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Abstract. The traditional preference mining setting, referred to here as the batch setting, has been widely studied in
the literature in recent years. However, the dynamic nature of mining preferences increasingly requires solutions that
quickly adapt to changes. The main reason for this is that user’s preferences are not static and can evolve over time. In
this article, we address the problem of mining contextual preferences in a data stream setting. Contextual Preferences
have been recently treated in the literature and some methods for mining this special kind of preferences have been
proposed in the batch setting. The main contributions of this article are the formalization of the contextual preference
mining problem in the stream setting and the introduction of two very efficient algorithms for solving this problem. We
implemented both algorithms and showed their efficiency and scalability through a set of experiments over synthetic
and real datasets.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining

Keywords: context-awareness, data mining, data streams, incremental learning, preference mining

1. INTRODUCTION

The huge increase in the volume of digital data seen in recent years was partly caused by a new class
of emerging applications - applications in which the data are generated at very high rates, in the form
of data streams. In general, a data stream may be seen as a sequence of relational tuples that arrive
continuously in variable time. Some typical fields of application for data streams are: the financial
market, credit card transaction flow, web applications and sensor data. Traditional approaches for data
mining cannot successfully process the data streams mainly due to the potentially infinite volume of
data and its evolution over time. Consequently, several data stream mining techniques have emerged
to deal properly with this new data format [Domingos and Hulten 2000; Gama 2010; Bifet et al. 2011].

Most of the research on preference mining has focused on the batch setting, where the mining
algorithm has a set of static information on user preferences at its disposal [Jiang et al. 2008; de Amo
et al. 2013]. However, in most situations, user preferences are dynamic. For instance, consider an online
news site that wants to discover the preferences of its users regarding news and make recommendations
based on that. Notice that due to the dynamic nature of news, it is plausible that user’s preferences
would evolve rapidly with time. In times of elections, a user can be more interested in politics than
in sports. In times of Olympic Games, it would probably be the opposite.

This work focuses on a particular kind of preferences, the contextual preferences. Preference Models
can be specified under either a quantitative [Crammer and Singer 2001] or a qualitative [de Amo
et al. 2013] framework. In the quantitative formulation, preferences about movies (for instance) can
be elicited by asking the user to rate each movie. In the qualitative formulation, the preference model
consists in a set of rules specified in a mathematical formalism, able to express user preferences. In this
article, we consider the contextual preference rules (cp-rules) introduced by Wilson [2004]. A cp-rule
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Id A B C D
t1 a1 b1 c1 d1
t2 a1 b1 c1 d2
t3 a2 b1 c1 d2
t4 a1 b2 c1 d2
t5 a2 b1 c2 d1
t6 a3 b1 c1 d1

(a)

(t1,t2)
(t1,t3)
(t4,t5)
(t4,t2)
(t5,t6)
(t3,t5)
(t4,t1)

(b) (c)

Fig. 1. (a) An instance I. (b) A Preference Database P. (c) Preference Network PNet1.

allows to specify that some values of a particular attribute are preferable to others in a given context.
For instance, a user may prefer comedies to dramas if the director is Woody Allen.

In this article we propose two qualitative methods for mining contextual preferences from a prefer-
ence stream sample, namely the FPSMining and IncFPSMining algorithms. As pointed out by Kontaki
et al. [2010], algorithms designed for processing data streams should satisfy the following properties:
(1) fast response time; (2) incremental evaluation in order to be able to efficiently detect and incorpo-
rate changes in data over time; (3) low rate of data access and (4) in memory storage in order to avoid
expensive disk access. The FPSMining algorithm has been introduced by Papini et al. [2013], a pre-
liminary short version of the present article. Although executing very fast in the datasets considered
in our previous work [Papini et al. 2013], it does not satisfy properties (2) and (4) above. In this article
we extend the preliminary version [Papini et al. 2013] with a new algorithm, named IncFPSMining,
which follows an incremental approach, differently from FPSMining which extracts an entirely brand
new preference model from the preference stream data at each refreshing point. In order to property
(4) be satisfied in our approach, a technique for memory management has been implemented in order
to limit the growth of the sufficient statistics when dealing with a large amount of data. For lack of
space, only the main ideas and the results involving this technique is presented in this article. Besides
these two important improvements, the current version also includes: (a) Experiments with synthetic
data in order to enable tests with a huge amount of data; (b) The computation of the statistical
significance of the results concerning the two algorithms over synthetic data; (c) The introduction of
another quality measure – the Comparability Rate (CR) and also (d) The complexity analysis of the
two proposed algorithms.

2. BACKGROUND ON CONTEXTUAL PREFERENCE MINING IN THE BATCH SETTING

In this section we briefly introduce the problem of mining contextual preferences in a batch setting.
Please see [de Amo et al. 2013] for more details on this problem.

A preference relation on a finite set of objects A = {a1, a2, ..., an} is a strict partial order over A,
that is a binary relation R ⊆ A×A satisfying the irreflexivity and transitivity properties. We denote
by a1 > a2 the fact that a1 is preferred to a2. A Preference Database over a relation R is a finite set P
⊆ Tup(R) × Tup(R) which is consistent, that is, if (u, v) ∈ P then (v, u) 6∈ P. The pair (u, v), usually
called bituple, represents the fact that the user prefers the tuple u to the tuple v. Fig. 1 (b) illustrates
a preference database over R, representing a sample provided by the user about his/her preferences
over tuples of I (Fig. 1 (a)).

The problem of mining contextual preferences in the batch setting consists in extracting a preference
model from a preference database provided by the user. The preference model is specified by a Bayesian
Preference Network (BPN), specified by (1) a directed acyclic graph G whose nodes are attributes
and the edges stand for attribute dependency and (2) a mapping θ that associates to each node of G
a finite set of conditional probabilities. Fig. 1(c) illustrates a BPN PNet1 over the relational schema
R(A,B,C,D). Notice that the preference on values for attribute B depends on the context C: if
C = c1, the probability that value b1 is preferred to value b2 for the attribute B is 60%. A BPN allows
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time0 t1 t2 t3 t4

Test TestT1 T2

PNett1 PNett2
Fig. 2. The dynamics of the mining and testing processes through time

the inference of a preference ordering on tuples. The following example illustrates how this ordering
is obtained. For lack of space we do not present a formal definition here. For more details on the
theoretical background behind this ordering, please see [Wilson 2004; de Amo et al. 2013].

Example 2.1 Preference Order. Let us consider the BPN PNet1 depicted in Fig. 1(c). In order to
compare the tuples u1 = (a1, b1,c1,d1) and u2 = (a2, b2,c1,d2), we proceed as follows: (1) Let ∆(u1, u2)
be the set of attributes for which u1 and u2 differ. In this example, ∆(u1, u2) = {A,B,D}; (2) Let
min(∆(u1, u2)) ⊆ ∆(u1, u2) such that the attributes in min(∆) have no ancestors in ∆ (according to
graph G underlying the BPN PNet1). In this example min(∆(u1, u2)) = {D,B}. The necessary and
sufficient conditions for u1 to be preferred to u2 are: u1[D] > u2[D] and u1[B] > u2[B]; (3) Compute
the following probabilities: p1 = probability that u1 > u2 = P [d1 > d2|C = c1] ∗ P [b1 > b2|C = c1] =
0.6 * 0.6 = 0.36; p2 = probability that u2 > u1 = P [d2 > d1|C = c1]∗P [b2 > b1|C = c1] = 0.4 * 0.4 =
0.16. In order to compare u1 and u2 we select the higher between p1 and p2. In this example, p1 > p2
and so, we infer that u1 is preferred to u2. If p1 = p2 we conclude that u1 and u2 are incomparable.

A BPN is evaluated by considering its accuracy (acc) and comparability rate (CR) with respect to
a test preference database P. The accuracy is defined by acc(PNet,P)= N

M , where M is the number
of bituples in P and N is the amount of bituples (t1, t2) ∈ P compatible with the preference ordering
inferred by PNet on the tuples t1 and t2. The comparability rate is defined by CR(PNet,P)= F

M
where F is the number of elements of P which are comparable by PNet. The comparability rate
allows a better understanding of the overall behavior of the model quality - with this measure is
possible to identify, for example, if a drop in accuracy was caused because the model was not able
to compare much of bituples submitted to it, or because the model compared them erroneously. The
precision (prec) is defined by prec(PNet,P)= acc

CR = N
F . Notice that each one of the three measures

can be derived from the two others.

3. PROBLEM FORMALIZATION IN THE STREAM SETTING

The main differences between the batch and the stream settings concerning the contextual preference
mining problem we address in this article may be summarized as follows:

—Input data: to each sample bituple (u, v) collected from the stream of clicks from a user on a site,
is associated a timestamp t standing for the time the user made this implicit choice. Let T be the
infinite set of all timestamps. So, the input data from which a preference model will be extracted is a
preference stream defined as a (possibly) infinite set P ⊆ Tup(R)×Tup(R)×T which is temporally
consistent, that is, if (u, v, t) ∈ P then (v, u, t) /∈ P . The triple (u, v, t) that we will call temporal
bituple, represents the fact that the user prefers tuple u over tuple v at the time instant t.

—Output : the preference model to be extracted from the preference stream is a temporal BPN, that
is, a PNett representing the model state at instant t. At each instant t the algorithm is ready to
return a preference model PNett updated with the stream elements until instant t.

—The preference order induced by a BPN at each instant t: At each instant t we are able to compare
tuples u and v by employing the Preference Model PNett updated with the elements of the pref-
erence stream until the instant t. The preference order between u and v is denoted by >t and is
obtained as illustrated in example 2.1.

—The accuracy and comparability rate at instant t: The quality of the preference model PNett re-
turned by the algorithm at instant t is measured by considering a finite set Test of preference
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c1>c2 c2>c1 c4>c5

A
a1 3 1 -
a2 - - 2

B
b3 1 - 1
b5 1 - 1

c1>c2 4
c2>c1 2
c4>c5 3

(a)

c1>c2 c2>c1 c4>c5

A
a1 3 2 -
a2 - - 2

B
b3 1 - 1
b5 1 - 1
b6 - 1 -

c1>c2 4
c2>c1 3
c4>c5 3

(b)

u1 u2
T A B C A B C

t1 a1 b3 c1 a1 b3 c2
t2 a1 b3 c2 a1 b5 c1
t3 a2 b5 c2 a1 b3 c1
t4 a2 b3 c4 a2 b6 c5
t5 a1 b5 c1 a1 b5 c2
t6 a2 b3 c4 a2 b3 c5
t7 a1 b3 c1 a1 b5 c2
t8 a2 b5 c1 a1 b6 c2
t9 a1 b5 c4 a2 b5 c5

t10 a1 b6 c2 a1 b6 c1
(c)

Fig. 3. (a) Sufficient statistics for attribute C at the time instant t9. (b) Sufficient statistics for attribute C at the time
instant t10. (c) Preference stream S until time instant t10.

samples arriving at the system after instant t, that is, by considering a finite set Test whose el-
ements are of the form (u, v, t′) with t′ ≥ t. Let P be the (non temporal) preference database
obtained from Test by removing the timestamp t′ from its elements. The acc and CR measures of
the preference model PNett obtained at instant t are evaluated according to the formulae given in
the previous section applied to the (static) BPN PNett and the non temporal preference database
P. The quality of the algorithm is measured periodically over time. Fig. 2 illustrates this dynamic
process of mining and testing of the preference models from the preference stream.

Now we are ready to state the problem of Mining Contextual Preferences from a Preference Stream:

Input : a relational schema R(A1, A2, ..., An), and a preference stream S over R.
Output : whenever requested, return a BPNt over R having good accuracy and comparability rate,

where t is the time instant of the request.

4. ALGORITHMS FOR MINING PREFERENCES IN STREAMS

In this article we propose an algorithm for mining user contextual preferences in the stream setting:
the FPSMining Algorithm. In addition, we also propose an incremental version of this algorithm,
named IncFPSMining Algorithm. Our purpose is to compare the performance of these two algorithms
over synthetic and real data, and evaluate whether we will achieve better results with the incremental
version of the target algorithm of this article.

In order to save processing time and memory, in both algorithms we do not store the elements of
the preference stream processed so far, we just collect sufficient statistics from it. In both algorithms,
the sufficient statistics are incrementally updated in an online way for every new element that comes
in the preference stream and the training process is carried out by extracting a preference model (a
BPN) from these sufficient statistics. Example 4.1 illustrates the sufficient statistics collected from a
preference stream.

Example 4.1. Sufficient Statistics. Let R(A,B,C) be a relational schema with a1, a2 ∈ dom(A), b3,
b5, b6 ∈ dom(B) and c1, c2, c4, c5 ∈ dom(C). Let S be a preference stream over R as shown in Fig. 3(c),
where the T column stands for the time when the temporal bituple was generated, and u1 >ti u2 (u1
is preferred to u2 at ti) for every temporal bituple (u1, u2, ti) in the preference stream, for 1 ≤ i ≤ 10.
Consider the sufficient statistics for attribute C shown in Fig. 3(a) collected from the preference stream
S until the time instant t9. The table on top of Fig. 3(a) shows the context counters regarding the
preferences on the values of the attribute C, and the table on the bottom shows the general counters
over C. Context counters account for the possible causes for a particular preference over values of
an attribute, and general counters stores the number of times that a particular preference over an
attribute appeared in the stream. With the arrival of the temporal bituple l = (u1, u2, t10), where
u1 = (a1, b6, c2) and u2 = (a1, b6, c1), the sufficient statistics are updated as follows (see Fig. 3(b)):
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(1) Compute ∆(u1, u2), which is the set of attributes where u1 and u2 differ in l. In this example,
∆(u1, u2) = {C}, and so only the attribute C will have its statistics updated with the arrival of l; (2)
Increment context counters a1 and b6 regarding the preference c2>c1 (table on top of Fig. 3(b)). Notice
that in the temporal bituple l the values a1 and b6 are possible contexts (causes) for the preference
c2>c1, just because they are equal in both tuples (u1 and u2). Since we had no context b6 so far, it
is inserted in the statistics; (3) Increment the general counter of the preference c2>c1 (table on the
bottom of Fig. 3(b)).

In order to limit the growth of the sufficient statistics, both algorithms perform a simple memory
management procedure. Since the structure of the sufficient statistics has been specifically designed to
operate in the problem addressed in this article, so it was necessary to develop a specific mechanism
for the memory management of the proposed structure. In general, this mechanism can be described as
follows. We can abstract our statistics as a tree, where the leaves are represented by general counters
and context counters. For each leaf, we store the time of its last update. Periodically, in order to
reduce runtime overhead, the algorithms perform the memory management of their statistics, which
in short consists in eliminating leaves that have not been visited since a long time (i.e., the time of
its last update differs from the current time by an amount greater than a threshold). When a leaf is
removed, we verify if the nodes traversed to reach this leaf recursively need to be removed as well, in
the case of these nodes do not have other children. According to tests carried out on synthetic data
this mechanism proved to be effective.

4.1 The FPSMining Algorithm

The main idea of the FPSMining (Fast Preference Stream Mining) is to create a preference rela-
tion from the most promising dependencies between attributes of a preference stream. The degree of
dependence of a pair of attributes (X,Y ) is a real number (between 0 and 1) that estimates how
preferences on values for the attribute Y are influenced by values for the attribute X. We adapted the
concept of degree of dependence introduced by de Amo et al. [2013] to deal with sufficient statistics
instead of a complete set of preferences. Its computation is carried out as described in Alg. 1. In order
to facilitate the description of Alg. 1 we introduce some notations as follows: (1) We denote by T timeyy′

the finite subset of temporal bituples (u1, u2, t) ∈ S, such that t ≤ time, (u1[Y ] = y ∧ u2[Y ] = y′)
or (u1[Y ] = y′ ∧ u2[Y ] = y); (2) We denote by Stimex|(y,y′) the subset of T timeyy′ containing the temporal
bituples (u1, u2, t) such that u1[X] = u2[X] = x. Example 4.2 illustrates the computation of the degree
of dependence on the statistics.

Algorithm 1: The degree of dependence of a pair of attributes
Input: Q: a snapshot of the sufficient statistics from the preference stream S at the time instant time;

(X,Y ): a pair of attributes; two thresholds α1 > 0 and α2 > 0.
Output: the degree of dependence of (X,Y ) with respect to Q at the time instant time.

1 for each pair (y, y′) ∈ general counters over Y from Q, y 6= y′ and (y, y′) comparable do
2 for each x ∈ dom(X) where x is a cause for (y, y′) being comparable do
3 Let f1(Stime

x|(y,y′)) = max{N, 1−N}, where

N =
|{(u1, u2, t) ∈ Stime

x|(y,y′) : u1 >t u2 ∧ (u1[Y ] = y ∧ u2[Y ] = y′)}|
|Stime

x|(y,y′)|
4 Let f2(T time

yy′ ) = max {f1(Stime
x|(y,y′)) : x ∈ dom(X)}

5 Let f3((X,Y ), Q) = max{f2(T time
yy′ ) : (y, y′) ∈ general counters over Y from Q, y 6= y′, (y, y′)

comparable}
6 return f3((X,Y ), Q)

Example 4.2. Degree of Dependence on the Statistics. Let us consider the preference stream in Fig.
3(c) until instant t10 and the snapshot Q of its sufficient statistics for attribute C shown in Fig. 3(b).
In order to compute the degree of dependence of the pair (A,C) with respect to the snapshot Q, we
first identify the context counters related to A in Fig. 3(b). The thresholds we consider are α1 = 0.1
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and α2 = 0.2. The support of (c1, c2) and (c4, c5) are (4 + 3)/10 = 0.70 and 3/10 = 0.30, respectively.
Therefore, we do not discard any of them. Entering the inner loop (line 2 of Alg. 1) for (c1, c2) we
have only one set named Sa1|(c1,c2). The support of Sa1|(c1,c2) is 5/5 = 1.0 and N = 3/5. Hence,
f1(Sa1|(c1,c2)) = 3/5 and f2(Tc1c2) = 3/5. In the same way, for (c4, c5) we have Sa2|(c4,c5) with support
2/2 = 1.0 and N = 2/2 = 1.0. Therefore, f1(Sa2|(c4,c5)) = 1.0 and f2(Tc4c5) = 1.0. Thus, the degree
of dependence of (A,C) is f3((A,C), Q) = max{3/5, 1.0} = 1.0.

Given this, our algorithm builds a BPNt from the preference stream using the Alg. 2.

Algorithm 2: The FPSMining Algorithm
Input: R(A1, A2, ..., An): a relational schema; S: a preference stream over R.
Output: whenever requested, return a BPNt over R, where t is the time instant of the request.

1 Take a snapshot Q of the sufficient statistics from S at the time instant t.
2 for each pair of attributes (Ai, Aj), with 1 ≤ i, j ≤ n, i 6= j do
3 Use Alg. 1 for calculate the degree of dependence dd between the pair (Ai, Aj) according to Q
4 Let Ω be the resulting set of these calculations, with elements of the form (Ai, Aj , dd)
5 Eliminate from Ω all elements whose dd < 0.5 (indicates a weak dependence between a pair of attributes)
6 Order the elements (Ai, Aj , dd) in Ω in decreasing order according to their dd
7 Start the graph Gt of the BPNt with a node for each attribute of R
8 for each element (Ai, Aj , dd) ∈ ordered set Ω do
9 Insert the edge (Ai, Aj) in the graph Gt only if the insertion does not form cycles in Gt

10 Once the graph Gt of the BPNt was created, estimate the conditional probabilities tables θt of the
BPNt, using the Maximum Likelihood Principle (see [de Amo et al. 2013] for details) over Q.

11 return BPNt

4.2 The IncFPSMining Algorithm

The main idea of the IncFPSMining is the following: for each chunk of b temporal bituples arrived
(parameter of the algorithm called “grace period ”) the current preference model M built so far is
updated. This model M consists of a graph with some edges v1,v2,...,vn, each one with degree of
dependence dd measured at the time that M has been constructed. The gap of an edge vi measures
how close dd is from the minimum limit 0.5 that is gap = dd− 0.5. Only edges having gap sufficiently
high are admitted at each update. The threshold is given by the Hoeffding Bound [Hoeffding 1963] ε

associated to the random variable gap. It is computed as ε =

√
R2ln( 1

δ )

2n , where: 1) R is the size of the
range of values of the random variable X associated to the problem considered (in our case, X = gap).
Therefore, the higher value R of gap is 0.5 (so, R = 0.5); 2) δ is the probability that Xfuture−Xcurrent

> ε; 3) n is the number of temporal bituples seen so far.

The Hoeffding Bound ensures (with an error probability δ) that, if the degree of dependence ddt of
an edge v at instant t satisfies ddt− 0.5 ≥ ε, when the number of temporal bituples seen so far was n,
then in any future instant tfut its degree of dependence ddfut must satisfy (ddfut−0.5)−(ddt−0.5) ≤ ε.
That is ddfut − ddt ≤ ε, and so, ddfut is not very far from the acceptable degree of dependence at
the current instant t. So, the edges that were introduced in an earlier phase will not have their dd get
closer to the limit 0.5 than before. The example 4.3 illustrates this process.

Example 4.3. Hoeffding Bound Guarantee. Let us consider the Hoeffding Bound ε = 0.02 and let
us suppose a selected edge v at instant t having ddt = 0.55. Then the gap (0.55 − 0.5) at t is 0.05
> 0.02, considered reasonable. So in any future instant tfut, the gap ddfut will not change much, i.e.,
FutGap = (dd(tfut)− 0.5) may not be very far from CurrGap = (0.55− 0.5). The Hoeffding Bound
guarantees that this gap will satisfy: CurrGap− FutGap ≤ ε. Therefore FutGap ≥ CurrGap− 0.02
= 0.05− 0.02 = 0.03, which is quite acceptable.

This algorithm only considers the statistics related to edges that have not been inserted in the graph
so far. Thus, we first select edges not belonging to the current graph, whose dd verifies the Hoeffding
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Bound condition (gap = dd − 0.5 ≥ ε). For each one of these edges we test if its inclusion produces
cycles in the graph. If so, we evaluate the dd of all edges in the cycle, and eliminate the edge with the
worst dd. The IncFPSMining algorithm is described in Alg. 3.

Algorithm 3: The IncFPSMining Algorithm
Input: R(A1, A2, ..., An): a relational schema; S: a preference stream over R.
Output: whenever requested, return a BPNt over R, where t is the time instant of the request.

1 Let Gt be a graph with a node for each attribute of R
2 for each temporal bituple l of S do
3 Increment n, the number of elements seen until t
4 if n mod grace period = 0 then
5 Compute Hoeffding bound ε
6 Take a snapshot Q of the statistics from S at t
7 for each possible edge ei outside Gt do
8 Use Alg. 1 for calculate the degree of dependence dd of ei according to Q
9 Let Ω be the resulting set of these calculations, with elements of the form (ei, dd)

10 Order the elements (ei, dd) in Ω in decreasing order according to their dd
11 for each pair (ei, dd) ∈ ordered set Ω do
12 if dd− 0.5 ≥ ε then
13 Insert the edge ei in Gt

14 if ei has created cycle in Gt then
15 Remove from Gt the edge with lower dd in the cycle
16 Once Gt of the BPNt was created, estimate the tables θt of the BPNt over Q.

4.3 Complexity Analysis of Both Algorithms

We divided the complexity analysis of both algorithms in three parts, as explained below.
–The complexity of processing each element of the stream and update the sufficient statistics: (i) Scan
a temporal bituple to save the ∆ (set of attributes that have different values in the two tuples) and
the B (set of attributes that have equal values in the two tuples) are O(l), where l is the number
of attributes; (ii) Update the statistics of an attribute is O(|B|). Thus, update the statistics for all
attribute in ∆ is O(|∆|.|B|). Therefore, the complexity for processing each element in both algorithms
in the worst case is O(|∆|.|B|), where |∆|+ |B| = l, and in the best case is O(l).
–The complexity of creating the preference model (BPN) in the FPSMining algorithm is calculated as
follows: (i) the computation of the degree of dependence between the pairs of attributes is O(l2); (ii)
the computation of the topology is O(l2.e), where e is the number of edges of the BPN. The sub-steps
used in this calculation were: (a) the elimination of the pairs of attributes whose dd < 0.5 is O(l2),
(b) the ordination of the pairs of attributes is O(l2. log l) in the average case, and (c) for each pair of
attributes the acyclicity test of the insertion of its edge in the graph is O(e), so the total complexity of
this sub-step is O(l2.e); (iii) the computation of the conditional probability tables is O(e.m), where m
is the number of training instances processed. Therefore, the total complexity for building the model
in the FPSMining algorithm is O(e.(l2 +m)).The complexity of updating the preference model in the
IncFPSMining algorithm is made analogously, and in the worst case is also O(e.(l2 + m)). However,
over time, the IncFPSMining will consider only a few edges in its processing, differently from the
FPSMining which always considers all possible edges. Thus, in the practice, as the more attributes
the stream has, the greater the advantage of the IncFPSMining over the FPSMining;
–The complexity of using the model (BPN) for ordering a temporal bituple in both algorithms is
O(l + e), which can be reduced to O(l) when the BPN is a sparse graph.

5. EXPERIMENTAL RESULTS

In this section we describe the results concerning the performance of the FPSMining and IncFPSMin-
ing over synthetic and real datasets. Our algorithms were implemented in Java and all the experiments
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Table I. The configuration parameters in the tests with synthetic data
# attributes |dom| per attribute |stream|

6, 8, 10, 12, 14, 16 10 elements 10m, 25m, 50m, 75m, 100m

performed on a Windows 7 machine with 3.40 GHz clocked processor and 12 GB RAM.

The Experiments Protocol. In order to evaluate our algorithms, we adapted the sampling technique
proposed by Bifet et al. [2011] (based on holdout for data stream) to the preference mining scenario.
This sampling technique takes three parameters as input : ntrain, ntest and neval. The ntrain and
ntest variables represent, respectively, the number of elements in the stream to be used to train and
test the model at each evaluation. The variable neval represents the number of evaluations desired
along the stream. For example, let us consider the values1 ntrain = 10k, ntest = 1k and neval = 9090.
Consider S = {e1, e2, e3, ...} the preference stream used in the tests. The dynamic of the evaluation
for this example is as follows: (1) elements e1 to e10k from S are used to train the model; (2) elements
e10001 to e11k are used to test the quality of the model. The acc, CR and prec of the model are
calculated according to this test period; (3) elements e11001 to e21k are used to train the model,
and so on for 9090 cycles. The preference models are produced by both algorithms at each chunk of
ntrain temporal bituples arrived. Let us call this moment of refresh point. At each refresh point the
FPSMining produces its model from scratch whereas IncFPSMining updates the model that has been
incrementally generated (at each grace period) so far.

Synthetic Data. In order to evaluate the ability of our algorithms to deal with large volumes of data,
we performed a set of experimental tests on synthetic data. The synthetic data2 were generated by an
algorithm based on Probabilistic Logic Sampling [Jensen and Nielsen 2007], which samples bituples for
a preference stream S given a BPN with structure G and parameters θ. We have considered different
structures G (varying the number of nodes) and parameters θ using the configuration shown in the
Table I. We performed tests with streams up to 100 million3 elements. The default values for the
holdout parameters were ntrain = 10k and ntest = 1k. For the tests with 10m, 25m, 50m, 75m and
100m of elements, we used neval10m = 909, neval25m = 2272, neval50m = 4545, neval75m = 6818 and
neval100m = 9090. For calculate the degree of dependence, we used α1 = 0.2 and α2 = 0.1. Besides, the
default values for IncFPSMining were grace period = 1k and δ = 10−7.

In our experiments, we consider the statistical test proposed by Tan et al. [2005] to detect statistical
significance in the differences of the algorithms performance. For this approach, we need to use a t-
distribution to compute the confidence interval for the true difference between the algorithms: dcvt =
d ± γ, where d is the average difference of the experiment, γ = t(1−α),neval−1 × σ̂dcv and σ̂dcv is the
standard deviation. The coefficient t(1−α),neval−1 is obtained from a probability table with two input
parameters, its confidence level (1− α) and the number of degrees of freedom (neval − 1).

1. Performance Analysis. Fig. 4(a) and (b) show the average values of acc, CR and prec obtained with
FPSMining and IncFPSMining for streams with different number of attributes and size, respectively.
In the Fig. 4(a) we used 50m elements and in the Fig. 4(b) we used 10 attributes. The quality of both
algorithms remained stable over the different streams. Furthermore, our two algorithms could compare
practically all the bituples of tests they were submitted (CR columns). In these tests we also calculated
the statistical significance regarding the slight improvement presented by IncFPSMining compared to
FPSMining. Our question is: At α = 95%, can we conclude that the IncFPSMining outperforms
FPSMining? The null and alternate hypotheses for acc and CR are H0 : IncFPS ≤ FPS and
HA : IncFPS > FPS. The results show that H0 is rejected, and thus, HA is substantiated. Thus,
although the difference between the two algorithms is very small, it is statistically significant. Fig.
4(c) illustrates how acc of the FPSMining evolve over time. We choose the FPSMining for this test

11k = 1000.
2Available at http://lsi.facom.ufu.br/JIDM2014-SyntheticData/
3We often abbreviate million by m in the text.
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IncFPS. FPS.
# attributes acc CR prec acc γ CR γ prec

6 0.95168 1.000 0.95168 0.94915 2×10−4 0.997 2×10−4 0.95160
8 0.94936 1.000 0.94936 0.94322 4×10−4 0.993 4×10−4 0.94942
10 0.95239 1.000 0.95239 0.95162 1×10−4 0.999 1×10−4 0.95239
12 0.95059 1.000 0.95059 0.94831 3×10−4 0.997 3×10−4 0.95057
14 0.95053 1.000 0.95053 0.94858 2×10−4 0.997 3×10−4 0.95053
16 0.95115 1.000 0.95115 0.94932 2×10−4 0.998 2×10−4 0.95115

(a)

IncFPS. FPS.
|stream| acc CR prec acc γ CR γ prec
10m 0.95236 1.000 0.95236 0.95151 3×10−4 0.999 3×10−4 0.95238
25m 0.95243 1.000 0.95243 0.95165 1×10−4 0.999 1×10−4 0.95244
50m 0.95239 1.000 0.95239 0.95162 1×10−4 0.999 1×10−4 0.95239
75m 0.95235 1.000 0.95235 0.95155 1×10−4 0.999 1×10−4 0.95235
100m 0.95240 1.000 0.95240 0.95160 9×10−5 0.999 9×10−5 0.95240

(b)
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Fig. 4. Experimental Results on Synthetic Data

because it has the lower limit quality of our algorithms. In this experiment, we consider the stream
with 100m of elements and 10 attributes. This curve shows that the acc values of the FPSMining were
reasonably stable over time.

2. Execution Time. Fig. 4(d) shows the time measured in seconds taken by FPSMining to generate
the model at each refresh point. The same data used in the experiment (c) have been considered here.
This stream produces about 20 GB of data. Notice that the time to refresh the model is very small,
on the order of milliseconds. Though the FPSMining builds the entire BPN every holdout cycle, the
sufficient statistics are updated incrementally, i.e., they are always ready to use, which makes this
process fast. For this test we used the memory management explained in the previous section. We
carried out an analysis regarding the time required to generate the model in two scenarios: (1) without
the memory management of the sufficient statistics; (2) with the memory management. In (1) the time
taken to generate the model has increased according to the increase of the number of training instances
processed, whereas in (2) the time required to generate the model has remained constant over time, as
can be seen in the Fig. 4(d). This scenario highlights the necessity of using the memory management
of the sufficient statistics.

Real Data. In order to evaluate our algorithms over real-world datasets, we considered data contain-
ing preferences related to movies collected by GroupLens Research4 from the MovieLens web site5
concerning six different users (named Ui, for i = 1, 2, 3, 4, 5, 6). We simulated preference streams from

4Available at http://www.grouplens.org/taxonomy/term/14
5Available at http://movielens.umn.edu
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IncFPS. FPS. Hoeffding Tree
User Tuples Bituples acc CR prec acc CR prec acc γ CR γ prec
U2 7046 178,500 0.58 0.82 0.70 0.58 0.82 0.70 0.41 0.03 0.66 0.05 0.63
U3 4449 112,200 0.60 0.90 0.66 0.60 0.90 0.66 0.33 0.03 0.63 0.03 0.52
U4 4165 102,000 0.59 0.94 0.62 0.59 0.94 0.62 0.31 0.05 0.55 0.08 0.48
U5 3414 86,700 0.61 0.90 0.69 0.61 0.90 0.69 0.36 0.06 0.60 0.08 0.52
U6 3164 76,500 0.61 0.91 0.66 0.61 0.91 0.66 0.39 0.07 0.62 0.07 0.58
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Fig. 5. Experimental Results on Real Data

these data, as follows: we stipulated a time interval λ, and each tuple in the dataset Di of movies
evaluated by the user Ui was compared to all others movies of Di in a radius λ relative to its times-
tamp, thus generating temporal bituples for each user Ui. We calculated the λ (in days) for each
user Ui according to the sparsity related to the time of the tuples in the dataset Di, and the values
obtained were: U1 = 77, U2 = 37, U3 = 140, U4 = 50, U5 = 69 and U6 = 135. The resulting preference
stream Si has five attributes (director, genre, language, star and year), and its elements correspond to
preferences on movies concerning user Ui. Dataset D1 is constituted by movies evaluated by the user
U1 from 5th Aug 2001 to 3rd Jan 2009. The evaluation time periods for the other users are: from 10th
Oct 2006 to 2nd Jan 2009 for user U2, from 3rd Aug 2000 to 1st Jan 2009 for user U3, from 13th Nov
2006 to 5th Jan 2009 for user U4, from 5th Jul 2002 to 5th Jan 2009 for user U5 and from 17th Jul
2002 to 18th Dec 2008 for user U6. The default values for the holdout parameters were ntrain = 5k
and ntest = 100. The neval values for each user Ui were calculated as follows: nevalUi = |Di| / (ntrain
+ ntest). The default values for α1 and α2 (degree of dependence) were: 0.2 and 0.1 respectively. For
IncFPSMining the default grace period was 1k and δ = 10−7.

1. Performance Analysis. Fig. 5(a) illustrates how the acc of the FPSMining and IncFPSMining
algorithms evolve through time. In this experiment, we consider the dataset D1 related to user U1. The
total number of training instances processed by both algorithms was close to 1.1× 106, corresponding
the entire stream of evaluations made by the user U1. Although most of the time FPSMining shows
better predicting capability than IncFPSMining, the difference between the performances of both
algorithms is not very expressive.

2. Baseline. As will be discussed in section 6, we did not find any published algorithm that addresses
the exact same problem we address. Nevertheless, the classification task is the closest to the mining
preference task among the numerous existing data mining tasks. So, we decided to design a baseline
by adapting a classifier to compare the performance of our algorithms. In this approach, the classes
are the ratings given by the users to the movies and can take the values: 1, 2, 3, 4 or 5. We designed
this baseline so that in each cycle of the holdout, the sets of training and testing samples of our
algorithms contain the same movies used by the classifier. This ensures a fair evaluation process. Fig.
5(b) compares the performance of our algorithms with a baseline widely used in the literature: the
Hoeffding Tree algorithm [Domingos and Hulten 2000]. For these experiments, we used the MOA
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[Bifet et al. 2010] implementation of Hoeffding Tree (HT) in the default configuration parameters6. In
these tests we used the users U2, U3, U4, U5 and U6. Regarding our algorithms, we performing tests
with both hypotheses: 1) assuming that FPSMining is strictly better than IncFPSMining and 2) vice
versa. Both hypotheses were rejected, which leads us to conclude that our two algorithms have tied
in these data. Thus, for these experiments the main question is: At α = 95%, can we conclude that
FPSMining and IncFPSMining outperform the baseline? The null and alternate hypotheses for acc
and CR are H0 : FPS, IncFPS ≤ HT and HA : FPS, IncFPS > HT . The results show that H0 is
rejected, and thus, HA is substantiated. This shows that our two algorithms outperform the baseline.
Thus, we can conclude that our algorithms, which were specifically designed for preference mining,
perform better than a classical classifier.

3. Execution Time. Fig. 5(c) shows the time measured in seconds taken by the FPSMining and
IncFPSMining algorithms to generate the model at each refresh point. In this experiment, we consider
the dataset D2 related to user U2. Notice that the time to refresh the model is very small, on the
order of milliseconds. Besides, the time taken by the IncFPSMining algorithm to generate the model
is almost half of the time taken by FPSMining, mainly due to incremental building of it. Notice also
that the time of both algorithms remains almost constant with increasing number of training instances
processed, mainly due to the efficiency of the memory management used.

6. RELATED WORK

There is a vast literature available on preference learning in the batch setting [Holland et al. 2003;
Jiang et al. 2008; de Amo et al. 2013]. Most articles propose a preference learning algorithm, a method
to elicit user preferences or even on a formalism about preferences. de Amo et al. [2013] proposes
CPrefMiner, which is a technique for learning contextual user preferences in the batch setting.

Meanwhile, proposals for suitable algorithms to solve the problem of learning user preferences in
streams have been little explored in the literature. To the best of our knowledge there is no work in
the literature addressing this specific topic. Learning techniques have been used to efficiently predict
user preferences in Context-based Recommendation Systems [Lops et al. 2011] or in Hybrid Recom-
mendation Systems [Burke 2002]. These techniques are used to mitigate the well-know item-cold start
challenge faced in recommendation systems research. However, they are usually classical classification
algorithms used to predict user evaluations on individual items (as in [Melville et al. 2002], designed
for a batch setting) or specific algorithms to predict item rankings from a set of item-ranking samples
provided by a user (as in [Shivaswamy and Joachims 2011] also designed for a batch setting). We have
found no work focused on pairwise preference mining algorithms in a data stream setting, that is,
algorithms designed to extract a preference model from a set of time-stamped pairs of items. For that
reason, we decided to adapt a well-known classification technique designed to predict user evaluations
on items in a data stream setting, the Hoeffding Tree algorithm [Domingos and Hulten 2000] in order
to predict the preference order between pairs of objects. This algorithm is used in Section 5 as baseline
for FPSMining and IncFPSMining.

Other work related to ours is [Jembere et al. 2007], that presents an approach to mine user prefer-
ences in an environment with multiple context-aware services, but uses incremental learning only for
the context, and not for the user’s preferences.

7. CONCLUSION AND FURTHER WORK

In this article we proposed two algorithms to solve the problem of mining user contextual preferences
in a stream setting. The first algorithm, FPSMining, has been introduced in a previous short version
of this article in [Papini et al. 2013]. It does not verify one important precept pointed out by Kontaki

6Hoeffding Tree: gracePeriod g = 200, splitConfidence c = 10−7, tieThreshold t = 0.05, numericEstimator n =
GAUSS10.
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et al. [2010] for efficient data streams applications, the incremental evaluation. So, the second algo-
rithm IncFPSMining introduced in this extended version aimed at proposing an incremental technique
for mining preferences in data stream. A baseline method adapted from the classical classification al-
gorithm Hoeffding Tree [Domingos and Hulten 2000] has also been implemented. We remark that
most existing Content-based Recommendation Systems use classification algorithms in order to pre-
dict user preferences. An extensive series of experiments executed on synthetic and real data showed
that our algorithms are very efficient and largely outperform the baseline. However, contrarily to our
expectation, the incremental algorithm did not show a superior performance when compared to the
non-incremental one. As immediate future work, we intend to develop different methods for mining
preferences from streams where concept drift occurs in the preference data along time. In fact, this
situation is expected in real world applications, where training data are collected during a large pe-
riod of time. That is, it seems natural to think of users preferences as not static. A very preliminary
proposal in this direction has already been developed and the initial tests allow us to conjecture that
in a scenario where concept drift is explicitly inserted in the stream, the superiority of the incremental
algorithm will be surely evident.
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