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Abstract. Web page segmentation and data cleaning are essential steps in structured web data extraction. Identifying
a web page main content region, removing what is not important (menus, ads, etc.), can greatly improve the performance
of the extraction process. We propose, for this task, a novel and fully automatic algorithm that uses a tag path sequence
(TPS) representation of the web page. The TPS consists of a sequence of symbols (string), each one representing a
different tag path. The proposed technique searches for positions in the TPS where it is possible to split it in two regions
where each region’s alphabet do not intersect, which means that they have completely different sets of tag paths and,
thus, are different regions. The results show that the algorithm is very effective in identifying the main content block
of several major websites, and improves the precision of the extraction step by removing irrelevant results.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data mining; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval—Information filtering; I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms—Analysis of algorithms

Keywords: noise removal, page segmentation, structured extraction, web mining

1. INTRODUCTION

One crucial step in web data mining, including structured extraction, is the cleaning phase that takes
place before extracting the information. One cannot expect to get good results in the extraction
phase without cleaning and removing the undesired noise first. Yi et al. [2003] mention that despite
the importance of this task, relatively little work has been done in this area and, while reviewing up
to date related work, we still have the impression that this is an underdeveloped field. Moreover,
according to Liu and Chen-Chuan-Chang [2004], noise can seriously harm web data mining.

In structured extraction, most of the existing approaches use some sort of pattern recognition to
identify the records (as defined by Liu et al. [2003]) present in the page. The problem is that, usually,
we are interested only in the main content region, as depicted in Figure 4, but other regions of the
page (menus, ads, etc.) often contain repeating patterns that are outputted as noise results. So, it is
useful to cleanup a web page before extracting the records from it.

Currently, some of the work on noise removal and page segmentation are aimed at page indexing
and clustering (i.e. they assume the main region is textual) such as the ones by Fernandes et al. [2011]
and Yi et al. [2003] and, due to intrinsic differences between unstructured data and structured data,
these cannot be used for structured extraction. Existing techniques that can be used for structured
content either require a priori definitions [Cai et al. 2003], prior training [Chakrabarti et al. 2008], or
they rely on specific HTML tags or aspects of the HTML language to work [Cho et al. 2009].

In this article, we propose and lay down a simple, computationally efficient, yet very powerful
algorithm aimed at web page segmentation, noise removal and main content identification, based on
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the tag path sequence of the web page. It is a general segmentation technique, presented here in the
context of structured extraction, that takes into account the page’s style and structure. Our main
contributions are:

—Fully automatic: no training or human intervention needed;
—Domain independent: it is only required that a page contains structured content, no matter what
domain it is about;

—HTML syntax independent: there are no rules defined for specific HTML tags;
—Works on single page: it requires only one page as input, which is a main advantage as discussed
by Liu and Chen-Chuan-Chang [2004];

—Can be combined with extraction techniques: due to the way pruning is carried out (preserving tree
structure), this algorithm can be combined with any structured extraction algorithm;

—Extraction optimization: the proposed algorithm prunes an average of 46.22% of the DOM tree, in
linear time, avoiding the processing of this noise by the subsequent extraction algorithm.

To evaluate how effective our approach is, we have compared the output of MDR [Liu et al. 2003], a
well-known structured extraction technique, against the output of MDR combined with our technique,
as illustrated in Figure 1, yielding an average of 77.03% of noise removed from the test web pages.

This article is organized as follows. In Section 2, we give a brief survey of related work in seg-
mentation, pointing out the differences between each one and our proposal. In Section 3, some basic
definitions are given, which are needed for the problem definition and the understanding of the algo-
rithm. In Section 4, we state the problem and explain the two hypothesis that are the basis on which
we develop the proposed solution for the problem of segmentation and noise removal, targeted at
structured extraction. In Section 5, a detailed description of the full algorithm and its complexity are
given. In Section 6, we present the results of the tests done so far. Finally, in Section 7, a conclusion
is given and possible future developments are outlined.

2. RELATED WORK

There are several work proposing ways to segment web pages and identify what is noise and what
is informative content in them. We grouped them in three different categories: those based on text
content, those based on the DOM tree and those that make use of visual information.

Text content based approaches. In the work of Fernandes et al. [2007], Kohlschütter and Nejdl
[2008], Kohlschütter et al. [2010], Weninger et al. [2010] and Hu et al. [2013] the segmentation is
done using the text content of the web page. The focus of these work, however, is not on structured
extraction, but instead, on indexing and clustering of web sites. The majority of the work about page
cleaning and noise removal are aimed at this kind of applications.

Fig. 1. Evaluation method adopted.
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DOM tree based approaches. In the work of Yi et al. [2003], Chakrabarti et al. [2008], Cho
et al. [2009], Fernandes et al. [2011], Zheng et al. [2012], Zheng et al. [2007] the segmentation is
done using the DOM tree and, thus, they do take into account the web page’s structure. However
Fernandes et al. [2011] and Yi et al. [2003] require several pages from the same web site, as they are
site-driven techniques. Chakrabarti et al. [2008] and Zheng et al. [2007] propose a training framework
that requires a manually labeled data set to work. Cho et al. [2009] is dependent of a tag dictionary,
defined a priori, to build a visual representation of the page. Finally, Zheng et al. [2012] requires a
database of terms associated to “semantic roles” in order to detect data-rich regions.

Visual information based approaches. Besides text and DOM tree based techniques, there are
the ones based on visual information [Cai et al. 2003; Simon and Lausen 2005; Liu et al. 2010]. They
all rely on a web browser’s renderer to obtain the visual information used for segmentation, what
can be computationally expensive, and beyond that, the approach of Cai et al. [2003] is based on
quite a large set of strong heuristic rules, each one applied to specific HTML tags. Approaches based
on specific HTML tags have a serious disadvantage of being affected by changes in web page design
practices and HTML syntax changes.

Structured extraction techniques. There are a number of techniques proposed to address the
problem of structured extraction [Liu and Zhai 2005; Crescenzi et al. 2001; Liu et al. 2003; Miao
et al. 2009; Xie et al. 2012]. The reason we chose MDR for the evaluation of our proposal is due
to the level of detail provided by the publications (which allows for implementation) and availability
of independent implementations. Since we are measuring only the noise suppressed in the output,
and not the quality of the extraction itself, any pattern detection algorithm that complies with our
constraints (fully automatic, works on single page, no training, no labeling, etc.), would suffice.

The representation of the web page used in our work (tag path sequence) was also employed by
Miao et al. [2009] and Xie et al. [2012], although in both cases for structured extraction, not for
segmentation. We cite them here to show that, according to their results, this representation, just like
the DOM tree, is also able to expose the web page’s structure and, thus, is suitable for the purpose
of our work.

3. BASIC DEFINITIONS

Now we present the concepts and definitions used to state the problem in Section 4 and outline the
proposed algorithm in Section 5, as well as an example to illustrate each definition.

Definition 3.1 DOM tree. The DOM tree is a hierarchical structure, derived from the parsing of
HTML code that represents a web page.

In Figure 2 we use a small piece of HTML code to illustrate the DOM tree and the next definitions.

Definition 3.2 Tag path. A tag path (TP ) is a string describing the absolute path from the root
of the DOM tree to a given node. Let i be the depth-first position, in the DOM tree, of a nodei, then
we say that the tag path TPi is a string describing the path from the root of the DOM tree to the
nodei.

In Figure 2, the absolute tag path TP4 from the node body to the table cell node td4 is TP4 =
“body/table/tr/td”.

Definition 3.3 Tag path sequence. We define the tag path sequence (TPS) of a DOM tree with n
nodes to be the ordered sequence TPS[1..n] = (TP1, TP2, TP3, ..., TPn−1, TPn) where two tag paths
TPi and TPj , with i 6= j, are considered equal only if their paths and style definitions are equal,
otherwise they are different.
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This is the same definition of Xie et al. [2012], where each different tag path is represented in the
sequence by a symbol, except that here we incorporate style definitions when comparing tag paths.
In Figure 2 we show the TPS for the given HTML code, where each TP is assigned a code, yielding
TPS = (1, 2, 3, 4, 4, 3, 4, 4).

Definition 3.4 Alphabet of the TPS. Let Σa be a set containing all the symbols in a given se-
quence TPSa of size n, we say that Σa is the alphabet of TPSa defined as Σa = {α|∃TPSa[i] =
α ∧ 1 ≤ i ≤ n}, where α is a symbol in the alphabet.

Informally speaking, the alphabet indicates all distinct symbols in a TPS. In Figure 2, the TPS is
formed only by the symbols “1”,“2”, “3” and “4”, so its alphabet is Σ = {1, 2, 3, 4}.

Definition 3.5 Tag path frequency set. Let (s, f) be a pair where s is a symbol from an al-
phabet of a given TPS and f is the number of times that s appears in the TPS, so we define
the tag path frequency set as the set containing all possible (s, f) pairs of a TPS. Let FS =
{(s1, fs1), (s2, fs2), (s3, fs3), . . . , (sn−1, fsn−1), (sn, fsn)}, where n is the size of the TPS.

In Figure 2, symbol “1” shows up once in the sequence, symbol “2” once too, symbol “3” twice and
symbol “4” four times, so for this sequence the tag path frequency set is equal to FS = {(1, 1), (2, 1),
(3, 2), (4, 4)}. The set FS is a mapping between every symbol of an alphabet and its corresponding
frequency.

Definition 3.6 Frequency thresholds. Given a TPSa with alphabet Σa, tag path frequency set
FSa, we define the frequency thresholds FTa to be the ordered set containing only the frequencies of
FSa. Let FTa = {f |∃(s, f) ∧ (s, f) ∈ FSa ∧ s ∈ Σa}, where f is a frequency, s is the corresponding
symbol of the alphabet Σa.

In the TPS from Figure 2, the tag path frequency set is FS = {(1, 1), (2, 1), (3, 2), (4, 4)}, in this case
the frequency thresholds is equal to FT = {1, 2, 4} because symbols “1” and “2” both have frequency
equal to 1, symbol “3” has frequency equal to 2 and symbol “4” has frequency equal to 4. The FT
set is need to filter out symbols from the TPS. If we have a set FT = {1, 2, 4}, there is no point in
filtering symbols with f = 3, because there is none in the sequence.

Definition 3.7 Region. Let a tag path sequence TPS be a concatenation of two other sequences
TPS = TPSa.TPSb, we say that TPSa and TPSb are regions of TPS, iff Σa ∩ Σb = ∅.

In Figure 2 if we divide the TPS in two subsequences TPSa = TPS[1..2] = (1, 2) and TPSb =
TPS[3..8] = (3, 4, 4, 3, 4, 4), with alphabets Σa = {1, 2} and Σb = {3, 4}, we say that TPSa and TPSb

are distinct regions of TPS, because Σa ∩ Σb = ∅.

4. PROBLEM FORMULATION

Given the definitions presented in the previous section, we formulate next the problem of page seg-
mentation and noise removal, based on the following assumptions:

(1) different regions of a web page are described using different tag paths, so these regions will have
different alphabets; and

(2) in web sites with semi-structured content (i.e. records, as defined by Liu et al. [2003]), the main
region is structurally denser than the others (menus, ads, text, etc.).

The basis for assumption (1) comes from the observation that the regions of a web page are different
ramifications in the DOM tree and these regions are described either using different tags for each one
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Fig. 2. An example of a TPS being built from an HTML code.

or, if the tags are the same, with different styles, so that they can easily be distinguished by the user.
If all regions of a page look alike, it gets more difficult, for the user, to tell them apart. Then, from
Definition 3.3 we can see that the set of symbols used in each region of a web page should be different,
and so it should be possible to segment a page using Definition 3.7.

The assumption (2) comes from the context in which we apply the page segmentation proposed in
this work (i.e. structured extraction). Since we are segmenting only pages containing records, and we
know that in order to describe the structure of these records, in HTML, we need more nodes of the
DOM tree than for unstructured data (i.e. text), it is reasonable to assume that, for a page containing
records, the main region is the largest one (i.e. the one with more nodes).

Now, using the definitions in Section 3 and the above assumptions, we can state the problem of web
page segmentation and main content identification to be the following: “find the largest region in
the TPS of a web page that has an alphabet that does not intersect with the alphabet of
other smaller regions” .

One crucial detail that has to be taken into account, is that there may be tag paths in a page
that represent structural divisions of it (i.e. web site’s visual formatting). These tag paths, if they
are divisions, will show up a few times throughout the entire sequence, preventing us from finding a
split, in the TPS, where the alphabets of the two parts of the sequence do not intersect. To remove
this noise from the TPS, we filter out, iteratively, all symbols with lower frequencies. This way we
can avoid this problem without harming the segmentation process, because the tag paths with higher
frequencies are still being considered.

For illustration purposes, we give now an example of a web page starting and ending with the same
tag path (“/body/br”) and with three regions delimited by the same tag path (“/body/div”). Assuming
that different tag paths are used to describe each region, without filtering out low frequency tag paths
from the TPS it would not be possible to split the sequence into regions.

—HTML code

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.



178 · R. P. Velloso and C. F. Dorneles

<body>
<br>
<div><span class=’region1’></span>...<span class=’region1’></span></div>
<div><span class=’region2’></span>...<span class=’region2’></span></div>
<div><span class=’region3’></span>...<span class=’region3’></span></div>
<br>
</body>

—TPS

TPS = (1,2,3,4,...,4,3,5,...,5,3,6,...,6,2)

The symbols 2 and 3 appear along the entire TPS.
—Filtered TPS

TPS = ( , , ,4,...,4, ,5,...,5, ,6,...,6, )

Only symbols with frequency higher than 3 are considered in the segmentation process. Now it is
possible to split the TPS into regions.

5. ALGORITHMS’ DESCRIPTION

In this section we present the algorithms we have developed to address the problem stated in Section
4. They are the following:

—tagPathSequenceFilter(). It is the main algorithm, which receives a HTML file as input and
returns a pruned DOM tree with the main content region;

—convertTreeToSequence(). It converts the web page DOM tree into a tag path sequence;
—searchRegion(). It is the actual search for the main region of the TPS;
—filterAlphabet(). It filters an alphabet, removing lower frequency symbols, making the overall
algorithm more robust and resistant to noise;

—pruneDOMTree(). It prunes the original DOM tree, leaving only the main content region reported
by searchRegion, keeping the original structure of the document.

5.1 tagPathSequenceF ilter() Algorithm

Algorithm 1 Filters out noise from a web page
Input: inputF ile - an HTML file
Output: pruned inputF ile’s DOM tree
1: procedure tagPathSequenceFilter(inputF ile)
2: DOMTree← parseHTML(inputF ile)
3: convertTreeToSequence(DOMTree.body,“ ” , tagPathSequence)
4: searchRegion(tagPathSequence)
5: pruneDOMTree(DOMTree.body, tagPathSequence)
6: return DOMTree
7: end procedure

The procedure tagPathSequenceF ilter() in Algorithm 1 returns the main content region of inputF ile.
The procedure parseHTML(), in Line 2, converts the HTML code into a DOM tree represen-
tation; convertTreeToSequence(), in Line 3, converts the DOM tree into a TPS; the procedure
searchRegion(), in Line 4, recursively searches for the largest part of the TPS that has a unique
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alphabet and, finally; pruneDOMTree(), in Line 5, prunes out of the DOM tree every node that is
not in the resulting TPS, preserving the structure of the returned document in Line 6.

Bellow we detail the algorithms convertTreeToSequence(), searchRegion(), filterAlphabet() and
pruneDOMTree(). The algorithm parseHTML() is not in the scope of our work and so, will not be
discussed here.

5.2 convertTreeToSequence() Algorithm

Algorithm 2 Converts a DOM tree to a tag path sequence representation
Input: node - a node from the DOM tree, initially the root of the tree
Input: tagPath - the previous tag path, initially empty
Input: tagPathSequence - the TPS built from the DOM tree, initially empty
Output: the TPS for the given DOM tree stored in tagPathSequence
1: procedure convertTreeToSequence(node, tagPath, tagPathSequence by reference)
2: tagPath← concatenate(tagPath,“/”, node.tag, node.style)
3: if tagPath 3 tagPathMap then
4: tagPathMap← tagPathMap+ {tagPath}
5: tagPathMap[tagPath].tagPathCode← tagPathMap.size
6: end if
7: tagPathSequence← concatenate(tagPathSequence, tagPathMap[tagPath].tagPathCode);
8: for each child of node do
9: convertTreeToSequence(child, tagPath, tagPathSequence)

10: end for
11: end procedure

The procedure convertTreeToSequence() in Algorithm 2 converts a web page from its DOM tree
representation to a TPS representation, traversing the DOM tree in depth-first order. It is initially
called in Algorithm 1 with an empty tagPath parameter, which represents the previous tag path string
(from the previous recursive call). In Line 2, the previous tag path is concatenated with the current
tag, as well as with its style definition, in order to distinguish repeated paths with different styles;
in Line 3, it is checked whether or not the current tag path has been seen before (tagPathMap is
used for this purpose) and, if not, in Line 4, it is inserted into the set tagPathMap and a new code
assigned to it in Line 5, as stated in Definition 3.3; in Line 7, the tag path code is appended to the
end of the sequence and, finally, the procedure is called recursively in Line 9 for each child of node.

5.3 searchRegion() Algorithm

This is the core algorithm, since it is responsible for finding the main content region, so we have
provided na illustration, in Figure 3, to help understand its workings. In Figure 3, for clarity purposes,
we have omitted alphabet filtering in order to keep it simple and easy to understand the main idea
behind the searchRegion() algorithm.

Algorithm 3 Search for regions in the TPS with different alphabets
Input: tagPathSequence - the TPS of a given page
Output: the main region of the TPS, stored in tagPathSequence

1: procedure searchRegion(tagPathSequence[1..n] by reference)
2: alphabet← ∅
3: t← 0
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Fig. 3. Illustration of procedure searchRegion().

4: for i← 1..n do
5: symbol← tagPathSequence[i]
6: if symbol 3 alphabet then
7: alphabet← alphabet ∪ {symbol}
8: symbolCount[symbol]← 0
9: end if

10: symbolCount[symbol]← symbolCount[symbol] + 1
11: end for
12: thresholds← OrderedSetOfFrequencies(symbolCount)
13: regionFound← false
14: while not regionFound do
15: t← t+ 1
16: currentAlphabet← filterAlphabet(alphabet, symbolCount, thresholds[t])
17: if currentAlphabet.size < 2 then
18: break
19: end if
20: currentSymbolCount← symbolCount
21: regionAlphabet← ∅
22: for i← 1..n do
23: symbol← tagPathSequence[i]
24: if symbol ∈ currentAlphabet then
25: regionAlphabet← regionAlphabet ∪ {symbol}
26: currentSymbolCount[symbol]← currentSymbolCount[symbol]− 1
27: if currentSymbolCount[symbol] = 0 then
28: currentAlphabet← currentAlphabet− {symbol}
29: if currentAlphabet ∩ regionAlphabet = ∅ then
30: if currentAlphabet 6= ∅ and (n− 2 ∗ i)/n > 0.20 then
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31: regionFound← true
32: end if
33: break
34: end if
35: end if
36: end if
37: end for
38: end while
39: if regionFound then
40: if i < n/2 then
41: tagPathSequence← tagPathSequence[i+ 1..n]
42: else
43: tagPathSequence← tagPathSequence[1..i]
44: end if
45: searchRegion(tagPathSequence)
46: end if
47: end procedure

The procedure searchRegion() in Algorithm 3 computes the TPS alphabet and corresponding
symbol frequency from Lines 4 to 11; in Line 12, the frequency thresholds, from Definition 3.6, are
computed; from Lines 14 to 38 the actual search is performed for a position in the TPS where a split
is possible (i.e. where a region exists); in Line 15 the frequency thresholds are iterated; in Line 16
the TPS alphabet, from Definition 3.4, is filtered, as described in Section 4; in Line 22 the TPS is
iterated; in Line 25 the region alphabet is computed and; from Lines 27 to 35 it is checked if there is
no intersection between the alphabets of the two portions of the TPS (an empty intersection indicates
that a possible region was found, as in Definition 3.7). The found region is only reported if it is at least
20% larger than the rest of the sequence, otherwise we continue iterating the frequency thresholds.
This percentage is actually a parameter and its purpose is to avoid reporting a region under ambiguous
conditions (in the experiments we used the value of 20%); finally from Lines 39 to 46 the TPS is split
if a region was found, calling searchRegion() recursively in line 45, if so.

5.4 filterAlphabet() Algorithm

Algorithm 4 Filters out symbols with lower frequencies from the alphabet
Input: alphabet - the alphabet ot be filtered
Input: symbolCount - the tag path frequency set (FS) of the alphabet
Input: threshold - a frequency threshold
Output: a filtered alphabet
1: procedure filterAlphabet(alphabet, symbolCount, threshold)
2: filteredAlphabet← ∅
3: for i← 1..n do
4: if symbolCount[alphabet[i]] ≥ threshold then
5: filteredAlphabet← filteredAlphabet ∪ {alphabet[i]}
6: end if
7: end for
8: return filteredAlphabet
9: end procedure

The procedure filterAlphabet() in Algorithm 4 removes from alphabet, every symbol with frequency
lower than threshold. in Lines 3 to 7 only the symbols with frequency greater or equal to threshold
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are inserted in the resulting set. The result of filterAlphabet() is used in Algorithm 3, Line 24, where
only the symbols in filteredAlphabet are considered while searching for a region.

5.5 pruneDOMTree() Algorithm

Algorithm 5 Prune from the DOM tree the nodes that are not in sequence
Input: node - a node from the DOM tree to be pruned, initially the root of the tree
Input: sequence - the TPS that has to remain in the DOM tree
Output: the DOM tree pointed by node pruned
1: procedure pruneDOMTree(node by reference,sequence)
2: for each child of node do
3: if pruneDOMTree(child, sequence) = true then
4: remove child from node
5: end if
6: end for
7: if node 3 sequence and node.childCount = 0 then
8: return true
9: end if

10: return false
11: end procedure

The procedure pruneDOMTree() in Algorithm 5, traverses the DOM tree, depth first, removing the
nodes that do not belong to sequence. In Line 3 the DOM is traversed; in Lines 7 to 9 it is decided
whether or not node should be removed.

A node is removed from the tree, only if it is not in sequence and has no children. This way we keep
the structure of the remaining tree intact, in order not to affect the subsequent structured extraction
phase.

5.6 Algorithm’s Complexity

As for the algorithm’s complexity, if we observe Lines 14 and 22 of the procedure searchRegion(),
we can see that the loop in Line 14 iterates the frequency thresholds until a region is found and Line
22 iterates the TPS (filtered at given frequency threshold) also until a region is found and, if so, the
reported region is recursively processed.

In the worst case, when the alphabet intersection is empty only in the last index of the TPS, the
complexity would be at most O(n2f), where n is the length of the TPS and f is the size of the set
thresholds. In practice, the size of the set thresholds is much smaller than the length of the TPS, so
we can say the complexity approximates O(n2) as shown in Equation 1.

T (n) = T (n− 1) + Θ(n) =⇒
n∑

i=1

i =
n(n+ 1)

2
= O(n2) (1)

In average, if the TPS gets split in half, the complexity would be O(n) as in Equation 2.

T (n) = T (n/2) + Θ(n) =⇒
logn

2∑
i=1

n

2i
= n− 1 = O(n) (2)
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In the best case, TPS is split in the first index, yielding O(n) as in Equation 3.

T (n) = T (n− 1) + Θ(1) =⇒
n∑

i=1

1 = n = O(n) (3)

In real world scenarios, as we have seen while doing the evaluation of the algorithm, the sequences
get split approximately four of five times until they cannot be split no more. So we can say that in
real cases, the algorithm executes in O(in) time, where n is the size of the TPS and i is the number
of times the sequence gets split, which we can consider as a small constant, in this case, and say that
it runs in O(n).

6. EXPERIMENTAL RESULTS

In this section we describe and discuss the results of our experiments and how they are presented.
To obtain the results presented in Subsection 6.2, we have implemented the algorithm and tested it
against some commercial and institutional web sites. In Subsection 6.1 we detail one of the results
presented, as an example, to clarify how they are compiled in Table I.

6.1 Experimental Setup

We considered the extraction results of MDR alone as our baseline to be compared with the results
obtained by the combined use of TPS filtering and MDR, as illustrated in Figure 1.

When applying both approaches (MDR and TPS filtering+MDR) to a result page of YouTube web
site, the following results are obtained:

—raw web page (i.e. the original page, without TPS filtering)
—DOM tree processed: 1424 nodes;
—MDR results: 82 records total ( 62 noise / 20 targets );

—pruned web page (i.e. the web page after TPS filtering)
—DOM tree processed: 674 nodes, size 47, 33% of the original page, reduction of (−52, 67%)

—MDR results: 20 records total ( 0 noise / 20 targets ), noise removed 100%

In this result, we can see an improvement in the extraction of records as well as a considerable
reduction in the size of the DOM tree to be processed. A percentage of 52.67% of the DOM tree was
pruned without losing the target records in the process. Everything pruned out of the DOM tree was
noise. Figure 4 illustrates the web page and the main content region.

Without applying TPS filtering, we get 82 records in total and, since we know there are 20 target
records in this page, we can consider the value of 62 records to be 100% of noise to be removed. When
we use TPS filtering, this time we get only the 20 target records in the extraction phase, yielding a
precision of 100%, which means all noise was removed in this case. We calculate the percentage of
noise removed to be

NoiseRemoved = 1− NumRectotalTPS −NumRectargetTPS

NumRectotal −NumRectarget
(4)

Where NumRectotal and NumRectarget are the total number of records and the number of target
records, respectively, from the original web page, and NumRectotalTPS and NumRectargetTPS are
the total number of records and the number of target records, respectively, from the filtered web page.
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Fig. 4. A page from the YouTube web site and the main content region delimited.

6.2 Results

In Table I we present, in the first three columns, the size of the DOM tree processed by MDR and
the reduction obtained after filtering. The column “Content Present” indicates whether or not the
filtering process preserved the main content region. The next four columns are the results of MDR
alone and combined with TPS filtering, showing the total records and target records extracted for
both approaches. The last column shows the percentage of noise removed, calculated using Equation
4.

As we can see in Table I, the total of column “Content Present” indicates that the algorithm has
worked in 86.96% of the sites and it has removed, for this test set, an average of 77.03% of all noise
present in the data, as shown by the average of column “Noise rem.". We consider these to be good
results.

The average DOM tree reduction of 46.22% is an interesting result. First, because that means
almost half the DOM tree is noise in average. Second, because this number matches the value reported,
independently, by Gibson et al. [2005] as page template size (between 40% and 50%), corroborating
with literature work.

An interesting situation we can see in Table I is the result for the site “g1.com.br”. Without filtering,
MDR has reported a total of 225 records, included 10 target records. After filtering is applied, a total
of 202 records are reported, none of them targets, all noise. So, after filtering, if we had reported
the complementary DOM tree instead, we would get a result of 23 records in total (202− 225 = 23),
included here the 10 target records, which is an excellent result since it gives us a 93.99% of noise
removal. We can deduce from this, that the segmentation has worked just fine for this site, only the
main content was not correctly identified, since it’s relatively small.
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Table I. Compiled results
MDR (# records)

DOM size (# nodes) Content Raw Pruned (eq. 4)
Site Raw Pruned Reduction present Tot Tgt Tot Tgt Noise rem.
acm.org 601 340 -43.43% Yes 61 10 16 10 88.24%
amazon.com 3309 1054 -68.15% Yes 368 15 27 15 96.60%
americanas.com.br 2660 710 -73.31% Yes 211 20 20 20 100.00%
bestbuy.com 3632 1425 -60.77% Yes 299 15 15 15 100.00%
bondfaro.com.br 3897 3069 -21.25% Yes 231 28 178 28 26.11%
bradesco.com.br 1913 1113 -41.82% Yes 164 10 93 10 46.10%
buscape.com.br 3608 3514 -2.61% Yes 279 24 266 24 5.10%
ebay.com 2623 1801 -31.34% Yes 162 50 50 50 100.00%
elsevier.com 906 160 -82.34% Yes 120 10 32 10 80.00%
g1.com.br 900 619 -31.22% No 225 10 202 0 N/A
globo.com 400 193 -51.75% Yes 80 10 20 10 85.71%
google.com 1421 981 -30.96% Yes 118 11 61 11 53.27%
itau.com.br 1111 410 -63.10% No 77 10 11 0 N/A
magazineluiza.com.br 3167 1115 -64.79% Yes 314 40 44 40 98.54%
mercadolivre.com.br 2401 1771 -26.24% Yes 136 50 52 50 97.67%
reuters.com 1202 480 -60.07% Yes 136 10 54 10 65.08%
scopus.com 4929 4688 -4.89% Yes 114 20 75 20 41.49%
submarino.com.br 2389 1268 -46.92% Yes 116 20 22 20 97.92%
terra.com.br 869 588 -32.34% Yes 122 50 76 50 63.89%
valor.com.br 514 126 -75.49% No 55 10 2 0 N/A
webmotors.com.br 2119 1361 -35.77% Yes 113 14 19 14 94.95%
yahoo.com 760 290 -61.84% Yes 67 10 10 10 100.00%
youtube.com 1424 674 -52.67% Yes 82 20 20 20 100.00%
Average/Total -46.22% 86.96%/13.04% 77.03%

6.3 Results Discussion

There are three main situations where the algorithm needs to be improved but, fortunately, only two
of these can lead to loss of main content (content removal). In Table I, column “Content Present”,
these two situations account for 13.04% of the cases, where the content region was removed in the
filtering process.

(1) templates too homogeneous. These are pages with little difference between the regions. In
this case, using this technique, there is not much to do. We simply do not have enough information
to work with, since the entire page looks alike. We do not lose the target records, but the amount
of noise removed is very low;

(2) templates too heterogeneous. These are pages where the main content is subdivided in more
than one region. In this case, the main region gets split over and over, and only the largest part
passes through the filter (and it might be noise). We propose a way to work around this problem
later in this Section;

(3) pages where the main content is smaller than the rest. That is a consequence of the
second assumption we made in Section 4: “the main region is denser/bigger than the rest”. In this
case, noise will always be reported as content. The same proposal made for the former situation
can be used to deal with this one as well.

In the case of heterogeneous templates, TPS filtering can still be used if we make some slight
modifications in the algorithm. One such case of heterogeneous template are “news sites”, where every
record has a different structure, but they are all records from the same domain (i.e. they belong to the
same entity). In this specific situation, TPS segmentation could be used to split the page in several
parts, and a semantic approach used to combine the regions, reporting the main content as a set of
regions instead of only one.
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For situation described for the site “g1.com.br” (that happened for two other sites we tested), when
the content region is smaller than the rest, we could apply a semantic technique to check whether or
not the desired content is present in the reported region, if not, report the complementary DOM tree
(i.e. inverse the pruning) instead. The main algorithm would look like this:

Algorithm 6 Filters out noise from a web page
Input: inputF ile - an HTML file
Output: pruned inputF ile’s DOM tree
1: procedure tagPathSequenceFilter(inputF ile)
2: DOMTree← parseHTML(inputF ile)
3: convertTreeToSequence(DOMTree.body,“ ” , tagPathSequence)
4: backupTPS ← tagPathSequence
5: searchRegion(tagPathSequence)
6: if tagPathSequence not content then
7: tagPathSequence = backupTPS − tagPathSequence
8: end if
9: pruneDOMTree(DOMTree.body, tagPathSequence)

10: return DOMTree
11: end procedure

Algorithm 6 is the same as Algorithm 1, except for Line 6 where it checks if the main content is
present in the reported region and, if not, we report the complementary sequence instead (Line 7),
ensuring the presence of the main content.

7. CONCLUSION

As shown in the results, the method we have proposed for page segmentation and noise removal is
very effective for some commercial/institutional web sites. In most cases, a very large amount of noise
is removed without compromising the main content region. Also, when applied in conjunction with
MDR, we can see that the extraction precision is greatly improved.

In the situations where our algorithm fails, other techniques have to/should/could be combined
depending on the targeted application. In extreme cases, where a page has either too homogeneous
structure (so we cannot find a split anywhere along the TPS) or too heterogeneous structure (then
the main content itself gets split in several parts), the main content block could be detected using,
perhaps, semantic approaches.

The algorithm shows outstanding performance, as it works very well for the majority of large
commercial web sites we have tested. It also outcomes the limitations (training requirements, HTML
tag dependency, manual labeling, among others) of previous work in the area of data cleaning, page
segmentation and noise removal as mentioned in Section 2.
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