose a new heuristic, henceforth called Early Classification
(EC), to reduce the number of calculations in the classification step of K-Means. The main idea is
to use statistical information about the displacement of centroids by calculating the average of the
two largest displacements of centroids at each iteration. This heuristic introduces the concepts of
equidistance index and equidistance threshold, with the purpose of identifying and excluding from
future calculations those objects that, according to the equidistance threshold, have low likelihood of
cluster change in subsequent iterations. A formal definition of low/high probability of cluster change
for an object i in iteration j is provided in Section 4.3. In order to evaluate the proposed heuristic,
a set of experiments was performed using synthetic data and the Iris, Concrete compressive strength,
and the Skin segmentation datasets, available at the UCI Machine Learning repository. The results
show that the execution time of K-Means was reduced up to 82.49% with a quality reduction of only
3.31%.

This work is organized as follows: Section 2 presents the related work. Section 3 presents a motivat-
ing example. Section 4 describes the heuristic proposed to improve the classification step of K-Means.
Section 5 presents the experimental results obtained by applying the proposed heuristic. The results
are compared against related work. Finally, Section 6 concludes the article and points out directions
for future work.

2. RELATED WORK

Several improvements have been proposed to minimize the number of calculations in the classification
step of the K-Means algorithm. Lai and Liaw [2008] proposed an improvement for the Filtering
Algorithm (FA), a variation of the K-Means algorithm [Kanungo et al. 2002]. FA considers that objects
are stored in a kd-tree, i.e., a binary tree that divides the objects into cubes using perpendicular
hyperplanes. Each node in the tree is associated with a set of data points called a cell. At each
iteration, FA determines the nearest centroids of every cell by calculating all object centroid distances,
and verifies whether each member of the centroid set should be pruned for each internal node. The
improvement consists in identifying the centroids that, between the current and the previous iteration,
were displaced. This allows the algorithm to determine the nearest centroid of the cell and check
whether each centroid should be pruned using only the centroids that were displaced, eliminating the
calculations involving objects in clusters in which the centroid was not displaced. Results show that
the improvement reduces the execution time up to 33.6% in comparison to the FA algorithm.

The Pattern Reduction heuristic compresses and removes objects that are closed to a centroid [Tsai
et al. 2007]. In this heuristic, an object is considered close to the centroid if the distance to its
nearest centroid is smaller than the average distance of all the objects in the same cluster to their
centroid. The heuristic is repeatedly applied after the second iteration until 80% of the objects are
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removed. Results show that this improvement reduces the execution time significantly, specially for
high dimensional datasets. In the rest of the document we refer to this heuristic as K-Means+PR.

The improvement proposed by Fahim et al. [2006] consists in calculating and storing the shortest
distance between each object and its nearest centroid at each iteration. For each object, the previous
distance to the current one is compared. If the previous distance is less than or equal to the current
one, the object remains in the cluster and there is no need to compute the distances to the other
k− 1 centroids; otherwise, it is necessary to determine the distance between the object and all cluster
centroids as well as to identify the new nearest cluster. Results show that this improvement reduces the
execution time without significantly decreasing cluster quality. Fahim called this heuristic Enhanced
K-Means. In the rest of the article we refer to this as K-Means+E.

All the aforementioned work use information about the centroids displacements in order to reduce
the complexity of the classification step of K-Means. However, none of them take into account the
likelihood of cluster change for the objects that are in the borders of the clusters causing an early
but less accurate classification than the one reached by our heuristic. For example Tsai et al. [2007]
discard objects according to the current and past object centroid distances. However, the fact that
the distance between an object and its centroid in the current iteration is less than the distance in the
past iteration does not guarantee that the object remains close to the same centroid. On the other
hand, besides using more calculations than our heuristic for discarding objects, they assume that only
the objects which are far from their centroids can change in the following iterations [Tsai et al. 2007].

3. MOTIVATING EXAMPLE

Fig. 1 illustrates a clustering example with a dataset containing 36 uniformly distributed objects in 3
clusters. The top refers to the execution of the standard K-Means algorithm while the bottom refers
to the execution of K-Means using the Early Classification heuristic (improved K-Means). The objects
are represented by small dots and clustered in four iterations. At each iteration, the initial position
of each centroid is represented by a large white dot, while the new position of the centroid (i.e., the
position in the following iteration) is represented by a large grey dot. The filling of the objects is
related to the filling of their nearest centroid, i.e., the dots with horizontal lines form a cluster whose
centroid is represented by the large dot with horizontal lines. The dashed lines are equidistant to
two centroids and represent the borders between the clusters. The shaded area refers to the borders
separating the objects with low likelihood of cluster change from the objects with high likelihood of
cluster change. We assume that the objects with low likelihood of cluster change are (i) near their
centroid, (ii) not equidistant to their two nearest centroids, and (iii) not affected by the centroids’
displacements. In Fig. 1 the shaded area contains the objects with high likelihood of cluster change.

The bottom of the Fig. 1 shows that during the execution of K-Means it is possible to identify
and discard the objects with low likelihood of cluster change. For example, in Fig. 1e the objects in
the white area have a low likelihood of cluster change, this is because the centroid displacements in
the first iteration are large and the number of objects that can change cluster is high. In Figures 1f
and 1h we can notice that the size of the border decreases since the displacements of the centroids
are minimized at each iteration. Particularly in the case of Fig. 1f, it is possible to observe that 28
objects can be discarded from the calculations in the third iteration of the improved K-Means. Fig. 1g
shows that for the third iteration the number of objects can be reduced to 31 leaving only 5 for the
fourth iteration. Although both algorithms have the same clustering result (see Figures 1d and 1h),
the improved algorithm allows us to minimize the number of calculations in the classification step of
K-Means. In the following section, we present the proposed heuristic to improve the performance of
the K-Means algorithm.
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Fig. 1. Execution of the standard K-Means and the improved K-means using a dataset with 36 uniformly distributed
objects

4. THE EARLY CLASSIFICATION HEURISTIC

The main goal of EC is to reduce the number of computations needed in the classification step of K-
Means without significant loss of quality reduction. The reduction is performed by selecting objects
that have been assigned to clusters in one iteration and are unlikely to change to other clusters in
subsequent iterations. These objects are then marked and excluded from future calculations. To
perform the selection process, we introduce two concepts named equidistance index and equidistance
threshold, which are described in the following subsections.

The EC heuristic arose after observing the behavior of K-Means when clustering synthetic data
with uniform distribution and different sample sizes. Some interesting observations are the following:

a) Objects close to the centroids are unlikely to change cluster in subsequent iterations;
b) Objects equidistant from their two nearest centroids can be assigned to any of the two clusters

represented by these centroids;
c) Objects quasi equidistant from their two closest centroids have a high likelihood of cluster change

in subsequent iterations;
d) A decisive factor for objects changing cluster is the displacement of the centroids at each iteration;
e) In general, at each iteration, centroids displacements decreases;
f) During the centroid displacement across different iterations, approximately half of the objects will

be at a shorter distance from the new centroid position and the other half at a longer distance.
The more distant objects are to the centroids’ new position, the more likely is for the object to
change cluster in subsequent iterations;

g) In one iteration, the centroids may or may not have suffered displacement. The amount of
displacement between centroids in distinct iterations may vary;
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h) Centroids can move in different directions across different iterations.

4.1 Equidistance Index

The equidistance index expresses the difference of the distances of an object i to its two closest
centroids µ1 and µ2. Let I = {i1, ..., in} be a set of objects in a m-dimensional space to be partitioned,
C = {C1, . . . , Ck} be the set of partitions of I into k sets (2 ≤ k < n). For each iteration of the
classification step, the standard K-Means algorithm calculates ||ip − µl||2, being ||.|| the `2 norm, for
p = 1, ..., n and l = 1, ..., k; where µl is the centroid of objects in Cl ∈ C, which represents the higher
computational cost of the algorithm in terms of the number of calculations.

The equidistance index αi is defined as follows: given an object i and its two nearest centroids µ1

and µ2, αi = abs(||i−µ1||2−||i−µ2||2). The lower bound of αi is 0, and the upper bound is ||µ1−µ2||2.
The lower bound indicates that object i is located at an equidistant position to the centroids µ1 and
µ2, whereas the upper bound indicates that the object i is located at the same position of the centroid
µ1 or µ2. In Fig. 2 the dashed line indicates the equidistant points to centroids µ1 and µ2; Fig. 2a
shows that when the object i has a value of αi close to 0, the object has a high likelihood of changing
cluster in subsequent iterations. On the other hand, Fig. 2b shows that when the object i has a value
of αi that is close to its upper bound, there is a low likelihood that object i changes cluster in the
following iterations.

4.2 Equidistance Threshold

The equidistance threshold βj helps to identify the objects with high likelihood of cluster change. βj
is a reference value defined by the sum of the two largest displacements βj = m1+m2 of the centroids
µx and µy in the iteration j (j > 2); where m1 = ||µx,j−1 − µx,j ||2 and m2 = ||µy,j−1 − µy,j ||2 (see
Fig. 3). The magnitude of the equidistance threshold varies between the last and the current iteration,
since it is directly related to the centroid displacements. As we can see in Fig. 3, the center of the
equidistance threshold βj for an object i corresponds to the mean distance of the two nearest centroids
µ1 and µ2.

4.3 Likelihood of Cluster Change

We say that an object i has high likelihood of cluster change if αi ≤ βj (Fig. 3a), but has low likelihood
of cluster change if αi > βj (Fig. 3b). Then, if the condition αi > βj is true and if µx is the nearest
centroid of i, the object i can be early classified into the partition Cx at iteration j, and excluded
from future calculations.

Fig. 2. Equidistance index: a) object i with high likelihood of cluster change, b) object i with low likelihood of cluster
change
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Fig. 3. Equidistance Threshold: object i has; a) high likelihood of cluster change, b) low likelihood of cluster change

5. EXPERIMENTAL RESULTS

This section presents the results of a set of experiments conducted to validate the proposed EC
heuristic (K-Means+EC) to improve the K-Means algorithm. In addition, we compared our approach
against the algorithms K-Means+E and K-Means+PR. All the algorithms were implemented in the C
programming language. Experiments were conducted in a computer with the following configuration:
AMD Athlon 64X2TK-57, 1.9 GHz processor, 4GB of RAM, 100GB of hard disk, and the Ubuntu
10.10 operating system.

We used three synthetic and three real datasets. The synthetic datasets were created using a uniform
distribution, two dimensions, and with 2,500, 10,000 and 40,000 objects. For all datasets 100 clusters
were generated. Uniform distribution was selected to analyze the behavior of the algorithms when the
number of objects is changed. The real-world datasets used were: the well-known Iris with 150 objects
and three dimensions, Concrete compressive strength with 1,030 objects and 8 dimensions, and Skin
segmentation with 245,057 objects and 3 dimensions. The real-world datasets were extracted from
the UCI Repository of Machine Learning Databases [Merz et al. 2012]. All the experiments described
were repeated 30 times using the same datasets and number of clusters. The initial centroids were
generated randomly each time.

The improvements of the K-Means+EC, the K-Means+E, and the K-Means+PR heuristics in com-
parison to the standard K-Means algorithm were measured in terms of execution time and quality of
the clustering result. The quality of the clustering is expressed by the squared error function (eq. 1),
which in optimization terms has to be minimized:

J =

k∑
l=1

∑
ijεCl

||ij − µl||2 (1)

where {i1, . . . , in} is the set of objects, C = {C1, . . . , Ck} is the set of clusters, and µl is the mean of
elements in Cl.

In the following we present and discuss the results obtained by the chosen algorithms in terms of
quality of the clustering. The algorithms were compared against the standard K-Means.

Table I presents the results on the large synthetic datasets with 2,500, 10,000 and 40,000 objects.
The first column refers to the number of objects used in the experimentation. The columns 2 to
9 correspond to the average squared error J and standard deviation σ of the algorithms K-Means,
K-Means+EC, K-Means+E, and K-Means+PR respectively. The columns 10, 11 and 12 show the
percentage of the difference in quality of each algorithm when compared to the standard version.
This is calculated through eq. 2 where si denotes the average squared error of an enhanced version of
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Table I. Experimental results for large synthetic datasets
Num K-Means K-Means+EC K-Means+E K-Means+PR % E % E % E

J σ J σ J σ J σ EC E PR
2500 4854.8 23.6 4916.8 38.3 5220.0 81.9 5154.4 73.4 -1.3 -7.5 -6.2

10000 38352.3 92.3 39377.0 355.8 41850.8 558.7 41322.1 507.9 -2.7 -9.1 -7.7
40000 305278.3 341.6 315379.2 2981.0 334925.2 7405.0 330594.3 4227.3 -3.3 -9.7 -8.3

Table II. Experimental results for Iris benchmark dataset
Cluster K-Means K-Means+EC K-Means+E K-Means+PR % E % E % E
Number J σ J σ J σ J σ EC E PR

5 95.2 12.2 96.4 12.6 100.4 12.6 99.1 12.6 -1.2 -5.4 -4.1
20 66.6 6.9 67.5 7.1 74.2 6.6 72.2 6.9 -1.3 -11.4 -8.5
40 57.8 3.6 58.4 3.8 63.7 5.1 61.9 4.9 -1.0 -10.3 -7.1

Table III. Experimental results for large real datasets
Dataset K-Means K-Means+EC K-Means+E K-Means+PR % E % E % E

J σ J σ J σ J σ EC E PR
Concrete 26023 3900 26197 3890 29602 3641 28792 3831 -0.7 -13.8 -10.6

Skin 1521153 48383 1625381 70031 1953108 136718 1884414 117309 -6.9 -28.4 -23.9

K-Means and ss the average squared error of the standard K-Means.

E =
(ss − si) ∗ 100

ss
(2)

The results show clearly that the algorithm with the smallest quality loss was EC with a reduction
of 1.3% for the 2,500 dataset, 2.7% for the 10,000 dataset and 3.3% for the 40,000 dataset.

The results obtained using the Iris dataset are shown in Table II. Here too, EC presented the
smallest percentage of reduction in clustering quality. The results shown in Table III are based on
the large real datasets comprised of 100 clusters. For validating the results, we applied the Wilcoxon
signed-rank test [Ron and Betsy 2012] by means of calculating the absolute minimum value of the
sum of the positive and negative ranks ws of data and compare it against the Wilcoxon signed-rank
test critical value cv in order to accept or reject the null hypothesis H0. In Wilcoxon signed-rank
test if ws ≤ cv then H0 is rejected. The parameters used in the test were: i) a level of significance
of α = 0.05, ii) a null hypothesis H0 : The differences in the squared error solutions obtained by
the execution of two algorithms are due to randomness and iii) an alternative hypothesis Ha : The
differences in the squared error solutions obtained by the execution of two algorithms are not due to
randomness.

Table IV shows the obtained results. Column one refers to the synthetic instances with 2,500,
10,000, and 40,000 objects, the Iris dataset when grouped in 5, 20 and 40 clusters and the Concrete
compressive strength and Skin segmentation datasets. The first row presents the results of applying
the Wilcoxon signed-rank test to the results of K-Means+EC against K-Means, K-Means+E, and
K-Means+PR. The column labelled n represents the signed rank which is the number of pairs of
data for which the difference (in the squared error value) is positive or negative, ws is the absolute
minimum value of the sum of the positive and negative ranks, and cv corresponds to the critical value
when α = 0.05. We can see in Table IV that in all cases ws < cv and we conclude that there is
enough evidence, at the 5% level of significance, to support that our results are not obtained due to
randomness.

In the following we present the comparative results between the three enhanced versions of K-Means
we considered against the standard K-Means, with respect to the execution time. The running time
is presented in milliseconds, averaged over 30 runs, for each algorithm considered.
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Table IV. Results of the Wilcoxon signed-rank test
K-Means+EC and K-Means+EC and K-Means+EC and

Dataset K-Means K-Means+E K-Means+PR
n ws cv n ws cv n ws cv

Synthetic
2500 30 0 152 30 0 152 30 0 152

10000 30 0 152 30 0 152 30 0 152
40000 30 0 152 30 0 152 30 0 152

Iris
5 19 0 54 30 9 152 27 6 120

20 24 15 92 30 2 152 30 4 152
40 20 0 60 30 0 152 30 0 152

Concrete 26 7.5 110 30 0 152 30 126 152
Skin 30 0 152 30 0 152 30 0 152

Table V. Experimental results for large synthetic datasets
Dataset K-Means K-Means+EC K-Means+E K-Means+PR % T % T % T

T σ T σ T σ T σ EC E PR
2500 641.6 134.2 397.0 32.1 56.1 2.2 218.5 9.1 38.1 91.3 65.9

10000 7577.9 2027.5 3011.6 91.2 236.8 13.2 2249.2 80.8 60.3 96.9 70.3
40000 71388.0 17133.4 12502.8 1539.4 926.5 35.2 30293.6 35.3 82.5 98.7 57.6

Table VI. Experimental results for Iris benchmark dataset
Dataset K-Means K-Means+EC K-Means+E K-Means+PR % T % T % T

T σ T σ T σ T σ EC E PR
5 3.3 1.0 1.3 0.3 1.8 0.8 1.4 0.2 61.8 46.2 56.3

20 10.8 2.8 7.1 0.7 3.3 0.5 2.7 0.3 34.3 69.0 74.9
40 19.4 7.2 10.7 1.1 5.5 0.4 4.3 0.3 45.0 71.6 78.1

The results for the synthetic large datasets are shown in Table V. The first column shows the
number of objects used in the experimentation. Columns 2 to 9 correspond to the average T and
standard deviation σ of the running time of K-Means, K-Means+EC, K-Means+E and K-Means+PR
algorithms respectively. Columns 10, 11 and 12 show the percentage of the difference in the running
time between the three algorithms chosen against the standard K-Means, calculated using eq. 3, where
ti denotes the average running time of an enhanced version of K-Means and ts the average running
time of the standard K-Means.

T =
(ts − ti) ∗ 100

ts
(3)

In Table VI the results for the Iris dataset are presented. The results for the large real datasets
with respect to the running time are displayed in Table VII.

Table VIII summarizes the results. The first column corresponds to the algorithm name, while
the other columns refer to the dataset names. Each subcolumn of a dataset presents the average
percentage of time (%T ) reduced when compared to the standard algorithm and the percentage of
reduction in the cluster quality (%E). Notice that EC presents, in all cases, the best trade-off between
running time reduction and loss of clustering quality .

In general, the behavior of the K-Means+EC tends to be more effective when the relation between
the number of clusters and objects is small, because the K-Means+EC algorithm requires calculating
the displacements of the centroids at each iteration. This behavior of the K-Means+EC algorithm can
be observed in Table V at column 10 where in the row of the 2,500 objects dataset, the K-Means+EC
algorithm is 38.1% better than the K-means algorithm, whereas in the row of the 40,000 objects
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Table VII. Experimental results for large real datasets
Dataset K-Means K-Means+EC K-Means+E K-Means+PR % T % T % T

T σ T σ T σ T σ EC E PR
Concrete 89 26 62 26 23 1 59 5 30.7 74.6 33.6

Skin 222412 64826 115092 53149 5747 200 884051 17083 48.3 97.4 -297.5

Table VIII. Comparison between K-Means+EC, K-Means+E, and K-Means+PR
Algorithm Iris (40) Concrete Skin Synthetic (40,000)

% T % E % T % E % T % E % T % E
Early Classification (K-Means+EC) 45.0 -1.0 30.7 -0.7 48.6 -6.9 82.5 -3.3
Enhanced K-Means (K-Means+E) 71.6 -10.3 74.6 -13.8 97.4 -28.4 98.7 -9.7

Pattern Recognition (K-Means+PR) 78.1 -7.1 33.6 -10.6 -297.5 -23.9 57.6 -8.3

dataset, the improvement is 82.5% better than the standard algorithm. In both experiments the
number of clusters considered is 100.

When comparing the K-Means+EC algorithm with other similar algorithms, we could observe that,
in general, its running time was greater than the others for the same instances, however, K-Means+EC
showed the best relationship between the reduction in the quality of the solution and the improvement
in running time. As shown in Tables III and VII, for Skin segmentation dataset with 245,057 objects,
the K-Means+EC algorithm obtained a result where the quality reduction was of 6.9% and the running
time reduction of 48.3%, while the K-Means+E algorithm obtained a quality reduction of 28.4% with
a reduction in execution time of 97.4%.

6. CONCLUSIONS AND FUTURE WORK

One of the main drawbacks of K-Means is its high computational cost. This characteristic limits the
processing of large and high dimensional datasets. This article shows that it is possible to improve the
standard K-Means using a new heuristic in the classification step. A detailed analysis of the standard
algorithm revealed that the application of the Early Classification heuristic allows the identification of
objects with low likelihood of cluster change and their exclusion from subsequent iterations, thereby
reducing the number of calculations at each iteration, without high loss of quality reduction. For
assessing the proposed improvement, a set of synthetic data and the Iris, Skin segmentation, and
Concrete compressive strength datasets taken from the UCI Machine Learning repository were used.
Experiments with other two algorithms from the literature were conducted in order to better position
our results. The Wilcoxon signed-rank test was used for calculating the statistical significance on the
results. The test showed that the differences in the average results of the algorithms are statistically
significant. The experimental results are promising. In the case of large synthetic datasets (the dataset
with 40,000 objects and 100 clusters) the time was reduced up to 82.5% with a cluster quality reduction
of only 3.3%. For the Iris dataset comprised of 40 clusters, we obtained a time reduction of 45.0% with
a quality reduction in the clustering of only 1.2%. For the Concrete compressive strength dataset using
k = 100, we obtained a time reduction of 30.7% with a quality reduction in the clustering of only 0.7%.
At last, for the Skin segmentation dataset which has 245,057 objects and three dimensions generating
100 clusters, we obtained a time reduction of 48.3% with a quality reduction in the clustering of 6.9%.
The comparative results showed that the Early Classification algorithm provides us a better accuracy
than the algorithms available in the related work. Therefore, our heuristic improvement performs well
with real and synthetic datasets. It is noteworthy to mention that as the number of objects increases,
the heuristic achieves further reduction in the execution time.

In addition, the proposed heuristic is compatible with other optimization techniques for improving
the K-Means algorithm. In other words, it can be combined with other variants of the K-Means
algorithms, thus contributing to further improve their performance. Finally, we will continue the
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experimentation work with the aim of exploring other values for the equidistance threshold in other
clustering datasets, including synthetic datasets with clear tendencies of cluster.
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