
qCube: Efficient integration of range query
operators over a high dimension data cube

Rodrigo Rocha Silva1and3. Joubert de Castro Lima2, Celso Massaki Hirata1

1 ITA - Instituto Tecnológico de Aeronáutica,2 UFOP - Universidade Federal de Ouro Preto,3 FATEC - Faculdade
de Tecnologia de Mogi das Cruzes

{rrochas, hiratacm, joubertlima}@gmail.com

Abstract. Many decision support tasks involve range query operators such as Similar, Not Equal, Between, Greater
or Less than and Some. Traditional cube approaches only use Equal operator in their summarized queries. Recent cube
approaches implement range query operators, but they suffer from dimensionality problem, where a linear dimension
increase consumes exponential storage space and runtime. Frag-Cubing and its extension, using bitmap index, are
the most promising sequential solutions for high dimension data cubes, but they implement only Equal and Sub-cube
query operators. In this paper, we implement a new high dimension sequential range cube approach, named Range
Query Cube or just qCube. The qCube implements Equal, Not Equal, Distinct, Sub-cube, Greater or Less than,
Some, Between, Similar and Top-k Similar query operators over a high dimension data cube. Comparative tests with
qCube and Frag-Cubing use relations with 20, 30 or 60 dimensions, 5k distinct values on each dimension and 10 million
tuples. In general, qCube has similar behavior when compared with Frag-Cubing, but it is faster to answer point and
inquire queries. Frag-Cubing could not answer inquire queries with more than two Sub-cube operators in a relation
with 30 dimensions, 5k cardinality and 10M tuples. In addition, qCube efficiently answered inquire queries from such
a relation using six Sub-cube or Distinct operators. In general, complex queries with 30 operators, combining point,
range and inquire operators, took less than 10 seconds to be answered byqCube. A massive qCube with 60 dimensions,
5k cardinality on each dimension and 100M tuples answered queries with five range operators, ten point operators and
one inquire operator in less than 2 minutes.

Categories and Subject Descriptors: H.2 [Multidimensional and Temporal Databases]: Miscellaneous; H.3 [Query
Processing and Optimization]: Miscellaneous; I.7 [Big Data]: Miscellaneous

Keywords: Data Cube, High Dimension, Inquire Query. OLAP. Range Query

1. INTRODUCTION

Data Cube relational operator, [Gray et al. 1996], pre-computes and stores multi-dimensional aggre-
gations, enabling users to perform multi-dimensional analysis on the fly. A data cube has exponential
storage and runtime complexity according to a linear dimension increase. It is a generalization of
the group-by relational operator over all possible combinations of dimensions with various granularity
aggregates [Han 2011]. Each group-by, called a cuboid or view, corresponds to a set of cells described
as tuples over the cuboid dimensions.

A data cube has base cells and aggregate cells. Suppose there is data cube with 3 dimensions.
Let us consider a tuple t1 = (A1, B1, C1,m) of a relation, where A1, B1, C1andAn, are dimension
attributes and m is a numerical value representing a measure of t1. Given t1, in our example, a
data cube has seven tuples representing all possible t1 aggregations, and they are: t2(A1, B1, ∗,m),
t2 = (A1, ∗, C1,m), t4 = (∗, B1, C1,m), t5 = (A1, ∗, ∗,m), t6 = (∗, B1, ∗,m), t7 = (∗, ∗, C1,m),
t8 = (∗, ∗, ∗,m), where "*" is a wildcard representing all values of a cube dimension.
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Generally speaking, a cube, computed from relation ABC with cardinalities CA, CB and CC , can
have 23 or (CA +1)x(CB +1)x(CC +1) tuples. Our cube has three dimensions with equal cardinality
CA = CB = CC = 1. If we want to select some values and not all (*) values, data cube problem
becomes even harder. We can choose, for example, a range of continuous dimension values or some
categorical values, drastically increasing the number of tuples in this new cube, called Range Cube
(RC).

Let us consider relation ABC with cardinalities CA, CB and CC equal to 2. This small relation
can have eight tuples of type ABC, but twenty seven tuples in a full data cube. If we introduce
a new wildcard "**", representing two attributes of the same dimension, we have new tuples, such
as: t28 = (A1A2, B1, C1,m1), t29 = (A1, B1B2, C1,m2), t30 = (A1, B1B2, C1C2,m3) and many others.
Tuples t28, t29 and t30 measures represent new summarized values. In general, these approaches
answer queries similar to: "find the total sales for customers with age from 35 to 50, in year 1998-
2008, in area L and with auto insurance". Instead of (CA +1)x(CB +1)x(CC +1) tuples in the cube,
computed from relation ABC, a range cube RC can have 2CAx2CBx2CC tuples. In our example, RC
has 22x22x22 = 64 tuples from a relation ABC with 8 tuples.

It is impracticable to compute all those tuples, so there are many data cube indexing strategies
to reduce query response time without drastically increasing both computation runtime and storage
[Chun et al. 2004] [Lee et al. 2000] [Liang et al. 2000] [Ho et al. 1997]. Usually, these approaches
answer range cube queries with COUNT, MIN, MAX and SUM measure functions.

The dimension increase also makes cube combinatorial problem harder. If instead of relation ABC,
we consider relation ABCD and CA = CB = CC = CD = 2, we can have 16 tuples of type ABCD,
81 tuples in a full data cube and 256 tuples in a RC. Most of cube approaches are not designed for
high dimension data cubes; and in particular, RC approaches cannot compute high dimension data
cubes. Frag-Cubing [Li et al. 2004] is the first efficient high dimension data cube solution. Frag-
Cubing implements an inverted index of tuples, i.e., each tuple attribute is associated with 1-n tuple
identifiers. Point queries with two or more attributes are answered by intersecting tuple identifiers
from attributes. Unfortunately, Frag-Cubing only implements Equal and Sub-cube query operators.
There is a proposal [Leng et al. 2006] to implement a bitmap index approach [Chan and Ioannidis
1998] to address a solution to the dimensionality problem; however the approach cannot compute data
cubes with both high cardinality and tuples. No range and inquire query operators were implemented.

In this paper, we propose a new cube approach, named Range Query Cube or just qCube, which
implements Equal, Not Equal, Greater or Less than, Some, Between and Similar range query operators
and Distinct, Sub-cube and Top-k Similar inquire query operators over a high dimension data cube.
The qCube approach implements a set of tuple identifiers per dimension attribute, similar to Frag-
Cubing, so that qCube can answer point queries using tuple identifiers intersections and range queries
using unions plus intersections algorithms, regardless measure function types. Tests with a 10 million
tuple relation demonstrated that qCube can answer sequentially multiple point, range and inquire
query operators in a single query with 30 attributes in less than 10 seconds. A massive qCube
with 60 dimensions, 5k cardinality and 100M tuples answered queries with 5 range operators, 10
point operators and 1 inquire operator in less than 2 minutes, without multicore or multicomputer
high performance architectures benefits. qCube is a promising alternative to efficiently answer high
dimension range queries from massive relations.

The rest of the paper is organized as follows: Section 2 details Frag-Cubing and a bitmap cube
solution, as well as some promising range query approaches, pointing out their benefits and limitations.
Section 3 details qCube approach, i.e., its architecture and algorithms. Section 4 describes the
qCube experiments and results. Finally, in Section 5, we conclude our work and point out the future
improvements of qCube.
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2. RELATED WORK

There are several cube approaches, but only two of them implement a sequential high dimension cube
solution. Frag-Cubing [Li et al. 2004] and Fangling et al. [Leng et al. 2006] implement a partial
cube approach using inverted index and bitmap index, respectively. Data cube operator has storage
and runtime exponential complexity according to a linear dimension increase. In [Li et al. 2004], the
authors illustrate the exponential storage impact of different cube approaches using only 12 dimensions.
There is a clear curve saturation in using Full, Iceberg, Dwarf, MCG, Closed or Quotient approaches
[Brahmi et al. 2010] [Ruggieri et al. 2010] [Lima and Hirata 2011] [Xin et al. 2006] [Sismanis et al.
2002] for cubes with 20, 50 or 100 dimensions.

Frag-Cubing implements the inverted tuple concept, i.e., each inverted tuple iT has a dimension
attribute, a list of tuple identifiers and a corresponding list of measures. For instance, three tu-
ples: t1 = (tid1, a1, b2, c2,m1), t2 = (tid2, a1, b3, c3,m2) and t3 = (tid3, a1, b4, c4,m3) produce the
inverted tuple iTa1 = (a1, tid1, tid2, tid3,m1,m2,m3), where the attribute a1 is found at a rela-
tion with identifiers tid1, tid2 and tid3, and tid1 has measure value m1, tid2 has measure value m2

and tid3 has measure value m3. Suppose a new tuple t4 = (a1, b4, c1,m4) with the inverted tu-
ple iTb4 = (b4, tid3, tid4,m3,m4). A query q = (a1, b4COUNT ) can be answered by iTa1 ∩ iTb4 =
(a1b4, tid1, COUNT (m1)) - where iTa1∩ iTb4 means the set that contains all those elements that iTa1

and iTb4 have in common.

The intersection complexity is proportional to the tuple with the smallest set of identifiers. In
our example, iTb4 with two tuple identifiers is the smallest set, so iTb4 ∩ iTa1 is more efficient than
iTa1 ∩ iTb4. The number of tuple identifiers associated per dimension attribute can be huge, therefore
relations with low cardinality dimensions and high number of tuples produce costly set intersections.
As the sets of tuple identifiers become smaller, Frag-Cubing query becomes faster, so relations with low
skew and high cardinalities and dimensions are more suitable to be computed by using Frag-Cubing
and qCube approaches.

Fangling et al. [2006] replace the inverted index with a bitmap index. Each dimension attribute at
has a set of bits B, indicating whether at is found or not at each tuple. There is a clear limitation
in the number of tuples as B becomes greater. The authors propose a compact index, eliminating
zeros and ones sequences from B, but their approach is useful only for small relations. The cardinality
imposes a new hard problem, since for each new dimension attribute at’, a new set of bits B’ must be
created with size equal to the number of tuples. Relations with thousands of different attributes per
dimension and hundred millions of tuples cannot be efficiently computed using bitmap index, even if
it is not a high dimension relation.

Data cube range query was first addressed by using a multidimensional array solution [Ho et al.
1997]. For a data cube with D dimensions and C cardinality at each dimension, there are (C + 1)D

cells to represent a data cube, where each array cell has a 32-64 bit measure value. A second array
of cells of the same size is used to store the prefix-sum values, so storage and runtime costs to
update the data cube become a bottleneck. A relation with lots of empty cells is not rare, therefore
there are improvements to reduce empty cells and update costs [Liang et al. 2000] [Chun et al.
2004], but even these compact prefix-cube approaches are not efficient to compute text and temporal
dimensions, where cardinalities cannot be defined a priori. Their best results have range query
complexity O(CD/6), where C is a dimension cardinality and D is the number of query dimensions,
so they are not designed for high dimension data cube range queries, where D is greater than 30-50
dimensions.
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3. THE QCUBE APPROACH

The qCube architecture has two main components: qCubeComputation and qCubeQuery. Figure
1 illustrates how components are organized and how they communicate to provide computation, query
and update services to end users.

Fig. 1qCubearchitecture

The qCubeComputation component is responsible for reading the entire base relation with D
dimensions and creating a map of tuple identifiers (TIDs) per relation attribute. Each map has an
attribute as a key and a set of TIDs as a value. This way, qCubeComputation creates all inverted
tuples of qCube approach. In the example above, there are dimensions A,B . . . n and each dimension
has a set of attributes. Dimension A has, for example, (a1, a2 . . . an) attributes. The qCubeQuery
component receives a user query, executes intersections, unions and sorting algorithms using TIDs,
and produces qCube results. Before qR is produced, the final set of TIDs, generated by qCubeQuery
component, is processed by qMeasureProcess component, which collects measure values using TIDs
and performs statistical computation with such values.

All TIDs generated from a base relation must fit in main memory. User queries, including point,
range and inquire queries, are answered by qCubeQuery component sequentially. External memory
and parallel qCube versions, including multicore and multicomputer, are part of future improvements.

3.1 qCubeComputation Algorithm

A relation R is a set of tuples, where each tuple t is defined as t = (TID,D1, D2 . . . Dn). In t, n is
the number of dimensions, D is a specific dimension defined as Di = (ati1 + ati2 . . . atin), and ati is
an attribute of dimension Di. The symbol ’+’ means a logical OR. The TID attribute is a unique
identifier, so there is no equal tuple in a relation.

Given R and a qCubeComputation algorithm CA, the output is a data cube qC = (. . . (iTati1,
iTati2 . . . iTatin) . . . im1, im2 . . . imx), where each internal element (iTati1, iTati2 . . . iTatin) of qC
represents a set of inverted tuples of a specific dimension. Each iTat, defined as iTat = (atij , T id1 . . . T idp),
represents the jth inverted tuple of a dimension with index i. The inverted tuple iTat has an attribute
value ati and a set of tuple identifiers (Tid1 . . . T idp) with size p. Data cube qC also has (im1 . . . imx),
where each im, defined as im = (TID,mv), is an inverted measure composed by a tuple identifier
TID and a numeric measure value mv.

Journal of Information and Data Management, Vol. V, No. N, August 2013.



JIDM - Journal of Information and Data Management · 5

The computation algorithm proceeds as follows:

Algorithm 1. qCube Computation

Algorithm 1 variable sortedC stores dimension cardinalities to improve query response time. The
invertedT is the main variable, storing all attributes of relation R and their set of tuple identifiers
TIDs. InvertedM stores all measures of relation R. For each tuple of R, there are one or more entries
in invertedM maps. Basically, the algorithm computes dimension attributes (lines 9-11) and measure
values (lines 13-16). We use an example of a relation with five dimensions in Table 1.1 to explain the
basic idea of the algorithm. Each tuple of a relation is read and inverted, i.e. the first tuple of the
input relation a1, b1, c1, d1, e1 is inverted, creating five new inverted tuples a1Tid1, b1Tid1, c1Tid1,
d1Tid1 and e1Tid1. The measure values m1,m2,m3,m4 and m5 are also linked to Tid1, as Table 1.3
shows. The same occurs to the remaining tuples. After a complete relation scan, all inverted tuples
have been created, as Table 1.2 illustrates. The attribute e2, for instance, occurs four times in the
relation; a1, b1, d1 and d2 occur three times. The invertedM variable is represented by Table 1.3.

Table. 1. A qCube example with five dimensions

The qC cube is partitioned according to its dimensions and measures, so during a query we can
build any summarized result by intersecting and uniting many TIDs from qC, according to filters
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on dimensions and measures. Such a data cube partition is also very useful for high performance
computing, since both dimension attributes and measure values can be executed simultaneously using
multicore or multicomputer architectures.

3.2 Update Algorithm

There are four types of updates: (i) new tuples can be added; (ii) attributes of R can be fused; (iii) new
dimensions and measures can be added to R; (iv) dimension hierarchies can be reorganized. Data cube
partition based on inverted tuples is very efficient for these types of updates. Dimension hierarchies
rearrangements do not affect qC. New tuples can be added by calling the same computation algorithm.
New dimensions can be computed without reprocessing the previous ones. The same occurs with new
measures, which can also be associated with TIDs. An attribute fusion generates a new attribute
at’ in R, where at’ is the union of two or more previous attributes. This way, qCube implements
attribute fusion by uniting inverted tuple TIDs from two or more attribute values of R.

Tables 2.1 and 2.2 illustrate the impact of update type (iii) in qCube. A new relation with six and
not five dimensions must be computed and qCube does not require re-computations. In general, just
new attributes and TIDs are inserted on qCube representation, as Table 2.2 illustrates. Table 2.2
considers Table 1.2 inverted tuples to illustrate a single update type. The remaining update types are
trivial in qCube, thus they are not explained in this paper. Many cube approaches are not designed
for these four update types, demanding in almost all cases a full cube reconstruction.

Table. 2. A qCube update example

The qCube approach adopts complementary arrays with small size. Map data structures encapsu-
late multiple arrays, so there are more resizing operations, but fewer empty array cells. Furthermore,
qCube data access continues constant. Due to these cube representation properties, qCube can be
extended to text cubes with few adaptations.

3.3 Query Algorithm

User queries of type Q are partitioned and classified by qCube into: (i) point query; (ii) range
query and (iii) inquire query. From a query Q, qCube generates three other sub-queries pQ, rQ
and iQ, where pQ ∈ Q is a set of Equal operators filtering different dimensions, rQ ∈ Q is a set of
range operators filtering different dimensions, and iQ ∈ Q is a set of p size inquire operators filtering
combinatorial results from different dimensions. A range-operator can be defined as rOp= (greater
than + less than + between + some + different + similar x (fv1 . . . fvn)). An inquire-operator iOp
can be defined as iOp =(sub-cube + distinct + top-k similar x (fv1 . . . fvn)). The symbol ’+’ means
the logical OR and ’x’ means the logical AND. Range and inquire operators must have their types
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and a set of filter values, so in previous definitions of rOp and iOp, (fv1 . . . fvn) are filter values. Note
that, qCube rearranges Q sub-queries in order to improve query response times. As a result of Q we
have qR = (TID1, T ID2 . . . T IDk), where TIDi is the ith tuple identifier of relation R.

In order to explain the query algorithm, we use an example. Suppose we have to answer the following
query Q : "What is the women journal research papers variance impact, using months 1, 3, 5, 7, 11,
year 2012 and ages varying from 25-40 years? Return results for each country".

Algorithm 2 illustrates qCube query component. In line 4, point queries are returned from a query.
In Q, they are (sex = women, paperType=journal, year=2012). A cardinality based sorting is executed
to rearrange sex, paperType and year dimensions. The same occurs with range and inquire queries
(lines 5 and 6). The range queries (month = (1,3,5,7,11), age <>25-40) are also sorted according to
their cardinalities. In Q, there is inquire query (country=distinct).

While Q has point queries, an intersection is performed between current partial result qR and
TIDs returned from invertedM variable (lines 8 and 9). Dimensions sex, paperType and year require
two intersections to conclude point query portion of Q. While Q has range queries, each attribute
TIDs returned from a rOp operator is intersected with point query TIDs (line 13). The results are
united to produce another partial result. In our example, operator rOp_Some = (1,3,5,7,11) has
five intersections with TIDs of ((sex = women) ∩ (paperType = journal) ∩ (year = 2012)). Five
results are united to produce partial result up to dimension month. The same occurs with operator
between at age dimension.

Finally, lines 18-20 illustrate how to generate combinatorial results from sub-cube filter. Distinct
and top-k similar filters are similar to this block of code. In our example, partial result TIDs must
be intersected with all countries in the world. Line 23 summarizes an instruction to both retrieve
numeric values from invertedM variable of Algorithm 2 and perform statistical computation according
to different measure functions (SUM, MAX, MIN, AVG, VARIANCE, RANK and many others).

Algorithm 2. qCube Computation

Formally defined, Q(qC) = (pQ(qC) x rQ(qC) x iQ(qC)), where Q 6= and Q(qC) = qR. The
result qR must be used by qCube query algorithm to obtain measure values from variable invertedM,
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described in Algorithm 1. With all numeric values, it is possible to compute statistical function, such
as COUNT, MIN, MAX AVG, MEDIAN, RANK, MODA, STANDART DEVIATION, VARIANCE
and many others. Note that, Q can have no pQ on it. The same for rQ or iQ. This way, qCube
enables the end user to combine point, range and inquire queries. The qCube approach adopts Apache
library for statistical calculus.

In an n-dimensional data cube (D1, D2, . . . , Dn), a point query pQ is in the form of {a1, a2, . . . , an :
M}, where each ai specifies a value for dimension Di and M is the inquired measure. A pQ receives a
data cube qC and performs an efficient filter F on it. The filter F can be defined as F = (eq1 ∩ eq2 ∩
. . . ∩ eqd), where eq i is the ith EQUAL operator of F applied to dimension i of qC. Only EQUAL
operators are used in point queries. Each eq i EQUAL operator returns a set of tuple identifiers
(TIDs) from dimension i, so in general F is computed by successive intersections of all TID sets.
Query response times can be improved by a sorted F, where dimensions with high cardinalities are
intersected first. Dimensions with high cardinality normally produce attribute values with small sets
of TIDs, therefore we can reduce intersection complexity. The variable sortedC in Algorithm 1 is
used to rearrange pQ execution. F is incrementally computed, therefore there is a final optimization,
where two sets of TIDs are previously compared to verify which one is the first set in the intersection.
This way, qCube reduces even more the number of comparisons in pQ.

A range query applies an aggregation operation over all selected cells of an OLAP data cube where
the selection is specified by providing ranges of values for numeric dimensions. A Range Query (rQ):
Receives a data cube qC and performs a second filter F’ on it. The TIDs of pQ are intersected
with TIDs of rQ. The filter F’ can be defined as F’= (rOp1 ∩ rOp2 ∩ . . .∩ rOpd), where rOpi is the
ith RANGE operator of F’ applied to dimension i of qC. F and F’ filter different dimensions. As
mentioned before, rOp can be classified into (greater than + less than + between + some + different
+ similar). Each rOpi RANGE operator returns a set of tuple identifiers (TIDs) from dimension i,
so in general F’ is also computed by successive intersections of all TID sets.

Different from pQ, a rQ filter F’ has many intersection operations and a final union. More precisely,
let’s use rOpb, short for rOp operator between, to illustrate the algorithm idea. Initially, one or more
attributes of a dimension are returned from filter rOpb. InvertedT variable in Algorithm 1 is used to
perform C intersections with pQ TIDs and all attributes of rOpb TIDs before a final union of C sets.
C indicates all attributes that satisfy rOpb filter. The new attribute with these TIDs is intersected
with a second RI’ result. Therefore, successive multi-intersections-union cycles occur until rQ has
a rOp to execute. The number of TIDs on each set is smaller if intersections occur before a union
operation. The opposite idea is to first unite TIDs of C dimension attributes and then intersect
with pQ. This way, there are C union operations plus a larger TID set to be intersected with pQ.
Experiments with qCube confirm this assumption.

Inquire Query (iQ) seeks for a set of cuboid cells in qC. It is a CPU bound operation, since it is
a combinatorial problem. In an n-dimensional data cube (D1;D2 . . . , Dn), an inquire query is in the
form of {a1, a2, . . . , an : M}, where at least one ai is marked as iQ to denote that dimension D i is
inquired.

An iQ operator receives a data cube qC and performs a third filter F" on it. The TIDs of iQ are
intersected with TIDs of (pQ∩ rQ). The filter F" can be defined as F” = (iOp1 ∩ iOp2 ∩ . . .∩ iOpd),
where iOpi is the ith INQUIRE operator of F" applied to dimension i of qC. F, F’ and F" filter
different dimensions. The iOp operators can be classified into (sub-cube + distinct + top-k similar). A
sub-cube of one dimension is composed of all attributes of a dimension plus the summarized attribute
all (*), the last indicating a measure value of a dimension and not one of its attributes. For each
attribute of dimension i, there is a set of TIDs. TIDs from (pQ ∩ rQ) are intersected with each
attribute TIDs of dimension i, forming a set of results. There are

∏sc
i=1(Ci + 1) results when Q has

SC sub-cube filters in F". C i indicates the cardinality of dimension i and SC is the number of
sub-cube filters.
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Conceptually, a point query can be seen as a special case of the sub-cube query where the number
of inquired dimensions is 0. On the other extreme, a full-cube query is a sub-cube query where the
number of instantiated dimensions is d, where d is the number of dimensions [Li et al. 2004].

Distinct and sub-cube filters are identical for one dimension. Two or more dimensions increase
the number of distinct results to

∏dis
i=1 Ci intersections with TIDs of (pQ ∩ rQ). It is also a costly

operation. Finally, the top-k similar filter selects only similar dimension attributes, thus it often has
fewer combinations when compared with sub-cube or distinct operators. Unfortunately, there is a
costly edit distance method, similar to [Ho et al. 1997], to select top-k attributes for each dimension.

Roll up operations can be performed by attribute removal, therefore part of a new rolled up Q’
must be reprocessed. In our example, if user decides to roll up dimension age and consider all ages,
the partial TIDs result computed up to dimension month is preserved. In our example, intersections
with all countries in the world must be redone to build Q’, since Q ⊂ Q′.

Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed data.
Drill-down can be performed either by stepping down a concept hierarchy for a dimension or intro-
ducing additional dimensions. Drill down on query Q always includes filter on it, therefore qCube
intersects the current result qR with one or more TIDs from the new filter. In a drill down scenario
Q′ ⊂ Q, where Q’ is a drilled query from Q. The qCube approach implements drill down and roll up
checking in successive user queries to reduce response times, since users frequently explore dimension
hierarchies.

4. EXPERIMENTS

A comprehensive performance study was conducted to check the efficiency and the scalability of
the proposed approach. We tested qCube Computation and Query algorithms against Frag-Cubing
algorithm used in [Li et al. 2004]. The qCube algorithms were coded in Java 64 bits (version 7.0). Frag-
Cubing is a free and open source C++ application (http://illimine.cs.uiuc.edu/). In all experiments the
relation can fit in main memory. Cube computation tests include both I/O and CPU times. I/O times
are considered to load input relations from external memory to main memory. No swap operations
are implemented in qCube and Frag-Cubing during a cube query or computation experiment. Only
sequential versions are implemented. We ran the algorithms in two Intel Xeon six-core processors
with 2.4GHz each core, 12MB cache and 128GB of RAM DDR3 1333MHz. There are seven disks SAS
15k rpm with 64MB cache each. The system runs Windows Server 2008 64 bits, High Performance
version. All tests are executed five times, we remove the lowest/highest runtimes and an average is
calculated for the three remaining runtimes.

For the remainder of this section, D is the number of dimensions, C is the cardinality of each
dimension, T is the number of tuples in a base relation and S is the data skew. Skewness is a
measure of the degree of asymmetry of a distribution. When S is equal to 0, data is uniform; as S
increases, data becomes more skewed. Real databases are often skewed. The synthetic base relations
were created using data generator provided by the IlliMine project. The IlliMine project is an open-
source project to provide various approaches for data mining and machine learning. Frag-Cubing
approach is part of IlliMine project.

4.1 Performance Evaluation of Point Queries and Skewed Relations

In the first experiment, we evaluate point queries according to the number of operators. Basically, we
increase the number of EQUAL (eq) operators in a query. Tests use relations with S=0 and 2.5, D=30,
107 TandC= 5000. Tests with S= 0 have at most six eq operators per query, since a query with seven
or more operators returns 1 or no result. When S=2.5, there are at most thirty eq operators per query.
In general, Frag-Cubing is inefficient for cube queries with one or two eq operators. As the number
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of EQUAL operators increases, intersection costs dominate query response time, so the differences
between Frag and qCube become proportional. Figure 2 illustrates a relation with moderate sized
TID sets, thus query response time with six operators is faster in a uniform relation (Figure 2) than
in skewed ones (Figure 3). In all point queries, using skewed or uniform relations, qCube is faster
than Frag. The qCube approach uses Fast Util framework with its intersection/union algorithms and
data structures (http://fastutil.di.unimi.it/). Figure 2 illustrates queries using frequent attributes
from a skewed relation R and, consequently, large TID sets to be intersected. A query with thirty
EQUAL operators, performing twenty nine large TID sets intersections, took 2 seconds in qCube and
3.5 seconds in Frag-Cubing.

Fig 2. Response time per query over 100 trials: T= 107; C= 5000; D= 30, S= 0

Fig 3. Response time per query over 100 trials: T= 107; C= 5000; D= 30, S= 2.5

4.2 Performance Evaluation of Range Query Operators and Skewed Relations

Range queries experiments use the same skewed relation R of previous experiments. Figures 4 (a)
and (b) illustrate queries with five eq operators plus one range operator (6op), ten eq operators plus
two range operators (12op) and so on. We have at most five different range operators in a query with
thirty operators (30op). Range operators are not implemented by Frag-Cubing.

Range operators are iOp = (greater than, different, less than, some, between). Figure 4 (a) and
(b) illustrate scenarios where every range operator results have a frequent attribute, thus large TID
sets intersections occur (qCubeRw).
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Fig. 4. Response time queries with one infrequent point operator:
T= 107; C= 5000; D= 30, S= 2.5

There are also experiments where range operator results have no frequent attributes (qCubeRb)
and where there are at most two range operators results retrieving frequent attributes (qCube). In
Figure 4 qCubeP is a point query. Figure 4(a) illustrates the worst scenario, where all eq operators
retrieve frequent attributes. In Figure 4(b), there is one eq operator returning an infrequent attribute.
If we just change one eq operator to return an infrequent attribute, the response time decreases 10
times (Figure 4(b)), so cardinality ordering is essential to achieve fast response times in inverted index
cube approaches. In summary, it is necessary only one small set of TIDs in a point query portion of
a complex query to improve its response time.

4.3 Performance Evaluation of Inquire Operators and Skewed Relations

Inquire operators are classified into sub-cube and distinct. Figure 5 illustrates tests using the same
skewed relation R used in previous tests. We compare qCube sub-cube (qCubeSC ) response times
with Frag-Cubing implementation. The distinct operator (qCubeDist), as well as all range operators,
are not implemented by Frag-Cubing. Frag-Cubing response times are by far slower than qCube.
Queries with more than two sub-cube operators cannot be answered by Frag-Cubing, since there is
not enough continuous memory in 128GB of RAM to allocate many big size arrays with many empty
cells. Frag-Cubing duplicates an array size when it reaches its limit. In contrast, qCube has a linear
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response time as the number of inquire operators increases. The number of small complementary
arrays makes it possible for qCube to produce huge amount of summarized results. Dimension
rearrangements based on cardinalities also reduce inquire query response times drastically.

Fig. 5. Response time queries with inquire operators: T= 107; C= 5000; D= 30, S= 2.5.

4.4 Cube Computation and Massive Experiments

Figure 6 illustrates qCube and Frag-Cubing linear computation behavior as the number of dimensions
increases. Tests use relations with S=0, 107 T and C= 5000. Full, iceberg, dwarf, closed, MCG and
many other cube approaches have exponential computation behavior as the number of dimensions
increases. Frag-Cubing approach is faster to compute a data cube than qCube. This is because both
Frag and qCube are array based solutions, but Frag-Cubing allocates a new array twice as big as the
previous one when a limit is reached. Therefore, there are few reallocations and a unique continuous
array with lots of empty cells. Instead, qCube allocates complementary continuous arrays with
small size, thus we have more reallocations, more arrays, but fewer empty cells. Fast Util framework
encapsulates the set of complementary arrays in a Map data structure with constant access time.

Fig. 6. Runtime ofqCubeand Frag with different dimensions:T= 107;C= 5000;S= 0.

We tested a massive qCube with 60 dimensions, 5000 cardinality and 108 tuples. Queries with five
range operators, ten point operators and one inquire operator are answered in less than 2 minutes.
To the best of our knowledge, there is no other cube approach to efficiently answer high dimension
range queries from massive relations.
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4.5 Memory Consumption

Figure 7 illustrates the linear memory consumption behavior of qCube. Input is the original relation
stored on disk. qCube is a data cube stored in RAM. A qCube with 60 dimensions and 107 of tuples
consumes 6.5GB of RAM versus 2.8GB of the original relation on disk. The massive qCube with 60
dimensions and 100M tuples consumes 70GB of RAM and the original relation has 26GB on disk. In
general, qCube uses 2.5x more memory to compute cubes from massive relations.

Fig. 7. qCube memory consumption versus original relation disk space:T= 107; C= 5000; S= 0

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new High Dimensional Range Cube Approach, named qCube, which
is based on inverted tuples and inverted measures, where user queries are answered using sorting,
intersections and union algorithms. qCube explores the gap of current approaches that do not address
high dimensional range queries. In our study, we demonstrate that qCube is a promising solution for
complex queries with many different operators, including point, range and inquire ones. The results
showed that qCube has both linear runtime and memory consumption as the number of dimensions
increases. It introduces a different cube representation with less empty cells than Frag-Cubing, but
with slower insertion time. When compared with Frag-Cubing, qCube is faster to answer point and
inquire queries with sub-cube operators. A cardinality sorting optimization demonstrates an enormous
benefit, since a query often has at least one point sub-query with an infrequent attribute. Complex
and costly inquire queries are efficiently answered by qCube. Frag-Cubing, in contrast, cannot answer
two sub-cube operators in a data cube with 107 tuples, C= 5000, D= 30 and S= 2.5. The reason
is that Frag-Cubing implements a single array with double size increase factor, so there is waste of
memory.

There are many improvements to qCube. First, we must experiment it with holistic measures.
Update and computation experiments with many holistic measures are a hard problem, but qCube
has an efficient design capable of addressing a solution to this problem with few adaptations. TIDs
can become huge, thus memory consumption and intersection costs can become impracticable, and
therefore we must address an efficient solution to partition TIDs with fast data retrieval. The qCube
partition strategy using inverted tuples and measures is well designed for high performance computing
architectures. Multicore and multicomputer versions of qCube must be implemented. Top-k or rank
queries are very useful for decision making, therefore qCube must be improved to answer top-k queries
combined with range, point and inquire queries. Experiments with high dimensional text cubes must
be made to evaluate qCube , specially its text measures computing.
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