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Abstract. Cloud computing is a recent trend of technology aimed at providing on-demand Information Technology
(IT) services usually priced on a pay-per-use model. One of the main services provided by a cloud computing platform
consists of the data management service, or data service for short. This service accepts responsibility for the installation,
configuration and maintenance of database systems, as well as for efficient access to stored data. This paper presents a
framework, denoted QIDMaC, for management of cloud databases. The proposed framework aims to provide software
infrastructure required for the provision of data services in cloud computing environments in an efficiently manner.
In this sense, the proposed solution seeks to solve some outstanding problems in the context of cloud databases, such
as: query dispatching and scheduling. The proposed approach extends previous work by adding important features
such as: support for unpredictable workloads and the use of information about query interactions. Support for the
seasonal workloads is related to one of the main properties of cloud computing: fast elasticity. Query interactions can
provide significant impacts on database systems’s performance. For this reason, QIDMaC uses information about these
interactions in order to reduce the execution time of the workloads submitted to the data service and thereby increase
the service provider profit. In order to demonstrate the QIDMaC efficiency an experimental evaluation using TPC-H
benchmark was performed on PostgreSQL. The results show that the designed solution has the potential to increase
the profit of cloud data service providers.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: cloud database, data management, interaction-aware

1. INTRODUCTION

Cloud computing is an extremely successful paradigm of service-oriented computing and has revo-
lutionized the way in which computing infrastructure is abstracted and used. Scalability, elasticity,
pay-per-use pricing, and economies of scale are the major reasons for the successful and widespread
adoption of cloud infrastructures. Since the majority of cloud applications are data-driven, data-
base management systems (DBMSs) powering these applications are critical components in the cloud
software stack [Elmore et al. 2011].

Nowadays, there is a high demand for data management service to be provided by cloud systems
[Abadi 2009]. Thus, we advocate that data management service should be responsible for installing,
configuring and maintaining database systems. Additionally, it has to ensure efficient access to stored
data. To provide data service in a cloud system, the provider should deliver the required infrastructure
(hardware and software), measure the service usage, guarantee the dealt service quality and charge in
per-use basis. We define a data management service provided by cloud systems as service consisting
of a multiple database system (MDBS) running on several virtual machines (VMs) afforded by an
infrastructure provider as a service (Infrastructure as a Service - IaaS). In this way, each VM hosts a
single DBS and a database replica. Nonetheless, the set of DBSs in the different VMs behaves as a
single logical database.

This work is partially funded by FUNCAP and CNPq.
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Many companies expect cloud data management service providers to guarantee quality of service
(QoS) using service level agreement (SLAs). However, dealing with unpredicted load patterns and
elasticity is critical to ensure that the SLAs are met. There are different strategies to improve QoS,
comply SLA and increase provider’s profit, such as database replication, adaptive query processing,
capacity planning, query scheduling and dispatching.

Still, a typical database workload consists of a mix of multiple query instances of different query
types that run and interact with each other. A query type can be defined as a template for SQL queries,
which consists of a SQL expression with parameter markers. Whenever a template is instantiated
with a set of parameter values, one has a query instance. Query instances in a workload can have
interactions with a significant impact on database performance, which can be positive or negative
[Ahmad et al. 2009].

In this article, a query interaction-aware framework for providing data service in cloud systems,
denoted QIDMaC (Query Interaction-aware Database Management in the Cloud), is presented. So,
QIDMaC explores the query interaction concept to improve the data service provider’s profit. The
main feature presented by QIDMaC is to deliver required software infrastructure to make data service
available in cloud computing environment. More specifically, QIDMaC implements efficient solutions
for database query dispatching and scheduling by exploiting query interactions. The key goal of query
dispatching mechanism is to allocate a given query to one VM vk, ensuring that the service provider’s
profit obtained by executing q in vk is the largest on w.r.t. the other VMs. In turn, a scheduling
mechanism has to identify the most efficient schedule to execute several queries regarding query profit
profile in order to maximize the service provider’s profit. In other words, QIDMaC exploits query
interaction in order to reduce the query response time and, consequently, increasing the likelihood of
meeting SLA, reducing penalties and enhancing the provider’s profit.

The proposed framework has been evaluated. For that, the TPCH benchmark has been used on
PostgreSQL. The results show that QIDMaC has potential to improve the efficiency of database service
and to increase the profit of cloud data service providers.

The rest of this article is organized as follows. Section 2 discusses related work. QIDMaC is
described and analyzed in Section 3. Section 4 brings and analyzes experimental results. Finally,
Section 5 concludes this work.

2. RELATED WORK

As already mentioned, in this work we aim at proposing an integrated solution for query scheduling
and dispatching problems. In this sense, some approaches for coping with those problems are analyzed
in this section.

Regarding query scheduling, Sharaf et al. [2009] propose a mechanism for scheduling I/O operations
in order to reduce response time of queries which do not fulfill their SLAs. In this sense, that approach
does not define the execution order of queries. It only schedules I/O operations resulting from query
executions. Tilgner [2010] proposes a query scheduler, which exploits SLA consistency metric as
criterion for defining a query execution schedule. Thus, queries are executed concurrently by different
DBSs, which in turn are running in different VMs. de Carvalho Costa and Furtado [2008] propose a
similar approach. However, the latter approach uses query SLOs for defining the amount of queries,
which may be executed concurrently.

Next, the most referenced approaches on query dispatching are analyzed. Xiong et al. [2011] propose
a framework which makes available a query dispatching mechanism for database service in cloud
computing environment. The idea is to estimate the probability of a given query q to meet its SLO
by means of machine learning techniques. According to the estimated probability, q is dispatched or
not. Schroeder and Harchol-Balter [2004] propose another approach for query dispatching in database
service. In that approach, queries are classified in different groups. Thus, each server can only process
queries of a given group.
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Fig. 1: QIDMaC Architecture

Chi et al. [2011] propose a mechanism for supporting profit-oriented decisions regarding query
dispatching in the cloud. Based on profit information and SLA of queries waiting in the server buffer
to be dispatched for being executed, a data structure, called SLA-Tree is built. After the SLA-Tree
is yielded, a set of “what-if” questions are “answered” by a component of the proposed framework.
For example, for each available server S, the following questions should be answered: “What is the
estimated profit change if a query q is dispatched to be executed in S?”. Depending on the “answer”, q
is dispatched to be executed in S or not. The authors do not make clear how such “what-if” questions
are modeled and processed (“answered”).

Rogers et al. [2010] propose a framework for resource provisioning and query dispatching. The
proposed framework identifies a set of minimum-cost infrastructure resources (virtual machines), which
are able to execute a workload assuring QoS expectations. The criterion for query dispatching is quite
naive, since it is restricted to allocate queries to machines with sufficient resources to execute queries
respecting QoS metrics. Paton et al. [2009] propose a query dispatching strategy based on utility
functions. Thus, queries are dispatched to multiple servers according to the utility functions. An
utility function U(w, d)P computes the benefit of a query dispatching policy d to available servers
for a workload w regarding the property P . Thus, the approach is highly dependent on a correct
definition of the utility function. Moreover, it does not consider the use of SLA and the workload
should be known a priori.

3. QIDMAC: A QUERY INTERACTION-AWARE FRAMEWORK TO DATA MANAGEMENT
IN THE CLOUD

In order to solve the problems of scheduling and dispatch satisfactorily, we propose a framework
for data management in the cloud, called QIDMaC, which explores query interactions to increase
performance. Additionally, QIDMaC has the following characteristics: non-intrusive, uses a generic
cost model, based on SLAs, profit oriented and supports unexpected workloads.

Figure 1 depicts QIDMaC architecture, which consists of five modules, divided into two different
types of virtual machines. These kinds of virtual machines are:

—VM Controller (VMC): this VM hosts the modules responsible for solving the dispatching
(dispatcher module) and resource provisioning (resource provider module) problems, as well as
the user interface (facade module) and the statistics collector (monitor module). In addition,

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.



314 · Manoel M. Siqueira et. al.

information concerning SLAs is stored in a component called metabase. It is noteworthy that
the QIDMaC uses only one instance of VMC;

—VM Scheduler (VMS): each VMS hosts one instance of the scheduler module and a DBS complete
replica. The scheduler module defines the execution order of the queries dispatched to it, and sends
these queries to be performed on the DBS copy hosted locally. Note that there may be various
VMSs, that is, multiple instances of the VM Scheduler.

The QIDMaC framework consists of five distinct modules (Figure 1). Next, we will describe each
of these modules:

—facade: client applications send requests to the facade module requesting the execution of a parti-
cular SQL query.

—dispatcher: dispatcher module aims to decide which instance of the scheduler module will perform
a given query.

—scheduler: each instance of the scheduler module generates the estimates used by the dispatcher
module and defines the execution order of queries sent to it.

—resource provider: resource provider module decides, based on information provided by dispatcher
module, about the VMSs instantiation/suspension need. This module will not be discussed in this
article;

—monitor: the monitor module stores in the metabase information about SLAs compliance agreed
with the client application and on operating costs arising from the VMs use.

3.1 Multi-Tenant Model

There are many ways to deploy a database as a service on a cluster with multi-tenancy: (1) all tenant
data are stored together within the same database and the same tables with extra annotation such
as “TenantID” to differentiate the records from different tenants; (2) tenants are housed within a
single database, but with separate schemas to differentiate their tables and provide better schema-
level security; (3) each tenant is housed in a separate database within the same DBMS instance (for
even greater security); (4) each tenant has a separate VM with an OS and DBMS, which allows for
resource control via VM management [Barker et al. 2012].

In multi-tenant strategies (1), (2) and (3), interference may occur between tenants. This is related to
the DBMS type used and to the workload. In this work, we used option (4) to implement multi-tenancy,
where each tenant database runs in its own virtual machine. This option uses more resources, but the
level of sharing allows us to control the system resources allocated for each VM, or the corresponding
tenant. Furthermore, option (4) provides better security and it is used in many works.

3.2 SLA

SLA is an agreement between two parties: the customer and the provider of a particular service
[Comellas et al. 2010], whose purpose is to ensure the quality of the contracted service. The QIDMaC
framework uses the SLA concept to ensure the cloud data service quality. The SLA concept used in
QIDMaC has as a metric the SQL query response time.

We define the SQL response time, for a given query qi, as the time elapsed since qi arrives in the
cloud data service (at facade module) until the delivery of the qi execution results to the customer.
Thus, the response time includes: i) dispatching time, the time required to select a VMS msj and
dispatch qi to msj ; ii) scheduling time, the time necessary to choose a position p in the scheduling
queue F of msj and put qi in this position; iii) waiting time (or starting time), the time that qi remains
in the queue F waiting to start its execution; iv) runtime, time spent by the DBMS query processor
to run qi; and v) delivery time, time necessary to send the qi execution results to the customer. For
simplicity, dispatching time, scheduling time and delivery time are disregarded. So, SQL runtime is
just a component of SQL response time. It’s important to note that the waiting time for qi depends
of the runtime of the queries in the previous positions in the queue F .
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The estimated runtime of a query instance qi was obtained by running qi with empty cache (memory
free) 5 times and getting the average. Then, the estimated response time for qi includes: i) estimated
dispatching time; ii) estimated scheduling time; iii) estimated waiting time (or estimated starting
time); iv) estimated runtime and v) estimated delivery time. For simplicity, estimated dispatching
time, estimated scheduling time and estimated delivery time are disregarded. It’s important to note
that the estimated waiting time for qi can be calculated as the sum of the estimated runtime of the
queries in the previous positions in the scheduling queue F of msj .

In this article, SLO (e.g., response time less than 10 minutes), revenues and penalties are defined
for each SQL query type Qk. Thus, each query instance qi of Qk has the same values of SLO, revenue
and penalties defined to the query type Qk. Differently, Sousa et al. [2012] propose an approach
where all SQL query instances, regardless of their type, have the same values for SLO, revenue and
penalties. The choice of this new SLA definition was motivated by the fact that most of the applications
currently available in the cloud have OLAP (Online Analytical Processing) characteristics which
involves workloads whose queries have response times with different magnitude orders (e.g., while
some SQL queries take 16 seconds others take 15 minutes).

To illustrate the SLA use in the proposed framework, consider a workload W . Let RW the revenue
for W , CW the operating cost (cost to using VMs) to run W and PW the penalties imposed to the data
service provider after finishing the execution of W . The profit earned by performing W , represented
by PrW , is defined by the following formula:

PrW = RW − (CW + PW ) (1)

The revenue RW is the sum of revenues from all queries qi ∈ W , regardless of SLAs compliance.
Let the query instance revenues rqi the monetary value agreed between the customer and the data
service provider for a given query instance qi ∈W , RW is obtained by the following formula:

RW =
∑
qi∈W

rqi (2)

In this work, time was discretized into billable units (e.g., in Amazon EC21 revenue is calculated
every hour). However, the operating cost model was simplified by assuming that each VM instance
will have a fixed cost for each billable unit, depending on its type. For example, each instance of the
type Small (a VM type in Amazon EC22) will generate a fixed operating cost (e.g., U$ 1.00 per hour).

Let H the set of possible VM types, EW the runtime for the workload W (using the n existing
VMSs and the VMC), E′W the time EW converted to the used billing unit, nW (h, t) the amount of
instantiated VMs of the type h in a time billing unit t and c(h) the cost of using a VM of the type
h ∈ H per time billable unit. Thus, suppose that the time billable unit is one hour and EW = 45 min.
In this case, E′W = 1 hour, since the payment is recorded every hour. Then, the operating cost CW is
calculated by the following formula:

CW =
∑
h∈H

E′W∑
t=1

nW (h, t)× c(h) (3)

Not meeting the SLAs associated with the SQL query instances of W leads to the payment of
penalties PW by the data service provider to the client. Let pqi the penalty associated with a given
query instance qi ∈W , PW is defined by the following formula:

PW =
∑
qi∈W

pqi (4)

Let rtqi the response time of a given query instance qi, SLOqi the service level objectives for qi,
that is, the maximum acceptable time to run qi without any penalty and rqi the revenue associated

1http://aws.amazon.com/ec2/pricing/
2http://aws.amazon.com/ec2/instance-types/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.



316 · Manoel M. Siqueira et. al.

with the query instance qi. So, the following equation describes how pqi is calculated. It is noteworthy
that other penalty models can be used.

pqi =

{
rqi , if rtqi > SLOqi

0, otherwise (5)

Derived from the penalty concept, we also use the concept of estimated penalty. Let qi a query
instance, the estimated penalty epqi refers to the monetary value that will be paid by the data service
provider to the client, if the estimated response time for qi, denoted ertqi , is greater than the SLO
defined for qi. Thus, the estimated penalty epqi(ertqi), according to the estimated response time ertqi
for qi is defined by the following formula:

epqi(ertqi) =

{
rqi , if ertqi > SLOqi

0, otherwise (6)

The estimated response time of a given query qi can be calculated according to the estimated time
instant est to start running qi. So, consider ertqi(est) estimated response time for qi. Let eruntqi the
estimated runtime for a query instance qi (elapsed time since start running qi until its end) and atqi
the arrival time of qi in the data service. Thus, the estimated response time for query qi is calculated
by the following formula:

ertqi(est) = (est+ eruntqi)− atqi (7)

An additional concept used in the proposed solution is the balance, which consists of revenues
minus the penalties. The balance is defined on two levels: by SQL query instance (Equation 8) and by
workload (Equation 9). So, consider that bqi represents the balance of the query instance qi and BW ,
the balance of the workload W . Suppose that rqi and pqi are the revenue and the penalty associated
with qi, respectively, and RW and PW are the revenue and the penalty related with W , respectively.
So, we have:

bqi = rqi − pqi (8)

and

BW = RW − PW (9)

Based on the balance concept, QIDMaC also uses the estimated balance concept, which is the
revenue rqi minus the estimated penalty epqi(ertqi) (Equation 6). The estimated balance ebqi(est) for
qi, if qi starts its execution at time instant est, can be calculated by the Equation 10. This formula
considers the revenue rqi and the estimated penalty epqi(ertqi(est)) (Equation 6). In this case, set
is the estimated starting time for qi and ertqi(est) (Equation 7), the estimated response time, if qi
starts its execution at time est.

ebqi(est) = rqi − epqi(ertqi(est)) (10)

For calculating the cloud data service profit, some information about SLA are stored in the metabase.
Next, we will describe these information: i) k, query type identifier; ii) SQL text; iii) SLOQk

, maximum
response time for any query instance of the query type Qk; and iv) rQk

, represents the monetary value
agreed between the customer and the service provider to perform a query instance qi of the type Qk.

After the qi execution, the response time rtqi for qi is obtained. All these information (rqi , SLOqi

and rtqi) are stored in the metabase. Thus, the equations 5 and 8 can be applied to calculate the
penalty and the balance of qi, respectively.

3.3 Query Interaction

Nowadays, most databases are stored in hard disks. Data access rate in hard disks is several magnitude
orders lower than in main memory, especially w.r.t. random accesses.

To execute a query qi, the buffer manager may load data pages into the buffer pool, which are used
by another query qk. Such a scenario characterizes a query interaction between qi and qk. Of course,
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executing qi before qk (or vice-versa), qk can profit from the fact that pages, necessary to process it,
are already in the buffer pool.

Based on this observation, Siqueira et al. [2012] present three approaches to model and measure
query instance and query type interactions. These approaches, denoted intercalation strategy (IS),
data retrieving rate (DRR) and greedy bidimentional array (GBA), do not require any prior assump-
tions on internal aspects of the database system.

Besides, these approaches use the concept of interaction factor, which is a number between 0 and
1. The interaction factor quantifies the interaction between two query instances or between two query
types. Values close to 1 indicate strong interaction and close to 0 weak interaction. Then, given two
queries qi and qj as input, IS, DRR and GBA produce as output the interaction factor between qi
and qj . Next, based on the interaction factor concept, we define the following terms:

Definition 3.1 Interaction gain. Let qi a query to run at a given DBMS. The interaction gain for
qi represents the estimated gain provided by running qi after a query qj and before a query qj+1.

Equation 11 supposes that f(qi, qj) represents the interaction factor between qi and qj , where qi
and qj are query instances. Besides, it supposes that qi runs before qj .

ig(qi, qj , qj+1) =

 f(qi, qj+1), if qj is null
f(qj , qi), if qj+1 is null

(f(qj , qi) + f(qi, qj+1))− f(qj , qj+1), otherwise
(11)

Definition 3.2 Balance gain. Let qi a query instance, smk a scheduler module instance, F the set of
queries in the scheduling queue of smk, EBF a profit estimate of the balance provided by the execution
of queries belonging to the queue F , and EBF∪{qi} the balance estimate provided by running qi in smk,
the balance gain (cash value) to execute the query qi in the instance smk, represented by bg(qi, F ), is
calculated according to the Equation 12.

bg(qi, F ) = EBF∪{qi} − EBF (12)

3.4 Dispatching

The dispatching problem consists in to allocating (assigning) each query qi, belonging to a given
workload W , to one of the available scheduler instances, in order to provide the highest possible profit
to the data service provider. Initially, the client application sends a message to the facade module
requesting the execution of a given query qi. Then, facade module redirects this request for the
dispatcher module. Then, the dispatcher sends a request, containing the query qi, for each scheduler
instance mek, requesting an estimate (to be stored in the variable e) of the profit that the execution
of the query qi in the instance mek would bring to the data service. This benefit is measured by using
two metrics: interaction gain (Definition 3.1) and balance gain (Definition 3.2). These two metrics
are computed by a procedure called hypothetical scheduling. After all scheduler instances send their
estimates to the dispatcher, this module selects the scheduler instance that provides the greatest
balance gain. Let bgmax the highest value returned to the balance gain. If two or more instances
return the same value bgmax for the balance gain, the dispatcher will select the scheduler instance
with highest value to interaction gain estimate. Finally, the dispatching module will send the query
qi for the selected scheduler instance.

Let F the scheduling queue and n the number of queries in F . The position with index 0 (first
position) in F is reserved for the last query submitted to execution. The position with index 1 (second
position), in turn, stores the next query to be executed. So, the position with index n− 1 stores the
last query to be executed and the position with index n is the first free position in F . For example,
suppose n = 10. Thus, the queue F has 9 queries (n− 1 queries) to run and the first free position in
F is the position 10 (position n). In addition, new queries can be inserted between positions 1 and n,
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inclusive, during the scheduling process. Moreover, whenever a query qi is inserted in a given position
of the queue F , each query located after qi in the queue F will have its position incremented by one.
In this article, we assume that |F | = n, i.e., they will have |F | queries in the queue F .

Let smk a scheduler instance, F the scheduling queue at smk and qj ∈ F a query inserted in the
queue F , such that 1 ≤ j ≤ |F | − 1. The balance gain definition (Definition 3.2) uses the balance
estimate EBF provided by the execution of queries in F . This estimate is calculated by the Equation
13, which consists of the sum of the estimated balance (Equation 10) for each query qj , considering
the estimated initial time estqj previously defined for qj . Another estimate used in the balance gain
definition (Definition 3.2), represented by EBF∪{qi} refers to the balance provided by running qi at
smk (Equation 14). EBF∪{qi} is the maximum estimated balance obtained by inserting qi at each of
the possible positions of the queue F (between positions 1 and |F |, inclusive). Thus, EBF∪{qi}(j) is
the estimated balance obtained by inserting qi in the position j of F . So, EBF∪{qi}(j) is calculated
by the Equation 15 and consists of the sum of the following terms:

(1) sum of the estimated balance of each query ql, such that 1 ≤ l ≤ j − 1, considering the estimated
starting time estql previously defined for ql;

(2) estimated balance for query qi, considering the estimated starting time estqj previously defined
for qj . This balance is calculated based on the time estqj since the estimated balance EBF∪{qi}(j)
refers to the insertion of qi in the position j of the queue F . Thus, the estimated starting time
for qi would be the same estimated starting time previously defined for qj ;

(3) sum of the estimated balance of each query ql, such that j ≤ l ≤ |F | − 1, considering that each
query ql would be delayed according to the estimated runtime eruntqi of qi, that is, the estimated
starting time estql of ql would be delayed according to eruntqi time.

EBF =

|F |−1∑
j=1

ebqj (estqj ) (13)

EBF∪{qi} = max{EBF∪{qi}(j)|1 ≤ j ≤ |F |} (14)

and

EBF∪{qi}(j) =

j−1∑
l=1

ebql(estql) + ebqi(estqj ) +

|F |−1∑
l=j

ebql(estql + eruntqi) (15)

Next, we will describe in detail all the steps and algorithms involved in the proposed solution for
the dispatching problem.

The dispatching process starts when the client application sends a message to the facade module
requesting the execution of a given query qi. Upon receiving this request, the facade module performs
Algorithm 1 (main algorithm at facade module), which takes as input the query qi and uses dm as a
global variable referencing the dispatcher module. Then, the facade module creates a data structure q′i
to represent the query qi (lines 2 to 6 at the Algorithm 1). This data structure, whose type was called
SLAQueryDS, contains the query itself qi, besides some additional information: the time instant at
which the query qi was received at the facade module, i.e., the arrival time of qi at the data service
(line 2), the qi identifier (line 3), the revenue and the SLO (maximum response time) from qi (line 4)
agreed between the customer and the data service provider, and the estimated runtime for qi, which
must be previously obtained (line 5). In the experiments, we defined one SLO for each query type
Qk. Thus, all instances of the same query type have the same SLO. The estimated runtime of a query
instance qi was obtained by running qi with empty cache (memory free). Next, the facade module
redirects the received request, now containing a data structure that represents the query qi (that is,
q′i), to the dispatcher module (line 7 at Algorithm 1, calling Algorithm 2 from dispatcher module).
Subsequently, the response time rtq′

i
is calculated (line 8) and q′i is sent to the monitor module, in
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order to update the statistics regarding q′i (line 10). Algorithm 2 will return the result of the query
q′i, which is stored in the variable result. Finally, Algorithm 1 returns the variable result to the client
application (line 11).

Algorithm 1: Main algorithm of facade module
input : query instance qi
output : query result
Data: dm reference to dispatcher module

1 begin
2 atqi ← getCurrentTime();
3 idqi

← generateQueryId();
4 slaqi

← getSLA(qi);
5 eruntqi ← getEstimatedRunTime(qi);
6 q′i ← createSLAQueryDS(idqi

, qi, slaqi
, atqi , eruntqi);

7 result ← dm.Algorithm2(q′i);
8 rtqi ← getCurrentTime() − atqi ;
9 q′i.setResponseTime(rtqi);

10 sendStatisticsToMonitor(q′i);
11 return result;
12 end

The dispatcher module, upon receiving a message from the facade module requesting the execution
of a query qi, runs Algorithm 2 (algorithm for receiving query request at dispatcher module), which
receives as input the data structure q′i, which represents the query qi. Furthermore, the global variable
D, which represents the dispatching queue, is used by Algorithm 2. The dispatching queue is used
to store the queries to be dispatched by the dispatcher module. Initially, the Algorithm 2 inserts
the query q′i into the dispatching queue D (line 2) and the dispatcher notifies himself informing that
a new query was added in the dispatching queue (line 3). Algorithm 3 (main algorithm for query
dispatching) is responsible for receive such notification and dispatch the query q′i. While q′i does not
finish its execution, the dispatcher module waits for a notification informing that q′i results is available
(between the lines 4 and 6). Finally, the q′i results is returned to the facade module (line 7).

Algorithm 2: Algorithm for receiving query request at dispatcher module
input : data structure q′i
output : query result
Data: dispatching queue D

1 begin
2 D.add(q′i);
3 notifyDispatcher(q′i);
4 while not hasResult(q′i.getId()) do
5 waitForResultNotification();
6 end while
7 return getResult(q′i.getId());
8 end

Algorithm 3: Main algorithm to query dispatching
Data: list V of available instances of scheduler module

1 begin
2 while true do
3 q′i ← getNextQuery();
4 foreach smk ∈ V do
5 e ← smk.Algorithm4(q′i);
6 smk.updateEstimates(e);
7 end foreach
8 smk ← Algorithm5(q′i);
9 smk.Algorithm7(q′i);

10 end while
11 end

Upon being notified that a new query was added in the dispatching queue, the dispatcher runs
Algorithm 3 (main algorithm for query dispatching), which uses a global variable V , which represents
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the list of available scheduler module instances. This algorithm runs indefinitely by repeating the
loop between lines 2 and 10. Within this loop, the first step consists in obtaining the next query
to be dispatched (line 3), which is stored in the variable q′i. Next, the loop between lines 4 and 7 is
executed. This loop runs the hypothetical scheduling of q′i in each scheduler module instance smk ∈ V
(line 5, call to the Algorithm 4). That is, the dispatcher module sends a message, containing query q′i,
for each scheduler module instance smk ∈ V requesting an estimate of the profit that the execution
of query q′i at the instance smk would bring to the data service (line 5). As mentioned earlier, this
profit is measured by using two metrics: interaction gain (Definition 3.1) and balance gain (Definition
3.2). Besides these two metrics, variable e stores the estimated response time associated with a given
scheduler module instance smk, which is the time instant estimated to complete the execution of the
last query in the scheduling queue at smk subtracted from the current time instant. This information
is used to identify if the instance smk is overloaded compared to other scheduler instances. The
balance gain, interaction gain and estimated response time will be used by Algorithm 5 to select the
scheduler instance for which the query q′i will be dispatched. After an instance smk to answer the
request sent by the dispatcher, the balance and interaction gains (if q′i would dispatched to smk)
estimates, as well as the estimated response time associated with smk are updated (line 6). At line
8, the algorithm selects the scheduler instance smk with highest interaction gain among those with
higher balance gain (call to Algorithm 5). This instance will be responsible for executing q′i. Next,
the dispatcher will send the query q′i to the selected scheduler instance (line 9, call the Algorithm 7,
main algorithm at scheduler module).

Algorithm 4 (the algorithm for hypothetical scheduling is performed by a scheduler instance) des-
cribes the hypothetical scheduling of query q′i in a particular scheduler instance smk. Thus, this
algorithm runs at scheduler instances. Algorithm 4 has as input a query q′i. The output of this algo-
rithm, represented by the variable e, consists of the estimated response time needed to run all queries
in the scheduling queue of smk, as well as an estimate of the benefit that the execution of the query
q′i at smk would bring to the data service (more precisely, this benefit is measured by the estimates
balance gain and interaction gain). This variable consists of a data structure whose type, denoted
EstimatesDS, consists of: i) idsmk

, the scheduler instance identifier, ii) balance gain provided by q′i; iii)
interaction gain provided by q′i, and, iv) tresponse, estimated response time needed to run all queries
in the scheduling queue of smk. In addition, Algorithm 4 uses the global variable F , which represents
the scheduling queue of smk. Initially, it runs a call to Algorithm 8 (line 2). Algorithm 8 aims to
estimate the balance gain and the interaction gain that would be afforded by the execution of query
q′i at the instance smk. Algorithm 8 will be described in detailed later. A data structure containing
these estimates is stored in the variable g. Next, the estimated response time for the execution of all
queries in F is stored in the variable tresponse (line 3). This information is used to assist in selecting
the scheduler instance responsible for running q′i, at Algorithm 5. Finally, a data structure of type
EstimatesDS, containing the estimates generated by the hypothetical scheduling, is created (line 4)
and returned (line 5).

Algorithm 4: Algorithm to hypothetical scheduling used by scheduler module instances
input : data structure q′i
output : data structure e
Data: scheduling queue F , identifier idsmk

of scheduler module instance smk

1 begin
2 g ← Algorithm8(q′i);
3 tresponse ← q|F |−1.getFinalTime() - getCurrentTime();
4 e ← newEstimates(idsmk

, g, tresponse);
5 return e;
6 end

The algorithm for selecting a scheduler instance, called by Algorithm 3, is described by Algorithm
5 (algorithm to select a scheduler instance to run a given query q′i). Algorithm 5 has as input query
q′i to be executed and as output the scheduler instance selected to run q′i. In addition, the algorithm
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uses a global variable V , which represents the list of scheduler instances. Moreover, algorithm uses a
constant c in order to define a upper limit to Vinteraction. So, in our experiments, we used c = 0.5.

Algorithm 5: Algorithm to choose which scheduler module instance will run a query instance q′i
input : data structure q′i
output : reference smchosen to scheduler module instance
Data: available instance list V of scheduler module, constant c

1 begin
2 bgmax ← max{bgsmk | smk ∈ V };
3 Vbalance ← {smk ∈ V | bgsmk = bgmax};
4 eruntmin ← min{eruntsmk | smk ∈ Vbalance};
5 eruntmax ← (1 + c)× eruntmin;
6 gimax ← max{gismk | smk ∈ Vbalance and eruntsmk ≤ eruntmax};
7 Vinteraction ← {smk ∈ Vbalance | gismk = gimax and eruntsmk ≤ eruntmax};
8 smchosen ← getElement(Vinteraction);
9 return smchosen;

10 end

Let smk a scheduler instance, F the scheduling queue of smk, bgsmk
the balance gain of running the

query q′i at smk, gismk
the interaction gain provided by running query q′i at smk and eruntsmk

the
estimated time interval needed to run all queries in F . Besides, bgsmk

, gismk
and eruntsmk

are the
estimates obtained in the main dispatching algorithm (Algorithm 3). Thus, initially, algorithm 5 gets
the set Vbalance of schedules instances with the higher balance gain, considering all available scheduler
instances in V (lines 2 and 3). Next, the algorithm obtains eruntmin, the minimum value of eruntsmk

,
considering each smk ∈ Vbalance (line 4). So, eruntmin is used to calculate the upper limit for the
runtime (eruntmax) of a given instance smk ∈ Vbalance (line 5). Subsequently, the algorithm calculates
the maximum interaction gain gimax, considering the instances smk ∈ Vbalance with estimated runtime
(eruntsmk

) less or equal to eruntmax (line 6). Thus, this algorithm defines the set Vinteraction of
scheduler instances with interaction gain equal to gimax. The restriction eruntmk

≤ eruntmax (lines
6 and 7) aims to avoid the overload of a scheduler instance smk. Finally, the scheduler instance
smchosen returned (line 9) can be any instance in the set Vinteraction (line 8).

Suppose that a query q′i has been dispatched to the scheduler instance smk. In this case, at the
time that q′i finishes running, smk sends the results of q′i to the dispatcher. This result is sent by
calling the Algorithm 6 at the dispatcher. Algorithm 6 has as input the query q′i and the variable
result, which represents the results of q′i. Moreover, the Algorithm 6 uses the global variables V (list
of scheduler instances) and R (a key-value mapping, where key is the query identifier and value is the
query result). At Algorithm 6, the first step is to store the result of q′i in R (line 2). The mapping
R is used in Algorithm 2 to send the result of q′i from the dispatcher to the facade module. Then, in
line 3, the dispatcher notifies itself in order to continue the execution of the Algorithm 2 (which sends
the results from dispatcher to facade module).

Algorithm 6: Algorithm for receiving by dispatcher module the result of executing a query q′i on
an instance smk of scheduler module
input : data structure q′i, variable result
Data: available instance list V of scheduler module, key-value map R

1 begin
2 R.addResult(q′i.getId(), result);
3 notifyResult();
4 end

3.5 Query Scheduling

Let smk a scheduler instance, F the scheduling queue of smk and q′i a query instance dispatched to
smk, which must be inserted into the queue F . The query scheduling problem consists in choosing the
best query execution sequence (for queries in F ) in order to maximize the profit of the data service
provider. In this work, this sequence is defined when a query q′i is inserted in F . Thus, the problem
can be redefined as follows: given a scheduling queue F and a query instance q′i, in which position
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of F should we must insert q′i in order to maximize profit of the data service provider? Thus, a
scheduler instance smk has as one of its functions to define the execution sequence for the queries in
its scheduling queue. This sequence is profit-oriented and based on query interactions.

Let smk a scheduler instance, F the scheduling queue of smk, |F | the number of queries in F and
q′i a query instance dispatched to smk. The execution flow of the scheduling process starts with the
arrival q′i at smk. The next step is to add q′i in F , between positions 1 and |F |, inclusive. When q′i is
at the position 1 of F and smk is notified that can run a new query, q′i is moved to position 0 of F ,
and later performed in the DBMS copy hosted in smk. After the execution of q′i, its result is sent to
smk. So, smk send this result to the dispatcher.

When q′i arrives at smk, its position in F is defined by means of Algorithm 7 (main algorithm of
scheduler module), which has q′i as input and F (the scheduling queue of smk) as a global variable.
So, let q′i a query dispatched to smk and q′j the query at the j position in F , such that 1 ≤ j ≤ |F |−1.
Algorithm 7 starts getting the data structure g, of the type GainsDS, (line 2) which comprises: i)
balance gain estimate, ii) interaction gain estimate and iii) the position j of F selected to host q′i,
such that 1 ≤ j ≤ |F |. The values of g for the query q′i are defined by Algorithm 8. Then, let j
the position of F selected to host q′i (line 3), the estimated starting time estq′

i
of q′i is set with the

same value of the estimated finishing time of q′j−1 (line 4). The next step of this algorithm consists in
postponement the queries q′l, such that j ≤ l ≤ |F | − 1, according with the estimated runtime eruntq′

i

of q′i (line 5). Finally, q′i is inserted at position j of F (line 6).

Algorithm 7: Main algorithm of scheduler module
input : data structure q′i
Data: scheduling queue F

1 begin
2 g ← Algorithm8(q′i);
3 j ← g.getChosenPosition();
4 q′i.defineInitialTime(getFinalTime(q

′
j−1));

5 postponeQueries(j, eruntq′
i
);

6 F .add(q′i, j);
7 end

Algorithm 8 defines the position j of F to host q′i. Besides, algorithm 8 estimates balance gain
and interaction gain provided by scheduling q′i at j. This algorithm has q′i as input, F as a global
variable and g as output. Initially, Algorithm 8 supposes that q′i will be inserted at the position |F |
(first free position) of F . Thus, balance and interaction gains are calculated by the formulas 16 and
11, respectively (lines 2 and 3). Furthermore, the variable j is initialized with the position |F | of F
(line 4). Let bgmax the maximum estimated balance gain provide by scheduling q′i in F (at one of the
F ’s positions). Algorithm 8 checks each position l, such that 1 ≤ l ≤ |F | − 1, and identifies which
position of F generates the highest interaction gain, considering only the positions with balance gain
equal to bgmax (lines 5 to 14). If more than one position is found, anyone can be chosen as j. Finally,
the data structure g is returned (line 15).

Algorithm 8 calculates the balance gain using the Equation 16, which uses EBF and EBF∪{q′
i
}(j).

EBF is the estimated balance gain provided by running the queries in F . EBF∪{q′
i
}(j) is the estimated

balance gain provided by running the queries in F after the insertion of qi at the position j of F
(Equation 15).

bg(q′i, F, j) = EBF − EBF∪{q′
i
}(j) (16)

Let smk a scheduler instance, q′i the next query to be run at smk and F the scheduling queue of
smk. Algorithm 9 runs q′i. This algorithm uses the global variable dm, which represents the dispatcher
module. Algorithm 9 runs continually by repeating the loop between lines 2 and 6. Initially, it obtains
the query q′i (next to run) (line 3). Next, the query q′i is executed and its result stored in the variable
result (line 4). Finally, Algorithm 6 (algorithm for receiving the q′i’s result at the dispatcher) is called
(line 5).
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Algorithm 8: Algorithm to choose the position of scheduling queue to q′i be added and the
estimates of gains in balance and interaction provided for scheduling q′i at the selected position
input : data structure q′i
output : data structure g
Data: scheduling queue F

1 begin
2 bgmax ← bg(q′i, |F |);
3 gimax ← gi(q′i, q

′
|F |−1, null);

4 j ← |F |;
5 for l ← |F | − 1 to 1 do
6 if bgmax < bg(q′i, F, l) then
7 bgmax ← bg(q′i, F, l);
8 gimax ← gi(q′i, q

′
l−1, q

′
l);

9 j ← l;
10 else if bgmax = bg(q′i, F, l) and gimax < gi(q′i, q

′
l−1, q

′
l) then

11 gimax ← gi(q′i, q
′
l−1, q

′
l);

12 j ← l;
13 end if
14 end for
15 return newGain(bgmax, gimax, j);
16 end

Algorithm 9: Algorithm to run queries in scheduling queue
Data: reference dm to dispatcher module

1 begin
2 while true do
3 q′i ← getNextQuery();
4 result ← runQuery(q′i);
5 dm.Algorithm6(q′i.getId(), result);
6 end while
7 end

4. EXPERIMENTAL EVALUATION

In order to evaluate QIDMaC, we have chosen a scenario in which queries are executed in a sequential
way. The choice for such a scenario was motivated by the discussion about the need of predictability
in the current paradigm of optimization problem [Florescu and Kossmann 2009]. The idea is to ensure
that the queries are executed in an acceptable time, but not as quickly as possible. According to this
approach, optimizing for the 99 percentile is more important than for the average. Thus, for instance,
in the case that each query has its deadline (SLO), a solution that is optimized by 99 percentile is
more appropriate. In this case, each query has to be run in a defined period of time to generate profit
to the service provider, otherwise penalties can be applied.

When each query has a maximum time to be run, the use of a concurrent solution can be an
inefficient way to schedule queries because of the complexity in predicting their runtime if compared
with sequential approaches. Many factors, such as operating system scheduling algorithm and resource
utilization impact of each query during its execution, meddle in concurrent solution effectiveness. In
fact, they can decrease the workload response time, but it is harder than in sequential solutions to
control the query deadline fulfillment or to guarantee the profit in an SLA environment that uses query
response time as metric, for example. Therefore, a sequential solution shows to be more feasible in
some situations than a concurrent one. As a future work we intend to extend QIDMaC to concurrent
scenarios.

4.1 Environment

We implemented a prototype of our framework in Java, which runs on Amazon’s EC2 cloud infrastruc-
ture in the same availability zone (us-west-1c). Each machine in our system runs on a small instance
of EC2. This instance is a virtual machine with a 2.4 GHz Xeon processor, 1.7 GB memory and 160
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Fig. 2: Comparative of strategies - Effectiveness

GB disk capacity. We use the Ubuntu 12.04 operating system and the PostgreSQL 9.3 DBMS with
default settings. We used TPC-H benchmark (with approximately 2.4 GB dataset). Five machines
were used in these experiments, i.e. one VM controller (VMC) and four VM schedulers (VMSs). Each
VMS had a fully replicated dataset and a PostgreSQL instance.

4.2 Experimental Results

With the aim to demonstrate the advantages of using query interactions to improve the decision-
making in cloud data management services, QIDMaC framework was evaluated using three approaches
to measure the queries interactions: IS, DRR and GBA [Siqueira et al. 2012].

We used 20 workloads, which consisted of 5 instances of each TPC-H query type. Thus, one wor-
kload had 110 query instances, i.e. 5 instances x 22 query types. During the experiments, different
strategies for dispatching and scheduling of queries were evaluated, as described following: Roundro-
bin/FIFO - dispatcher module executes the roundrobin algorithm and scheduler module uses FIFO
approach; SLA-Tree - both dispatcher and scheduler modules use the approach proposed by Chi
et al. [2011]; QIDMaC/IS - both dispatcher and scheduler modules use QIDMaC together with IS
strategy; QIDMaC/DRR- both dispatcher and scheduler modules use QIDMaC together with DRR
strategy; QIDMaC/GBA - both dispatcher and scheduler modules use QIDMaC together with GBA
strategy. IS, DRR and GBA are different strategies, proposed by Siqueira et al. [2012], to calculate
the interaction factor.

To measure the strategy effectiveness, it was analyzed the workloads and the balance (revenue -
penalty), which is greater than the value provided by the strategy RoundRobin/FIFO. Thus, effec-
tiveness is determined by the ratio between the balance and the total of workloads. Note that the
operating cost was the same for all strategies. So, we decided to disregard it for comparison purposes.
For this reason, we use the balance and not profit. The balance obtained was measured in a fictitious
monetary unit. However, it is possible to use other monetary unit, e.g. dollar.

In the first experiment, the effectiveness was evaluated. Figure 2 shows the effectiveness of each
strategy. We can observe that SLA-Tree presented 60% of effectiveness, i.e., the balance of SLA-Tree
strategy was greater than that Roundrobin/FIFO strategy in 60% of workloads. Thus, SLA-Tree was
better than that the Roundrobin/FIFO in 12 in total 20 workloads executed. This is due to the fact
that the SLA-Tree strategy did not exploit the benefits provided by query interactions in dispatcher
and scheduler modules. QIDMaC/IS, QIDMaC/DRR and QIDMaC/GBA strategies shows 95%, 90%
and 85% effectiveness, respectively.

In the second experiment, performance was measured, i.e., the total time required to process all
workloads. Figure 3a shows the performance of each strategy. Roundrobin/FIFO strategy executed
all workloads in 2,93 hours and SLA-Tree strategy performed all workloads in 2,85 hours (reduction
of 2,5%). The strategies proposed in this work improved the response time: QIDMaC/IS performed
all workloads in 2.44 hours (16.71% reduction); QIDMaC/DRR in 2.38 hours (18.64% reduction) and
QIDMaC/GBA in 2,53 hours (13.42% reduction).

In the last experiment, balance was measured. For each strategy, the total balance was defined,
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Fig. 3: Comparative of strategies - Performance and Balance
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Fig. 4: Comparative of strategies - Benefits and limitations regarding to balance

which consists of adding the balance provided by each workload. For comparison, it calculated the
maximum balance that could be obtained. This value can be calculated by adding the revenue from
each query instance that composes the workloads. This value is present in the SLA defined for the
query instance. It was assumed that all query instances were performed according to SLAs. Thus,
no strategy had penalties. To calculate the balance for a particular strategy, the total balance of
this strategy was divided by the maximum balance. Figure 3b shows the balance of each strategy.
Roundrobin/FIFO and SLA-Tree, strategies that do not address query interactions, showed 89.4%
and 91% of balance, respectively. QIDMaC/IS, QIDMaC/DRR and QIDMaC/GBA strategies obtai-
ned 95,3%, 95,4%, 94,8% of balance, respectively. These results indicate that the use of the query
interactions concepts improves processing workloads, providing better performance and, consequently,
larger provider’s profit.

In order to analyze the potential and limitations of interaction-aware approaches, we elaborated
other two experiments similar to the previous one (Figura 3b). Each one was composed of 20 wor-
kloads, which consisted of 5 instances of 9 selected TPC-H query types. Thus, each workload had 45
query instances, i.e., 5 instances x 9 queries. The difference between these two experiments was the
chosen query types. In the first one (Figure 4a), almost all data accessed from disk fit in memory.
Whereas in the second experiment the data accessed from disk to memory have an expressive size, in
GB, if compared with memory size.

According to Figure 4a, when all data accessed from disk fit in memory, the compared approaches
was worse or equal to Roundrobin/FIFO. This happened because scheduling of all approaches have
similar query interaction, since there were few page swapping and, in general, the common data were
in memory, independent of query execution order. On the other hand, the second experiment (Figure
4b) had more page swapping because of the size of data accessed by all workloads. In this scenario,
interaction-aware dispatching and scheduling approaches defined query execution order in a way to
decrease page swapping. So, data service improved query interactions in these approaches and, hence,
got a higher profit, if compared with SLA-Tree and Roundrobin/FIFO.
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5. CONCLUSION AND FUTURE WORK

In this article, a query interaction-aware framework for providing data service in cloud systems,
denoted QIDMaC, has been presented. The main functionality presented by QIDMaC is to deliver
required software infrastructure to make data service available in cloud computing environment. More
specifically, QIDMaC implements efficient solutions for database query dispatching and scheduling.
Moreover, QIDMaC is able to support non-predictable workloads and to take advantage of using
query interaction. The proposed framework has been evaluated. For that, the TPC-H benchmark has
been used on PostgreSQL. The results show that QIDMaC has potential to improve the efficiency of
database service and to increase the profit of cloud data service providers. As future work we intend
to extend QIDMaC to solve the resource provisioning problem.
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