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Abstract. Semi-supervised approaches have been successfully applied to many machine learning problems. A
particular case of semi-supervised settings is transductive learning, in which the goal is solely to label the available
unlabeled data, instead of generating a predictive model that should generalize well to unseen data. Nevertheless, there
are cases in which a transductive learner may perform even worse than an inductive learner that is trained with only the
labeled data. For alleviating this problem, an effort towards safe semi-supervised support vector machines (S4VM) was
made, so that a transductive SVM would never degenerate the performance when compared to its inductive counterpart.
Even though robust, S*VM still lacks the ability of naturally dealing with multi-class problems, having to rely on multi-
class encoding schemes, such as one-vs-one and one-vs-all strategies. These schemes may not take advantage of the
full potential of S*VM, especially in complex multi-class problems with overlapping classes. In this article, we address
this problem by providing a binary-tree scheme for aggregating distinct S*VMs in a bottom-up fashion. The proposed
approach is named HiBUST, which stands for Hierarchical Bottom-Up S*VM Tree. Experimental results show that
HiBUST can provide increased predictive performance for many multi-class problems when compared to a one-vs-one
S*VM. In addition, we show that HiBUST is also beneficial for complex binary-class problems.

Categories and Subject Descriptors: H.2.8 [Database Management|: Database Applications—Data mining; 1.5.2
[Pattern Recognition|: Design Methodology— Classifier design and evaluation

Keywords: multi-class SVMs, safe support vector machines, semi-supervised learning, transductive learning

1. INTRODUCTION

In transductive learning, given a labeled sample XX) = {(x;,;)}\_; and an unlabeled sample X(V) =
{%,}j=; where x;,%X; € R¢ and y; € {1,...,c}, the goal is to infer a function f : X — YU 5o
that f is expected to be a good predictor of the unlabeled data X(U). Note that f is defined only
on the given training sample, and it is not required to make predictions on a distinct set of data,
e.g., on a (new) test set [Chapelle et al. 1999; Zhu and Goldberg 2009; Zhang et al. 2010; Bahadori
et al. 2011; Yu et al. 2012]. While the inductive approach is useful when a global model is needed
in an approximate form, the transductive approach is more appropriate for applications where the
focus is not on the generalization capability of the model, but rather on particular cases [Vapnik 1998;
Gammerman et al. 1998].

Recently, a robust approach for transductive learning, named Safe Semi-Supervised Support Vec-
tor Machines (S*VMs) |[Li and Zhou 2011], has been proposed. S*VMs exploit multiple candidate
low-density separators simultaneously, instead of looking for a single optimal low-density separator
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resulting from the set of labeled and unlabeled data. Considering that the amount of unlabeled data
is usually much larger than that of labeled data, there exists more than one large-margin low-density
separator that properly fits the data, and a poor choice may result in degenerated performance. The
predictive accuracy of S*VMs, on the other hand, is never significantly worse when compared to
inductive SVMs [Li and Zhou 2011].

Even though S*VMs present several advantages over other transductive learners, they do not natu-
rally deal with multi-class problems. Due to various complexities, a direct mathematical solution for
multi-class problems using a single SVM formulation is usually avoided [Duan and Keerthi 2005]. Pop-
ular strategies for multi-class SVM classification include one-versus-all classification with a winner-
takes-all strategy (OVA-WTA SVM) and one-versus-one classification with maz-wins voting (OVO-
MWV SVM).

Due to its formulation, S*VM does not output confidence values for its predictions, thus the strategy
OVA-WTA cannot be employed. In order to circumvent such a difficulty, one can use the OVO-MWV

% S*VMs are executed for a c-class problem. According to Rifkin and Klautau

strategy, in which <
[2004], assuming that the base classifiers are properly tuned, there is not much difference among
these schemes. However, classifiers that exploit relationships between classes could offer superior
performance [Rifkin and Klautau 2004], which is precisely the assumption we try to demonstrate

herein.

Another problem that arises regards the small number of labeled objects available in transductive
learning settings, where selecting a kernel and optimizing its parameters becomes impractical due to
the lack of enough data. In the case of multiple classes, this problem gets even worse because of
the need for multiple classifiers. Bearing in mind that classes may not be linearly-separable in the
input space, a method capable of combining multiple linear SVMs can be of interest in such settings.
To illustrate this problem, let us consider Figure 1. In its first part (Figure la) a data set with 2
classes (red circles and black diamonds) and 9 labeled objects is presented. One can see that the
class represented by red circles is composed by two clusters. Besides, note that the classes are not
linearly separable. Thus, even tough this problem can be considered simple, only one linear SVM will
not obtain good results. However, if we decompose the problem in such a way that a linear SVM is
constructed to differentiate between pairs of clusters of different classes, the problem can be solved by
using two linear SVMs. The result of this approach is presented in Figure 1b.

Having similar scenarios in mind, we propose a hierarchical S*VM approach that is capable of
naturally dealing with multi-class problems. By taking advantage of both class information and
distances between data objects, our approach builds a bottom-up binary tree structure that divides
the complex input space into sub-spaces, with the underlying (and intuitive) assumption that the
respective sub-problems are easier to solve than the whole classification problem. More precisely,
the assumption we make is that classes may be distributed across distinct clusters, and thus objects
from the same class can lie on different regions of the input space. The proposed algorithm, named
Hierarchical Bottom-Up S*VM Tree (HiBUST), performs semi-supervised constrained clustering to
divide the input space into sub-regions, and then recursively merges the closest sub-regions from
distinct classes. Next, it makes use of S*VM to separate two regions of different classes. Experimental
results obtained from a variety of different data sets show that HiBUST is capable of naturally dealing
with transductive multi-class problems, increasing the accuracy of a single S*VM over the whole data
set.

The remainder of this article is organized as follows. In Section 2, we contextualize our contribution
by briefly reviewing the literature on semi-supervised support vector machines. Section 3 addresses
the proposed HiBUST algorithm, whereas Section 4 presents an experimental analysis to validate its
applicability. We conclude the article in Section 5.
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(a) Training data — blue squares represent unlabeled objects, red circles and black diamonds represent labeled objects

of (two) different classes.

2. RELATED WORK

Semi-supervised support vector machines (S*VMs) — also known as Transductive SVMs (TSVMs) —
are extensions of supervised SVMs for performing semi-supervised learning by simultaneously learning
the optimal hyperplane and the labels for unlabeled objects [Joachims 1999; Fung and Mangasarian
2001; Chapelle and Zien 2005; Chapelle et al. 2006]. They find the large-margin separator by favoring
the decision boundary that lies in low-density data regions.
function f:x ~ {£1} and y € {+1}*, where u = |X¥(U)| i.e., the number of unlabeled objects. In

B T B

(b) Classification obtained using problem decomposition.

Fig. 1.

Pedagogical example for problem decomposition.

order to find f, one formulates a (minimization) optimization problem as follows:

min
f.yeB

l u
% +Gi Zf(ynf(xi)) +Co > U5, (%)) (1)

j=1
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where B = {y € {£1}¥| -5 < Z;LZI Y Zi:lli” < B} is induced through the balancing constraint
that avoids the trivial solution of classifying all unlabeled data to the same class; H is the Reproducing
Kernel Hilbert Space induced by a given kernel K; £(y, f(x)) is the Hinge loss; and C; and Cj are
regularization parameters for trading-off complexity and empirical error on labeled and unlabeled

data, respectively.

Note, however, that the minimization problem in (1) is non-convex, and thus subject to local
minima. Avoiding inappropriate local minima when approaching the optimal solution for the problem
in (1) is the main goal towards safe semi-supervised support vector machines, i.e., SVMs that never
degenerate the performance achieved by a standard supervised approach that only makes use of the
labeled data.

An approach towards safe SVMs was implemented by Li and Zhou [2011] in the so-called safe semi-
supervised support vector machines (S*VMs), which works as follows. Let M = {§}L_; be the set of
predictions provided by low-density separators, y* be the ground truth label-assignment, and y*""™
be the label-assignment provided by an inductive SVM trained with the labeled data. For any given
label-assignment y = {£1}“, consider that earn(y,y*,y*"™) denotes the accuracy improvement over
the inductive SVM, and that loss(y,y*,y*’"™) denotes the respective accuracy loss. If the ground
truth y* was indeed known, the solution would be trivially found by looking for the y that maximizes
J(y,y*, y*'™) = earn(y,y*,y*'™) — Moss(y,y*,y**™). Since the ground truth is unknown, S*VM
assumes that y* € M, and hence the problem can be seen as the one of optimizing the worst-case
improvement over the inductive SVM, that is:

¥ = argmax min J(y,y,y*""). 2)
ye{£1}u yeM

Note that S*VM takes into account all large-margin low-density separators for discovering the opti-
mal labeling §. To find diverse low-density separators {f;}7_; and their respective label-assignments
{9+}1_,, consider h(f,¥) as being the function to be minimized in (1). Thus, one has the following
objective function:

T
min h(fe,§¢) + MQ{F¢}i—1) (3)

{fe,9:€BY, =1
where T is the number of separators, 2 is a penalty function regarding their diversity, and M is a
large constant (e.g., 10%) to enforce large diversity. The objective function in (3) favors separators
with large-margin as well as with large diversity. Since the optimization problem in (3) is non-convex,
Li and Zhou [2011] propose a simple heuristic sampling search, based on k-means clustering, to find

representative separators. For more details on S*VMs, please refer to the original reference [Li and
Zhou 2011].

As already mentioned, even though S*VMs present several advantages over other transductive
learners, they do not naturally deal with multi-class problems (which is also the case of inductive
SVMs). Due to various complexities, a direct mathematical solution for multi-class problems using
a single SVM formulation is usually avoided [Duan and Keerthi 2005]. Multi-class encoding schemes
addressed in Section 1, such as OVA-WTA, OVO-MWYV, and error-correcting output codes [Dietterich
and Bakiri 1994], are usually adopted for extending binary classifiers such as SVMs, though each
scheme has advantages and disadvantages [Lorena et al. 2008].

It is our impression that the research community does not concentrate enough efforts on providing
robust solutions for employing SVMs in multi-class problems (either for supervised or semi-supervised
learning). This is probably due to the fact that SVMs can achieve higher accuracy rates with the
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current multi-class encoding schemes compared to natural multi-class classifiers, such as Decision
Trees and Neural Networks. However, extra gains can be achieved by considering better algorithms
for learning SVMs [Rifkin and Klautau 2004].

We focus on divide-and-conquer approaches, which consist of strategies for problem decomposition
and aggregation. The use of clustering for decomposing classification problems was studied by Vilalta
and Rish [2003] in the context of Naive Bayes classification. The parameters of the clusters for
each class were estimated separately to avoid poor estimates caused by objects in different regions of
the input space. Barros et al. [2012] propose a mixture of experts algorithm that generates several
decision trees from clusters generated by the EM algorithm [Dempster et al. 1977]. In the work of
Rida et al. [1999], Cheng et al. [2010], Pang et al. [2011], a SVM! is induced on each cluster found
in the input space. If the region covered by one local expert contains objects from more than two
classes, it is necessary to use a multi-class scheme, such as OVA-WTA. These approaches require
critical parameters to be set, such as the number of clusters per class, which are usually unknown «a
pPriori.

In the work of Vural and Dy [2004], Fei and Liu [2006], Tibshirani and Hastie [2007], Lorena and
de Carvalho [2010], and Liu et al. [2011], the multi-class problem is decomposed into a binary tree of
SVM classifiers. These algorithms assume that each class is comprised of a single cluster. They also
require the selection of a suitable kernel, as well as its parameters, a task which is often determined
by a cross-validation procedure. However, for transductive learning settings in which only a small
number of labeled objects is available, cross-validation procedures become impractical. Hence, there
is a need for algorithms able to combine different linear SVMs, which are known for being state-of-
the-art classifiers for binary problems, in order to create complex decision boundaries for multi-class
problems when classes are multimodal. Barros et al. [2011] propose a decomposition scheme with
SVM for inductive learning that does not consider the one-cluster-per-class assumption. Nevertheless,
the authors employ a cross-validation procedure for discovering the number of clusters per class, which
is not possible when only a few labeled objects are available, as just discussed.

Our approach differs from the previously presented algorithms as it is the first attempt that simul-
taneously circumvents three of their fundamental issues by: (i) employing a constrained clustering
algorithm capable of estimating the number of clusters for each class; (ii) using an aggregation scheme
based on a binary tree that guarantees that we always consider binary problems, regardless of how
many classes the problem is comprised of; and (iii) not requiring additional user-defined parameters
other than the ones already needed for S*VM.

3. HIERARCHICAL BOTTOM-UP S*VM TREE (HIBUST)

As briefly anticipated in Section 2, we propose a new method for addressing S*VM issues regarding
multi-class problems. Our approach is named Hierarchical Bottom-Up S*VM Tree (HiBUST). Es-
sentially, our underlying premise is that some transduction problems are quite difficult to solve when
executing a single S*VM and, in such problems, clustering the data set into smaller sub-problems and
addressing these smaller problems can make it easier to solve the original problem. Formally speaking,
our algorithm approximates the target function in specific regions of the input space, instead of mak-
ing use of the full input space. These specific regions are not randomly chosen, but defined through
a constrained k-means-based clustering algorithm.

More specifically, HiBUST’s main steps can be summarized as follows:

(1) decompose classes into clusters (sub-problems) by using a semi-supervised constrained clustering
algorithm;

n the work of Rida et al. [1999], any classifier can be employed in the framework.
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(2) label some objects iff the data partition generated by the constrained clustering algorithm provides
confidence-levels suitable for such, and then make use of them accordingly (as discussed later);

(3) build a binary tree in a bottom-up fashion by merging sub-problems according to the distances
between centroids;

(4) process unlabeled objects, in a top-down fashion, by traversing them through the tree according
to the output of the S*VM for each node of the tree, and then label these objects according to
the classes of the leaves they have reached.

Step (2) is optional — it may be used to increase the number of labeled objects so that more
evidence is available to S*VM. Each of these steps is described in detail in the next subsections.

3.1 Step 1 — Problem Decomposition

To perform clustering considering the information about the classes of each object, we adopt what we
call a Multiple Clusters per Class k-means (MCCK) algorithm [Sestaro et al. 2012]. MCCK receives
partial information about the desired partition in the form of must-link (ML) and cannot-link (CL)
constraints [Wagstaff et al. 2001]. A ML constraint indicates that two objects should lie in the same
cluster, whereas a CL constraint indicates that two objects should lie in different clusters. For a review
on constrained clustering, we refer the reader to Basu et al. [2008] and references therein.

Since we assume the availability of a small set of labeled objects, we can derive pairwise constraints
from the class labels. However, there is a caveat on the use of the information provided by class
labels, particularly due to the (sometimes subtle) difference between class and cluster labels. Since
classes can be comprised of multiple clusters, the use of the information provided by class labels for
enhancing clustering results may be misleading. More specifically, if two objects belong to the same
class but to different clusters, a ML constraint between them will guide the clustering algorithm to
merge these two clusters, which can be detrimental to the clustering process.

Note that CL constraints are valid as long as the cluster assumption, which states that objects in
the same cluster are likely to come from the same class [Chapelle et al. 2006], holds. In other words,
the use of class labels as if they were cluster labels, implies in the one-cluster-per-class assumption.
Although this assumption is often employed in practice, it is rarely explicitly stated in constrained
clustering studies, possibly causing misunderstandings. To avoid this confusion, we denote constraints
deduced from class labels by M L and CL, i.e., ML indicates that two objects belong to the same class,
whereas C'L indicates that two objects belong to different classes. A set of constraints is represented
by a symmetric matrix Ryxny (N is the total number of objects), where:

1, if a ML constraint between x; and x; exists,
rij = 4 —1, if a C'L constraint between x; and x; exists, (4)
0, otherwise.

The intuition behind MCCK is that if a constraint is violated as an object is assigned to a cluster,
the current number of clusters (for that particular class) may be insufficient, and a new cluster should
be created from that object. Initially, there are c clusters, i.e., one for each class. Due to the process
of creating clusters, a mapping is necessary to control which clusters belong to each class. Initially,
this mapping has a one-to-one correspondence between classes and clusters. The mapping is updated
when new clusters are created — later this update procedure is described in more detail. MCCK
sequentially assigns objects to the nearest clusters. However, objects involved in constraints are only
assigned to a cluster if the constraints are not violated. Since we do not assume that there is only a
single cluster per class, the constraints are not verified by simply taking into account the objects of
each cluster. Instead, we do so by jointly considering classes and their respective clusters.
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For instance, suppose that we have two objects, x; and x;. Suppose x; has been assigned to cluster
Cy, whose prototype is p,,. Further assume that r;; = 1 and that u,, is the nearest prototype to x;.
Then, x; will be assigned to C,, only if Cy, and C,, belong to the same class — this is verified through
the mapping previously mentioned. If the clusters belong to different classes, a new cluster is created,
and its prototype is x;. For the mapping update, first the class that x; belongs to is identified. Next,
the new cluster is added to the mapping of that class. Clearly, this process is order-dependent. To
alleviate this problem, at each iteration the objects are processed in a random order. After all objects
have been assigned to clusters, their prototypes (in this case centroids) are updated.

As the creation of clusters is also order-dependent, unnecessary clusters may arise. A pair of
unnecessary clusters occurs when their prototypes are nearest neighbors, and both belong to the same
class. Hence, after the prototypes have been updated, we verify if a pair of clusters meets this criterion.
If this is the case, those two clusters are merged. The prototype of this new cluster will be the average
vector of the two merged prototypes. Again, the mapping between clusters and classes is updated
accordingly.

The main steps of MCCK are described in Figure 2, where d(x;, ,,) = [|xi — p,,]|*. Step 11 verifies
if the assignment will cause a constraint to be violated. Note that even though ML constraints are
not directly verified, they are implicitly examined by checking the classes. As each cluster belongs
to a single class, the ML constraints will not be violated, as long as two objects in a ML constraint
belong to clusters of the same class. The same termination criteria commonly used in k-means can be
adopted, e.g., a maximum number of iterations or a minimum distance between consecutive centroids.
At the end of its execution, MCCK provides a mapping {#;}$_; with the indices of the clusters that
belongs to each class, as well as the partition itself ({C;}¥_;).

3.2 Step 2 — Confidence-Based Labeling

When performing k-means-based clustering, the assumption is that the data is generated by a Gaussian
Mixture Model (GMM), where each component (Gaussian distribution) is a cluster. In this case, the
component mean is the cluster centroid and the covariance matrix is the identity matrix. In addition,
it is well-known that k-means performs hard-assignments, i.e., the probability that one object is
generated by a component is either 0 or 1. For the purpose of obtaining a degree of belief with respect
to which cluster generated each object, one can convert the crisp partition obtained by MCCK into
a soft partition by computing the posterior probabilities given by the GMM that represents the
respective data partition. Specifically, the probability that (x;) is generated by the component (C;)
is:

. Ter(Xi“'l’jv I)
P(]‘Xl) = k ’
2 on—1 TN (%3] py,, I)
where N (-) is the Gaussian distribution, I is the identity matrix, 7; is the mixing coefficient of the jth

component, i.e., the proportion of objects assigned to it by the hard-assignment, and k is the number
of components.

(5)

Assuming a user-defined threshold, €, one can label objects that have a high probability of belonging
to a cluster, following standard procedures widely used in semi-supervised settings. More precisely,
assuming that every cluster centroid is a representative vector of a given class, y; = ¢; iff P(j|%;) > 6,
vx; € XU | where cj is the class represented by the cluster centroid (u;). Both X and XW) are
updated accordingly. Informally speaking, the confidence level (#) can be seen as a certainty measure
that the model has about an object being sampled from a particular cluster and, as a consequence,
from a particular class.
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1: function MCCK(X = {¥V) yx™} R)
22 k< c // One cluster for each class
3: for each je€{1,...,k} do
4: Let x, be an object randomly selected from the jth class
5: By = X
6 H; {5} // Mapping between clusters and classes
7:  end for
8 for each x; € X do
9: n < argming, .oy gy d(Xi, p1y,)
10: Consider that n € H,,,
11: if {3a,j,s|(ric = —1) A (x4 € C) A(Cj € Hs) A (s =cn)} then
12: k+—k+1
13: Consider that x; belongs to the vth class
14: Ho < Ho U{k}
16: Cy +— {Xl}
17: else
18: Cyp + Cn U {x}
19: end if

20: end for
21:  Update prototypes
22:  for each pair (Cp, Cy) of clusters do

23: N4 argMing,eor g (p) Ay )
24: m = argmin,, e 1 g\ g A Bgs Bin)
25: Consider that p € H,,

26: Consider that q € He,

27: if ¢, =cgAn=gAm=pthen
28: Merge clusters C}p, and C

29: Update the mapping H.,

30: end if

31: end for

32:  If the convergence criterion was not met, then go to Step 8
33:  Return {#;}$_; (mapping) and {C;}F_, (data partition)
34: end function

Fig. 2. Multiple Clusters per Class k-means algorithm (MCCK)

3.3 Step 3 — Tree Construction

The clusters obtained by MCCK correspond to the leaves of the binary tree to be constructed. Note
that several different groups may have labeled objects that share the same class, since we generate at
least one leaf per class.

After creating the leaves, a recursive procedure is initiated. A new group (internal node) is generated
by merging the two most similar nodes, i.e., those whose centroids are the closest according to the
Euclidean distance. Once a node is created, its corresponding objects (that came up from its children)
have their class label replaced by a new unique pseudo-class. Since we focus on binary trees, each
node is merged only once. If the two closest leaf nodes are from the same class, a new leaf node is
created with the union of the objects belonging to each node, and the old nodes are deleted, i.e., they
do not appear in the resulting tree. The recursion stops when there is only one group (root node)
that has not been merged. The tree construction procedure is described in Figure 3.

Each node in the tree (leaf or internal) is comprised of three components:

(1) labeledInst: the set of labeled objects in the node;
(2) class: the actual class (pseudo-class) that this leaf (internal) node corresponds to;
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1: function TREECONSTRUCTION(XF) {H,;}5_1, {C;}Ey)
2:  Leaves < 0

3: for each H; € {H;}i—, do

4 for each j € H; do

5: create new leaf node n

6 n.labeledInst + {x, € C; | x, € X}

7 n.centroid < mean vector of n.labeledInst
8 n.class < 1

9: Leaves < Leaves U {n}

10: end for

11: end for

12:  root < MERGING(Leaves)

13:  Return root

14: end function

1: function MERGING(L)
2: if |L| = 1 then
3 Return unique node in L (root)
4 else
5: Let n1 and n2 be the two nodes from L with the closest centroids according to the Euclidean distance
6 if n1.class = na.class then // Merge leaves
7 create leaf node t
8 t.class <+ ni.class
9 else
10: create new internal node ¢
11: tleftChild < n1
12: t.rightChild < no
13: t.class <— new unique pseudo-class
14: end if
15: t.labeledInst < ni.labeledInst U ns.labeledInst
16: t.centroid < mean vector of t.labeledInst
17: L+ LU{t}
18: L« L\ {ni}
19: L+ L\ {n2}
20: Return MERGING(L)
21: end if

22: end function

Fig. 3. Tree construction procedure.

(3) centroid: the mean vector of the labeled objects.

3.4 Step 4 — Tree-based Labeling

Once the tree has been built, we can distribute the unlabeled objects through the tree, starting from
the root node. For such, a S*VM is created for each internal node, which will be responsible for
defining which path (left or right) the objects will be distributed to. Recall that the children of a node
come from two different classes (for leaf nodes) or pseudo-classes (for internal nodes). Thence, S*VM
needs only to deal with binary problems, regardless of the number of classes in the original data set
— which means its application is straightforward and does not rely on any voting scheme between
pairwise class subsets. At the end of the process, each object will be at a leaf node, and its predicted
label is the label of the class corresponding to that leaf. This recursive process is summarized in
Figure 4.
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1: function CrLassIFy(root, X (V)

2:  if 1sSLEAF(root) then

3 Pred + 0

4 for each %x; € XY) do

5: Pred < Pred U {(%;, root.class)}

6 end for

7.  else

8 negObj < root.le ftChild.labeledInst

9: posObj < root.rightChild.labeledInst
10: r < S*VM(negObj, posObj, X))
11: Let X be all unlabeled objects classified as negative
12: Let X® be all unlabeled objects classified as positive
13: Pred < CLASSIFY (root.le ftChild, X(™)
14: Pred < Pred U CLASSIFY(root.rightChild, X))
15:  end if

16: return Pred
17: end function

Fig. 4. HiBUST’s classification procedure.

3.5 An Illustrative Example

Now that each step of HiBUST has been detailed, it is useful to present an illustrative example of its
execution mode. For such, consider again the pedagogical example from Figure la. The result of the
decomposition applied in Step 1 is presented in Figure 5a. We can observe that the class previously
represented by red circles (a few labeled objects) has been split into two clusters (red stars and green
pentagons). For the sake of simplicity, we assume that confidence levels (Step 2) are here not employed
to label objects, i.e., the optional parameter 6 has not been informed by the user.

Considering the three clusters generated by MCCK (sub-problems), the binary tree can be built in
a bottom-up fashion. First, the closest pair of centroids is identified — in this case, the centroids of
the clusters represented by yellow left-triangles and green pentagons. An internal node is thus created
by merging these sub-problems. Figure 5b illustrates the tree at this stage. Next, the root node is
created by merging the recently created internal node with the sub-problem related to the cluster
represented by the red stars. The final tree is illustrated in Figure 5c.

In order to label the unlabeled data (blue squares in Figure 1a), the tree is used as a mechanism to
filter the data, starting from the root node down to the leaves. A S*VM is used to label the objects
as belonging to either the red-star class or to the pseudo-class that represents the remaining data.
Objects classified as belonging to the red-star class follow directly to the corresponding red-circle’s
leaf node.

The remaining objects are processed in another internal node, which uses a S*VM to label objects
as either belonging to the green-pentagon class or to the yellow-left-triangle class. Again, according
to the result of this particular S*VM, objects follow to their corresponding leaf (red circles or black
diamonds).

4. EXPERIMENTAL ANALYSIS

In this section, we present the experimental methodology and the results obtained to validate the
effectiveness of HiBUST for solving semi-supervised transductive learning problems.
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(b) Tree obtained after the first merge performed by the aggregattion scheme (Step 3). Leaves are represented by
circles with the symbol of the corresponding class inside, and the labeled objects are presented in each leaf according
to the cluster they were assigned to. Each internal node is represented by a rectangle with the definition of the binary

sub-problem that it addresses.
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(c) Final tree obtained by the aggregattion scheme (Step 3).

Fig. 5. HiBUST’s main steps for the pedagogical example.
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Table I.  Summary of the employed data sets.

data set #objects #attributes #classes class distribution source
9Gauss 900 2 9 100 (all) [Campello et al. 2009]
Balance-Scale 625 4 3 288-49-288 UCI repository
Tonosphere 351 34 2 126-225 UCI repository
Iris 150 4 3 50 (all) UCI repository
Mfeat 2000 6 10 200 (all) UCI repository
Pendigits 3165 16 3 1055 (all) UCI repository
Segment 2310 19 7 330 (all) UCI repository
USPS 1500 241 2 1200-300 [Chapelle et al. 2006]
Vehicle 846 18 4 212-217-218-199 UCI repository
Wine 178 13 3 59-71-48 UCI repository

4.1 Methodology

We compare HiBUST to S*VM [Li and Zhou 2011], which is a state-of-the-art transductive SVM
method. Experiments were performed on 10 data sets commonly used as benchmarks in the literature.
Most of them are available at the UCI repository?. We have used the 9Gauss data set [Campello et al.
2009], which is comprised of 9 balanced clusters (each cluster is considered as a class) arranged
according to Gaussian distributions that have some degree of overlapping. Besides, we have employed
the USPS data set, which is a well-known semi-supervised learning benchmark data set [Chapelle
et al. 2006]. Following Bilenko et al. [2004], for the Pendigits data set, only the classes 3, 8, and 9
were considered, since they represent a difficult classification problem [Bilenko et al. 2004]. Table I
describes the data sets employed in the experiments.

For all data sets, we randomly selected 10, 20, and 30 objects per class to be used as labeled data, and
the remaining objects were used as unlabeled data. The experiments were repeated 10 times and the
average accuracies and standard deviations were recorded. Since MCCK is initialization-dependent,
for each experiment we run MCCK 10 times and selected the partition with the best simplified
silhouette value [Hruschka et al. 2006]. The simplified silhouette is a relative validity criterion that
can be used to choose, among a set of different data partitions, the best available clustering. For all
the employed S*VM, we used the MATLAB implementation by Li and Zhou [2011]3, using default
values for its parameters and a linear kernel. Li and Zhou [2011] show evidence that S*VM is robust
to the selection of its parameters. For data sets with more than two classes, we execute S*VM in a
one-versus-one classification scheme with a maz-wins-voting strategy (OVO-MWV).

We report two kinds of experimental analyses. First, in Section 4.2, we compare the results of
HiBUST to the S*VM algorithm [Li and Zhou 2011]. For these comparisons, we assume that the user
has not provided a value for the 6 parameter, i.e., we do not use confidence-based labeling (optional
Step 2). Later, in Section 4.3, we analyze the impact of using the confidence-based labeling in the
classification accuracy.

4.2 Results

Table II presents the mean accuracy obtained by S*VM and HiBUST for each data set. First,
consider the results for the two binary-class data sets, namely Ionosphere and USPS. For both of them,
HiBUST obtained equal or better results than S*VM, regardless of the number of labeled objects.
These results suggest that these data sets fit into the category of data whose number of clusters per
class is greater than one. For this kind of data set, combining different linear boundaries indeed
results in an increased classification performance, as we have previously assumed when presenting

?http://archive.ics.uci.edu/ml
3http://lamda.nju.edu.cn/Default.aspx?Page=code_S4VM
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Table II.  Average accuracy + standard deviation for different amounts of labeled objects per class (#LO).

#LO Data sets StVM HiBUST
Tonosphere 0.74 + 0.04 0.78 + 0.05

USPS 0.75 + 0.05 0.75 + 0.05

9Gauss 0.67 + 0.04 0.85 £+ 0.02

Iris 0.81 4+ 0.04 0.92 + 0.02

Mfeat 0.60 £+ 0.04 0.64 + 0.01

10 Wine 0.87 £+ 0.02 0.94 + 0.01
Pendigits 0.96 £+ 0.02 0.96 + 0.01

Segment 0.84 + 0.03 0.81 £ 0.02

Balance-Scale 0.82 + 0.04 0.57 + 0.04

Vehicle 0.59 + 0.03 0.50 + 0.03

Tonosphere 0.74 £ 0.04 0.81 + 0.03

USPS 0.77 £ 0.04 0.78 + 0.04

9Gauss 0.70 4+ 0.05 0.88 £+ 0.01

Iris 0.86 4+ 0.02 0.94 + 0.01

Mfeat 0.59 4+ 0.02 0.65 £+ 0.01

20 Wine 0.90 + 0.04 0.94 + 0.01
Pendigits 0.98 + 0.00 0.97 £+ 0.01

Segment 0.87 + 0.02 0.85 4+ 0.01

Balance-Scale 0.90 + 0.01 0.60 + 0.02

Vehicle 0.66 + 0.02 0.55 £+ 0.01

Tonosphere 0.74 £ 0.04 0.84 + 0.01

USPS 0.78 £+ 0.02 0.83 + 0.04

9Gauss 0.69 + 0.04 0.88 £+ 0.02

Iris 0.94 4+ 0.02 0.94 + 0.01

Mfeat 0.61 + 0.03 0.66 + 0.01

30 Wine 0.93 + 0.01 0.93 + 0.01
Pendigits 0.98 + 0.00 0.97 + 0.01

Segment 0.85 4+ 0.02 0.86 + 0.01

Balance-Scale 0.91 + 0.00 0.62 + 0.03

Vehicle 0.69 + 0.02 0.57 £ 0.02

our method. Hence, we believe HiBUST can be a better option than S*VM even for binary-class
problems, especially considering the lack of sufficient labeled objects for tuning a kernel.

Now, consider the 9Gauss and Iris data sets, which have 9 and 3 classes, respectively. Roughly
speaking, one could take for granted that these data sets are comprised by one cluster per class
— although this is somehow arguable for the Iris data, as it has been extensively discussed in the
literature. Both of them have overlapping classes, which is detrimental for SVM-based methods.
Bearing this in mind, the use of a decomposition scheme that breaks the problem into sub-problems
is, once again, beneficial. More specifically, MCCK creates clusters in the overlapping areas among
classes, which is helpful for classifying objects in such specific regions. This can be seen by the
accuracy results of HiBUST in these data sets, which are better than the ones obtained by S*VM for
all amounts of labeled objects.

The results for the Mfeat and Wine data sets are also favorable for HiBUST. For the Pendigits and
Segment data sets, S*VM presented slightly better results than HiBUST on average. In the remaining
data sets — Balance-Scale and Vehicle — S*VM outperformed HiBUST. Note that Balance-Scale is a
highly imbalanced data set, and this seems to indicate that HiBUST is sensitive to imbalanced data.
Considering that imbalanced problems are common in several applications, we plan to investigate in
detail this problem in future work.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

369



370 . Thiago F. Covdes et. al.

1 800 w
MWo-07 N MWeo-07
[le=08 o il

0.9 = 6=0.8
Wo-09 - < 600} Wo-09
g |Oe=10 — 8 — =0
=5 0.8 ] E
S £ 400
< 2
0.7 Iy
¥
200f
0.6 2
2
3
0 10 20 30 0 10 20 30
Initial amount of labeled objects Initial amount of labeled objects
(a) Accuracy. (b) Number of objects labeled based on confidence.

Fig. 6. Results obtained varying § — USPS data set.
4.3 Sensitivity of Confidence-Based Labeling

For assessing the impact of Step 2 (confidence-based labeling) in HiBUST, we varied 6 within
{0.7,0.8,0.9}. We believe that these values cover distinct scenarios — from average to high confi-
dence — for increasing the number of labeled objects available to induce the classifier. For most data
sets, there were no objects labeled considering these probabilities. Thus, their respective results with
these different values of 6 are the same as those presented in the previous section.

Nevertheless, for two data sets (USPS and Ionosphere) different results were obtained through the
confidence-based labeling. For instance, consider Figures 6 and 7, which present the number of objects
labeled from Step 2 and the mean accuracy obtained by HiBUST for the different values of 6. For the
mean accuracy, we replicate the results without using the confidence-based labeling (i.e., 8 = 1.0).
Observe that, for the USPS data set, the number of objects labeled was quite large (more than 100)
even for 0 = 0.9. This suggests that some of its clusters are very dense and well-separated. Through
this mechanism of confidence-based labeling, more labeled data were available for each S*VM within
an internal nodes of HiBUST. Hence, S*VM was able to select better hyperplanes which, in turn,
resulted in better predictive performance.

For the Ionosphere data set, the clusters seem to be less dense, and just a few objects had proba-
bilities greater than 0.9 of being generated by the Gaussian that represents its cluster. When labeling
objects with smaller values of # (§ = 0.8 and 6 = 0.7), the accuracy of HiBUST decreases compar-
atively to the results obtained without confidence-based labeling. As expected, these results suggest
that it is worth employing a high value of 6 (such as § = 0.9), given that in most cases an equal or
better predictive performance was achieved when compared to the absence of the confidence-based
labeling scheme.

5. CONCLUSIONS

In this article, we presented a new aggregation scheme for safe semi-supervised support vector machines
based on a binary tree built in a bottom-up fashion. This method, named HiBUST, allows a binary
SVM to naturally deal with multi-class transductive problems. It takes advantage of both class
information and distances between data objects for dividing the complex input space into sub-spaces,
with the underlying assumption that sub-problems are easier to solve than the whole classification
problem. In addition, it assumes that the objects of the classes may be distributed across distinct
clusters and thus objects from the same class can lie on different regions of the input space.

We performed an empirical analysis of HiBUST by comparing it to S*VM [Li and Zhou 2011]
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Fig. 7. Results obtained varying 8 — Ionosphere data set.

in 10 classification problems, considering different amounts of labeled objects. In the performed
analyses, HiBUST presented equal or better predictive performance than S*VM in the majority of
the cases. Besides, results for two binary-class data sets suggested that HiBUST can also be useful
for such problems, especially if the amount of labeled objects is insufficient for tuning a kernel.
We also analyzed a scheme to label objects based on the confidence provided by the constrained
clustering algorithm employed by HiBUST. Results suggest that the confidence-based labeling scheme
can provide increased performance. Indeed, when high-confidence objects are labeled, each S*VM
within an internal node of the tree created by HiBUST presented better capability of separating
objects from different classes.

As future work, we plan to investigate the use of the Expectation Maximization (EM) algorithm
[Dempster et al. 1977| for refining the parameters of each cluster obtained by MCCK and thus ob-
taining better estimates of the confidence-based labeling probabilities. In addition, an analysis on the
use of HiBUST for imbalanced multi-class problems is a promising future work.
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