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Abstract. This article presents research results of an extensible visualization pipeline for real-time exploratory
analysis of spatially explicit simulations. We identify software requirements and discuss the main conceptual and
design issues. We propose a protocol for data serialization, a high performance monitoring mechanism, and graphical
interfaces for visualization. Performance experiments show that combining multithreading and the Blackboard design
pattern reduces the visualization response time by 80%, with no significant increase in memory consumption (less than
7%). The components presented in this article have been integrated in the TerraME modeling platform for simulation
of terrestrial systems.

Categories and Subject Descriptors: D.1 [Programming Techniques]: Miscellaneous; I.6 [Simulation and Model-
ing]: Miscellaneous; C.4 [Performance of Systems]: Measurement techniques

Keywords: scientific visualization pipeline, environmental modeling, high-performance, computer simulation, TerraME
Observer

1. INTRODUCTION

Computer modeling of environmental and social processes has been used to carry on controlled experi-
ments to simulate the effects of human actions on the environment and their feedbacks [Schreinemach-
ers and Berger 2011]. In these studies, simulated scenarios analyze issues related to the prognosis of
amount and location of changes, which may support decision-making or public policies. Computer
models are in general dynamic and spatially explicit [Sprugel et al. 2009; Wu and David 2002], using
different types of geospatial data as inputs, such as remote sensing images and digital maps.

Dynamic spatially explicit models to study nature-society interactions, hereinafter referred as envi-
ronmental models, are capable of generating a huge amount of spatiotemporal data along simulations.
In addition, before any experiment, the implementation of models needs to be verified in order to
fix logic errors. The sooner such problems are found, the sooner the implementation can be con-
cluded. Verification of the source code and interpretation of simulation results can be more efficiently
performed with the support of methods and tools capable of synthesizing and analyzing simulation
outputs.

Visualization components of environmental modeling platforms differ in the way they gather, se-
rialize, and transmit state variable values of the simulation to graphical interfaces. Such platforms
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Fig. 1. Visualization pipeline (Adapted from Wood et al. [2005])

may provide high-level languages to implement models or may be delivered as libraries for model
development in general purpose programming languages. In the latter situation, as in Swarm and
Repast platforms, state variable values are available within the same runtime environment of graphi-
cal interfaces [Minar et al. 1996; North et al. 2006], making data gathering easier and faster. In the
platforms that use embedded languages, such as NetLogo and TerraME, state variables are stored
in the memory space of the embedded language and need to be copied to the memory space of the
graphical interfaces, which are implemented in another language [Tisue and Wilensky 2004; Carneiro
2006]. This way, once collected, data needs to be serialized and transmitted according to a given
protocol. In the same way, data received by the graphical interface needs to be decoded before being
handled properly. As environmental modelers are usually specialists in a given application domain
(biology, ecology, etc.) and commonly do not have strong programming skills, this work focuses on
modeling platforms that follow the second architecture.

As environmental simulations may deal with huge amounts of data, there might also be a significant
amount of data that need to be transferred, which in turn can make the tasks of gathering, serializing,
and transmitting data very time consuming. Land use change modeling studies represent geographical
spaces using thousands or millions of regular cells in different resolutions, whose patterns of change
need to be identified, analyzed, and understood [Moreira et al. 2009]. In these cases, the simulation
could run on dedicated high-performance hardware, with its outputs displayed on remote graphical
workstations. Therefore, it might be necessary to transfer data from one process in this pipeline to
the next through a network.

The main hypothesis of this work is that combining software design patterns and multithreading
is a good strategy to improve visualization response times of environmental models, keeping the
platform simple, extensible, and modular. This work presents the architecture of a high performance
pipeline for the visualization of environmental models. It includes high-level language primitives to
define and update visualizations, a serialization protocol, a monitoring mechanism for data gathering
and transmission, and several graphical interfaces for data visualization. This architecture has been
implemented and integrated within the TerraME modeling and simulation platform [Carneiro et al.
2013].

The remainder of the article is organized as follows. TerraME modeling environment is introduced
in Section 2. Related works are presented in Section 3. Section 4 describes the architecture and
implementation of the visualization pipeline, while experiments results are presented and discussed in
Section 5. Finally, in Section 6, we present the final remarks and future work.

2. TERRAME MODELING AND SIMULATION PLATFORM

TerraME is a software platform for the development of multiscale environmental models, built jointly
by Federal University of Ouro Preto (UFOP) and National Institute for Space Research (INPE)
[Carneiro et al. 2013]. It uses multiple modeling paradigms, among them the theory of agents, the
discrete-event simulation theory, the general systems theory, and the theory of cellular automata
[Wooldridge and Jennings 1995; Zeigler et al. 2000; von Neumann 1966]. Users can implement Ter-
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Fig. 2. Monitoring mechanism, structured according to the Observer design pattern.

raME models directly in C++ or in Lua [Ierusalimschy et al. 1996]. TerraME provides several types
of objects to describe temporal, behavioral, and spatial components of models. Cell, CellularSpace,
and Neighborhood types are useful for describing the geographical space. Agent, Automaton and Tra-
jectories types represent actors and processes that change spatial properties. Timer and Event types
control the simulation dynamics. During a simulation, the Lua interpreter embedded within TerraME
activates the simulation services from the C++ framework whenever an operation needs to be per-
formed over TerraME objects. TerraLib library is used for exchanging geospatial data with relational
database management systems [Câmara et al. 2000]. The traditional way to visualize outcomes of
simulations in TerraME is by using the geographical information system TerraView, built upon Ter-
raLib. However, TerraView cannot monitor the progress of simulations in real-time as it only loads
data already stored in a geospatial database.

3. RELATED WORK

This section compares the most popular simulation platforms according to the visualization services of
simulation outcomes, including the extensibility of such interfaces. Almost all environmental model-
ing platforms provide graphical interfaces for visualization. However, their visualization components
work as black boxes and their architectural designs have not been published. Swarm and Repast
are multi-agent modeling platforms available as libraries for general purpose programming languages
[Minar et al. 1996; North et al. 2006]. They provide a set of classes for monitoring and visualization.
New graphical interfaces can then be implemented by inheritance. Their monitoring mechanism peri-
odically updates interfaces in an asynchronous way. The simulation runs in parallel with visualization
interfaces, without needing to wait for the interface to be updated.

NetLogo is a framework that provides tools for multi-agent modeling and simulation [Tisue and
Wilensky 2004]. Models are described in a visual environment focused on building graphical user
interfaces by reusing widget components in a drag-and-drop fashion. Rules are defined in a high-level
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Fig. 3. Monitoring mechanism general architecture

programming language. Model structure and rules are translated into source code written in a general
purpose programming language, which is finally compiled. Communication between simulation and
graphical interfaces is also asynchronous. Graphical interfaces can be periodically updated or explicitly
notified by the implementation.

4. ARCHITECTURE AND IMPLEMENTATION

This section describes the architecture of the visualization pipeline and its implementation. We start
by identifying the main requirements of a visualization pipeline for environmental models.

4.1 Software Requirements

Some requirements have been considered essential to a visualization pipeline for real-time exploratory
analysis of spatially explicit dynamic models. They are:

—Functional requirements: graphically present the dynamics of continuous, discrete and spatial state
variables; provide visualizations to the temporal, spatial and behavioral dimensions of an environ-
mental model; graphically display the co-evolution of continuous, discrete and spatial state variables
so that patterns can be identified and understood.

—Non-functional requirements: present real-time changes in state variables with minimum impact
on the simulation performance; enable the monitoring mechanism to be extensible so that new
visualizations can be easily developed by the user; keep compatibility with models previously written
without visualizations.

4.2 Monitoring Mechanism Outline

The visualization pipeline presented in this article consists of three main stages: recovery, decoding,
and rendering. The recovery stage accesses the internal state of a subject in the high-level language
and serializes it through the protocol described in section 4.3. The decoding stage deserializes the
data. Finally, the rendering stage generates the resulting image, as shown in Figure 1.

The monitoring mechanism is structured according to the Observer software design pattern [Gamma
et al. 1995]. Graphical interfaces for scientific visualization are called observers. They display real-
time changes in the internal state of any TerraME object. A model component within an observer
is called subject. As Figure 2 illustrates, several observers can be linked to a single subject, so that
its evolving state can be analyzed simultaneously in different ways. Changes in a subject need to
be explicitly notified to the observers in the source code to be visualized. This ensures that only
consistent states will be rendered by the observers, allowing the modeler to decide which changes he
or she is interested in. When notified, each observer requests information about the internal state of
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its subject. Then, the state of the subject is serialized and transferred to the observers in order to
render the graphical interface.

Graphical interfaces and state variables might potentially exist in the memory space of different
processes. In TerraME, state variables are stored in Lua during the simulation, with observers being
defined in the C++ simulation core, as illustrated in Figure 3. Each observer is implemented as a
light process (thread), preventing interfaces from freezing due to some heavy CPU load. The Black-
board software design pattern has been integrated within the monitoring mechanism to intermediate
communication between subjects and observers [Buschmann et al. 1996]. Blackboard acts as a cache
memory shared by observers in which the state recovered from the subjects is temporarily stored to
be reused by different observers. This way, it belongs to the same processes of the observers. This
strategy aims to reduce the processing time involved in gathering and serializing state variable values,
as well as the communication between subjects and observers.

4.3 Serialization Protocol

Observers are loosely coupled to their subjects. The communication between them is performed
through the serialization protocol, whose message format is described using the Backus-Naur formalism
as follows. The Backus-Naur formalism is a metalanguage used for syntactic description of context-free
languages, communication protocols, and others [Apparao et al. 2003; Fielding et al. 1999; McCracken
and Reilly 2003].

< subject > ::= < subject identifier > < subject type > < number of attributes >
< number of internal subjects > [* < attribute > ] [* < subject > ]

< attribute > ::= < attribute name > < attribute type > < attribute value >

A subject has a unique ID, characterized by its type and an optional sequence of attributes. It
is recursively defined as a container of several optional internal subjects. This protocol allows the

Fig. 4. Class diagram of monitoring mechanism - integration between Blackboard and Observer design patterns
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Fig. 5. Sequence diagram of monitoring mechanism interaction between Observer pattern and Blackboard design
patterns

serialization of either the complete subject or only the changed parts, saving communication and
processing time. Extending TerraME with new observers only requires rendering their content, no
matter how subjects have been implemented.

4.4 Detailed Structure of Monitoring Mechanism

Figure 4 depicts the class diagram of the monitoring mechanism and Figure 5 shows how the inter-
actions between objects of these classes take place. A dirty-bit has been added to each element in
the blackboard and to each observer. It indicates whether the internal state of the associated subject
has changed, pointing out that such objects need to be updated to reflect the new state. Thus, when
the simulation notifies the observers concerning changes in a subject, this notification only sets the
dirty-bits to true. When an observer requests data about a dirty subject stored in the blackboard,
the latter first updates itself, sets its dirty-bit to false, and then forwards the data to the observer.
All other observers that need to be updated will find the data already decoded, updated, and stored
in the blackboard. This way, a subject is serialized only once, even when there are many observers
linked to it. After rendering the new subject state, an observer sets its dirty-bit to false to indicate
that the visualization is updated.

4.5 TerraME Observers

Several types of observers have been developed to depict the dynamics and the co-evolution of discrete,
continuous, and spatial state variables. The left side of Figure 6 illustrates a dynamic table and a
dynamic dispersion chart displaying attributes of a single Cell. An attribute is an internal variable or
property of some object, such as the size of a CellularSpace object or the state of an Agent. The right
side shows two different time instants of an observer map that displays a CellularSpace. The amount
of water in the soil is drawn from light blue to dark blue over the terrain elevation map drawn from
light gray to dark gray. This way, the modeler can intuitively relate the dynamics of the water going
downhill with the terrain topography.
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Fig. 6. Different types of TerraME observers: dynamic tables, charts and maps

4.6 Monitoring Mechanism Programming Interface

In order to create an observer and attach it to a subject, the modeler must explicitly declare an
Observer object. The following command creates the “myObs” observer to monitor the attribute
called soilWater from the subject “myCell”:

myObs = Observer{
type = “chart”
subject = myCell,
attributes = “soilWater”

}

The parameter type is a string indicating which observer will be used, while the parameter subject
represents the TerraME object that is going to be observed. Each type of subject can be visualized by
a predefined set of observer types. The parameter attributes is a vector of strings that represent the
attributes of the subject that are going to be observed. Once created, the observer is ready to display
the states of its subject. Each time the modeler wants to visualize the changes of a subject, rendering
all observers linked to it, he must explicitly call the function notify() of the respective subject. There
are also some optional parameters that depend on the type of the observe. They can be used to
configure the display, such as font size and labels for axis, as well as output location, such as filename
or port.

The architecture presented is extensible to allow the modeler to create new observer types, extending
the C++ abstract class named Observer and is flexible to visualize different types of model component
though inheritance of abstract class called Subject.

5. PERFORMANCE ANALYSIS

Some experiments were conducted to evaluate the performance of the visualization pipeline. The
idea is to measure the memory consumption and the response time involved in visualization interface
updating and the number of bytes transmitted through the pipeline. The experiments help to identify
system bottlenecks, depicting the required time for each stage of the visualization pipeline. The initial
results of this work was published by Rodrigues et al. [2012]. The response time includes:

(1) Recovery time, which is spent to gather state variables values of the simulation stored in the high-
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level language memory space, serialize according to the format of the message protocol (Subsection
4.3), and then transfer the serialized data to the next stage;

(2) Decoding time, in which the message is deserialized and stored in the blackboard;
(3) Visual Mapping time, in which data is mapped and the visual representation assigns color, shape

or co-ordinates to data elements;
(4) Rendering time, which is spent to build two-dimensional images from the artifacts received from

the previous stage;
(5) Display time, in which the resulting images are displayed on some output device (e.g. screen,

plotter, printer etc);
(6) Waiting time, the time that elapses between the subject calling the notification function (and so

requesting all observers to be updated) and the request being performed by the first observer.

Experiments were performed in a single machine, a 64 bits Xeon with 32 GBytes of RAM using
Windows 7. Each experiment was executed 10 times, and then averages of the memory consumption,
the response time, and the amount of transmitted bytes were evaluated. In each experiment, 100
simulation steps were executed and observers were updated at the end of each step.

Four experiments were performed, varying the number of monitored attributes of a given subject
and the number of observers. As CellularSpace subjects usually represent vast geographical regions
as grids of cells and each cell (Cell) is characterized by several attributes, they are often the largest
subjects of the model in terms of data volume. Thus, all experiments have considered only the
visualization of this kind of subject. The experiment considered a CellularSpace containing 10000 cells
and was divided into Test 1 and Test 2. In Test 1, the CellularSpace visualized by 2 map observers
monitoring 3 attributes, while in Test 2 the CellularSpace is visualized by 12 map observers monitoring
13 attributes.

This workload evaluates the effect of using blackboard to recover data, reducing the communi-
cation channel by reusing the decoded data and Bag of Tasks to improve the performance with a
multithreading mechanism [Beaumont et al. 2008; Benoit et al. 2010], thus reducing the waiting time.
Two implementations of communication protocols were developed. The first is implemented directly
in the recovery stage, and the second uses Google Protocol Buffers. Protocol Buffers technology
(http://code.google.com/protobuf) is being developed by Google to replace the Extensible Markup
Language (XML) as a strategy for transmitting data structures.

Figure 7 presents the results comparing the simulations with and without blackboard (BB) as cache
memory and blackboard plus Protocol Buffer (ProtBuffer). It shows that the blackboard reduces
significantly the number of serialized bytes (Test 1 in 47% and Test 2 in 58%), because attributes
are serialized in the first data request and subsequent observers retrieve this data directly from the
cached blackboard. The Protocol Buffer combined with blackboard achieved a greater reduction: 69%
in Test 1 and 74% in Test 2), because in this technology there is no need to use a token as delimiter
of serialized values.

Figure 8 shows the average memory consumption of each test. It is possible to see that using
blackboard does not cause any significant increase in memory consumption, less than 6.5%.

Figures 9 and 10 shows the average response time of Tests 1 and 2 decomposed into the service
times of each stage of the visualization pipeline. Note that the blackboard decreases the average
response time of the visualization. In Test 1, recovery and decoding time is reduced by 40% and 50%,
respectively. In Test 2, the reduction in recovery and decoding time was 75% and 70%, respectively.
Having reduced the recovery time, the sequential execution of service is now the bottleneck. This is
evidenced when the waiting time of update requests becomes the largest component of the response
time of the visualization service. Bag of Tasks was used to implement the parallelism from the
visual mapping stage and thereby reduce the waiting time. The reduction in the waiting time was
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Fig. 7. Amount of raw data transmitted per notification in each experiment.

Fig. 8. Average memory consumption of each experiment.

approximately 90% for both tests. After this improvement, the recovery stage has again became
the bottleneck and the ProtoBuffer was used to reduce it. In Test 1, the reduction of recovery
and decoding time was 10% and 50%, respectively. However, this technology is designed for high-
performance transmission of up to 1MBytes. Thus, when the number of bytes exceeds this value the
performance of ProtBuffer is compromised (Figure 10 - blackboard plus Bag of Tasks plus Prot.Buffer).
In Test 2, recovery time has an increase of 12%. However, the decoding time was reduced in both
tests: by 60% in Test 1 and by 45% in Test 2. Although the recovery time has increased in Test 2,
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Fig. 9. Average response time Test 1.

Fig. 10. Average response time Test 2.

the average response time of the visualization service is reduced by approximately 10%.

6. FINAL REMARKS

In this work, we describe an extensible visualization component for real-time monitoring of environ-
mental simulations. We demonstrate that combining parallelism strategies and blackboard is a good
technique to improve visualization performance, significantly decreasing the visualization response
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time with no significant increase in memory consumption. The developed graphical interfaces are
able to render discrete, continuous and spatial state variables of environmental models written in Ter-
raME, rendering instances of all TerraME types. Visualizations are also able to graphically display
the co-evolution of state variables, allowing the understanding of how a variable influences each other
and help identify some logic faults. The monitoring mechanism can be easily extended by inheritance.
New observers can also be created using the same mechanism. The new visualization capabilities
added to TerraME do not affect models previously written in this modeling platform, maintaining
backward compatibility. Consequently, the proposed visualization mechanism satisfies all functional
requirements stated in Subsection 4.1.

Future works will include a synthesis stage to the visualization pipeline. In this new stage, it will
be possible to apply filters and statistical operations to raw data to make data analysis easier. Future
works will also explore the use of Lua language compilers to reduce recovery time and to improve the
serialization protocol when implemented using the Protocol Buffers. Other experiments will evaluate
the impact of the blackboard and of compression algorithms in a client-server version of the proposed
visualization mechanism. Initial evaluation of the client-server version has shown that the use of
blackboard on the client side reduces the exchange of messages by half using TCP protocol. Finally,
experiments will be conducted to quantitatively compare the visualization mechanisms of the most
relevant modeling platforms with the one presented in this work.
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