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Abstract. Scientific workflow management systems (SWfMS) are powerful tools in the automation of scientific
experiments. Several workflow executions are necessary to accomplish one scientific experiment. Data provenance,
typically collected by SWfMS during workflow execution, is important to understand, reproduce and analyze scientific
experiments. Provenance is about data derivation, thus it is typically represented in the form of a directed acyclic
graph. For each workflow execution, a provenance graph is generated. Numerous graphs are generated after several
workflow runs, exploring different parameters. The resulting provenance database requires considerable storage space
and querying it involves handling a large volume of graphs. Typical provenance queries process many graphs to get data
derivation paths (lineage). This article proposes SGProv, a summarization mechanism for provenance graphs, using
a graph database to store and query them. The goal is to generate a single small summary graph that represents all
provenance graphs generated during an experiment, eliminating redundant data. This summarization approach aims to
reduce the processing time of provenance queries by using only the summary graph to answer them without the need for
rebuilding the original graphs. Results of provenance queries on the summary graph, from typical workflow executions,
show performance improvements without data loss on query results.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: Graph, Provenance, Summarization

1. INTRODUCTION

Scientific experiments assisted by computers are based on simulations typically performed by chains
of programs. Such chains are commonly represented by means of scientific workflows, which can be
defined as formal specifications of the steps performed in scientific experiments [Deelman et al. 2009].
The exploratory nature of scientific experiments demands many executions of the same workflow on
different scenarios [Taylor et al. 2007]. A scientist may need to analyze the results of running the
workflow with different programs, input data or parameter combinations, like in a parameter sweep
[Abramson et al. 2011]. In another scenario the scientist may widen or narrow the range of data
analyzed by the workflow, or even change criteria of similarity [Ocaña et al. 2011b] or convergence
of the experiment [Guerra et al. 2012]. Based on analyzes of these various workflow executions, the
scientist may also exchange some of the programs, on the workflow specification, by others that are
more in line with the data flow behavior that is being generated [Santos et al. 2013]. Again, this new
workflow has to be executed for the same combination of parameters. Thus, for a single experiment,
numerous executions of workflows are typically performed [Gil et al. 2007; Mattoso et al. 2010].

Each workflow execution generates provenance data, a trace that describes all data artifacts it
used and produced as well as the transformations they suffered [Freire et al. 2008]. Provenance
traces in workflows are based on objects (data and programs) and their relationships (dependencies)
[Moreau and Missier 2011], being typically represented in the form of a Directed Acyclic Graph (DAG)
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[Aggarwal and Wang 2010]. Regardless of workflow complexity, the resulting provenance graph is a
DAG. The presence of conditional execution and parallelism, for example, affects the complexity of
the workflow, but not the provenance DAG complexity. A provenance database is thus composed
of several DAG whose nodes have varying structures that often are not known in advance. Nodes
may have many dependencies between them. These characteristics bring significant challenges to
provenance data storage and querying [Anand et al. 2010]. Storing and querying all DAG produced
allow comparing the results obtained by exploiting the numerous variations of a workflow. Thus,
scientists can identify, for example, the parameters of a particular execution and results of the workflow
that used an alternative program. Typical provenance queries include getting the workflow execution
“lineage” (path derivation) of results (final or intermediate). Running them efficiently (with short
response time) and obtaining, as a result, a graph, or a set of graphs, that preserves the objects
“lineage” relationships to answer provenance queries, are challenging [Woodman et al. 2011]. The
approach often used in the literature to address the problem of provenance data storage and querying
is to use a Relational Database Management System (RDBMS) [Huahai and Singh 2008; Gadelha
et al. 2011; Ogasawara et al. 2011; Anand et al. 2012]. The main problems with these approaches is
query specification complexity and query processing time, which, in most cases, involve many joins
between tables, especially in a large set of graphs with many edges between nodes. The rigid schema of
the Relational model also represents a problem for its use, since provenance data usually have flexible
schemas [Davidson and Freire 2008].

This article examines the use of a Graph Database System (GDB) to store and query provenance
graphs. Its data model consists of nodes, edges, and attributes. Edges have types and it is possible to
have several different edges, one of each type, between the same pair of nodes. There is no rigid schema
that previously defines the attributes for each node or edge, making the data storage very flexible.
Almost all GDB natively provide implementations of classical graph algorithms such as traversals,
breadth-first and depth-first search, and shortest path determination [Angles and Gutierrez 2008;
Sadalage and Fowler 2012; Robinson et al. 2013; Haichuan and Kitsuregawa 2013], for example. Thus,
using a GDB to traverse and retrieve data from various provenance graphs makes queries simpler and
more efficient when compared to a RDBMS, since it does not involve joins between relations. Even
with the use of a GDB, there remains the problem of handling large amounts of provenance data, which
may affect query processing time. One approach to treat large graphs is summarization. Summaries
can significantly reduce the size of a graph by grouping nodes and edges, but maintaining its relevant
structure and enough information to answer queries applying classical graph search algorithms [Tian
and Patel 2010]. Navlakha et al. [2008] propose a graph summary technique generated from the
summarization of dense areas of the graph, complete bipartite subgraphs and cliques. Tian and
Patel [2010] propose a summary graph where: a super-node is formed by nodes that have the same
attributes with the same values; a super-edge is created between two super-nodes si and sj if, in the
original graph, each node of si has at least one edge to a node of sj . Liu and Yu [2011] propose
a summary graph where: nodes of a super-node must have attributes in common, with the same
values (or similar values) and the same number (or similar number) of edges to neighboring super-
nodes. However, existing solutions are dedicated to summarization of a single and generic graph with
many nodes and edges. Thus, the summarization is based on graph theory or on complex similarity
functions. Moreover, the data model semantic is not known in advance. On the other hand, provenance
queries are usually executed on a high volume of graphs, not necessarily with many nodes and edges
each. The provenance data model semantic is known and provenance graphs have similarities between
them, since they are generated by executions of workflow variations. Workflow executions generate
thousands of provenance graphs. Typical provenance analytical queries are “obtain provenance traces
where program P2 was executed before P8”. This is the case in workflows where different programs
can be used. As an example, take the SciHMM workflow described by Ocaña et al. [2011a]. In one
of its activities (MSA Construction), one of five programs can be used. A possible query could be
“obtain the ROC curves produced when MAFFT and Kalign were used for MSA Construction”. To
obtain this result, the system must scan each provenance graph to check this property. Even if the
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algorithm traverses very fast on each single graph, it still has to manage the complexity of loading
and repeating the search for each one of the provenance graphs. If the scientist decides to expand this
search to previous workflow executions the number of graphs will be very large. This article adapts
single graph summarization techniques to apply them in large sets of provenance graphs.

This article proposes SGProv, a summarization mechanism for multiple provenance graphs resulting
from workflow executions performed during a computational scientific experiment. SGProv generates
a single summary graph that represents a set of provenance graphs generated during an experiment,
so that paths and nodes found in more than one graph are stored only once in the summary and their
differences are highlighted. The summary graph data volume is reduced when compared to the original
set of graphs. Queries may be answered from the summary, eliminating the need for original graphs
reconstruction, which improves their execution time. Typical provenance queries were evaluated with
SGProv, comparing the execution time using the summary graph only to that obtained using the non-
summarized graphs in the original database. Results show significant performance improvements,
around ten times faster, without any data loss on query results. This article is organized as follows:
section 2 describes SGProv data model, section 3 shows an example of SGProv application, section 4
explains SGProv algorithm, section 5 presents experimental results and section 6 concludes.

2. SGPROV

This section describes the data model and how the summary graph is generated from the provenance
graphs.

2.1 Data Model

In SGProv, a graph is defined as follows:

Definition 1 (Graph): A graph G is defined as G = (V,E,A, T ), where V = {v1, v2, . . . , vn} is a
set of nodes, E = {e1, e2, . . . , em} ⊆ (V × V ) is a set of directed edges, A = {a1, a2, . . . , ap} is a set
of attributes associated with nodes and/or edges and T = {t1, t2, . . . , tq} is the set of types of edges.
Each node vi ∈ V has at least one attribute ax ∈ A. The value of ax in the node vi is represented
by V al(vi, ax). Each edge ej ∈ E has a unique type tk defined by Type(ej), where tk ∈ T . The
value of attribute ay belonging to an edge ej is represented by V al(ej , ay). Since edges are directed,
Origin(ej) e Destination(ej) represent respectively, the origin and destination nodes of ej .

A provenance graph is a special graph, defined as follows:

Definition 2 (Provenance Graph): A provenance graph Gp is defined as Gp = (Vp, Ep, Ap, Tp),
where the nodes of Vp represent programs or data artifacts and edges of Ep represent node “lineage”.
An attribute “type” ∈ Ap must exist for all nodes and edges. If a node vpi represents a program,
V al(vpi, type) = “program”. If this node represents a data artifact, V al(vpi, type) = “data”. The
set Ap also contains other attributes found in the provenance collection, as, for instance, programs
input parameter names. Nodes that represent programs also have an attribute “name” ∈ Ap. The
set Tp represents types of edges that can be “informed”, “derived”, “used”, “generated”, “attributed”,
“associate” or “acted”.

2.2 Summary Graph

SGProv basic premise is that nodes that represent program executions tend to occur frequently in
several provenance graphs. This premise is based on a scientific computational experiment character-
istic where programs are repeatedly executed, each time with a different combination of parameters
along the variations of the workflow executions. Nodes representing data show much more variation
in these graphs because they correspond to the inputs and outputs of programs, which tend to vary
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Fig. 1. SGProv example.

from execution to execution. Based on these characteristics, SGProv groups the nodes and edges of
the set of provenance graphs to generate the summary graph containing all the nodes and edges of
the original graphs without redundancy. In SGProv, a summary graph is defined as follows.

Definition 3 (Summary Graph): A summary graph Gs is defined as Gs = (Vs, Es, As, Ts). Each
node vs ∈ Vs is called a super-node and each edge es ∈ Es is called a super-edge.

Given a set of provenance graphs {Gp1 = (Vp1, Ep1, Ap1, Tp1), . . . , Gpx = (Vpx, Epx, Apx, Tpx)} for
which one intends to produce a summary graph, super-nodes and super-edges are defined as follows.

Definition 4 (Super-node): A super-node vsi = {vp1, vp2, . . . , vpn} ⊆ (Vp1 ∪ Vp2 ∪ . . . ∪ Vpx),
where V al(vp1, type) = V al(vp2, type) = . . . = V al(vpn, type) = “program” and V al(vp1, name) =
V al(vp2, name) = . . . = V al(vpn, name).

Definition 5 (Super-edge): A super-edge connects two super-nodes vsi, vsj if there exists an edge ek =
(vm, vn) ∈ (Ep1∪Ep2∪. . .∪Epx), where vm ∈ vsi and vn ∈ vsj . This way, a super-edge esi is defined as
esi = {ep1, ep2, . . . , epm} ⊆ (Ep1∪Ep2∪ . . .∪Epx), where {Origin(ep1), Origin(ep2), . . . , Origin(epm)}
⊆ Origin(esi), {Destination(ep1), Destination(ep2), . . . , Destination(epm)} ⊆ Destination(esi) and
Type(ep1) = Type(ep2) = . . . = Type(epm).

Each node (edge) that belongs to a single provenance graph Gpk is included in the summary as a
super-node (super-edge) containing only one node (edge). Some super-nodes and super-edges have an
attribute called “exec”, which consists of a list of workflow execution identifiers in which they took
part. This attribute makes it possible to recover the paths of the original graphs and answer prove-
nance queries based only on the summary graph. All super-nodes and super-edges of the summary
graph that contain nodes and edges of the same provenance graph have the corresponding workflow
identifier in their “exec” attributes. The absence of the attribute “exec” in a super-node (super-edge)
indicates that it is a program (dependency) present in all provenance graphs. Figure 1 shows an
example of the proposed mechanism. From provenance graphs Gp1 e Gp2, the summary graph Gs

is generated, where: super-node vs1 is created, since V al(v10, type) = V al(v20, type) = “program”
and V al(v10, name) = V al(v20, name) = “P2”; super-node vs2 is created, since V al(v11, type) =
V al(v21, type) = “program” and V al(v11, name) = V al(v21, name) = “P3”; and super-edge es12
is created, since edges (e1, e2) exist between nodes vs1 and vs2, where {Origin(e1), Origin(e2)} ⊆
Origin(es12), {Destination(e1), Destination(e2)} ⊆ Destination(e12) and Type(e1) = Type(e2) =
“INFORMED”.
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3. SGPROV IN ACTION

SGProv envolves iteratively. An input set CGp of provenance graphs is iteratively summarized, one
graph at a time. In each iteration, SGProv takes the summary graph produced in the previous iteration
and the next graph in the CGp and produces a new summary graph. For the first iteration, since there
is no summary graph yet, the first provenance graph of CGp is taken as a summary graph. The
procedure continues until CGp is entirely processed and the final summary graph is produced. The
next example illustrates the process. Let an input set of provenance graphs CGp = {Gp0, Gp1, Gp2},
where each node in the graph has two attributes called ““name” and “type” and its edges are of
type “INFORMED”. Figure 2 illustrates the first iteration of CGp summarization process, where the
summary graph Gs1 is generated from Gp0 and Gp1. In this iteration the graph Gp0 is assigned as
the graph Gs0 because no summary graph was been produced so far. Figure 3 shows the second
iteration, where the summary Gs1 (figure 2) and the next graph of the input set, Gp2, are summarized
generating graph Gs2.

In this example, SGProv proceeds as follows. SGProv starts traversing the two graphs searching:
nodes of Gp1 in Gs0, that are of type “program” and have the same value for the attribute “name”; and
edges of Gp1 in Gs0 with the same type (in example type “INFORMED”) and source and destination
nodes of type “program”, where source nodes have the same values for the attribute “name”, as well
as the destination nodes. In first iteration (figure 2), nodes that are common to both input graphs
(programs with the same name) represent programs P1, P2, P4 and P5. The edges of such nodes that
exist in Gp1, but do not exist in summary Gs0 are inserted in summary Gs1, along with the attribute
“exec” with the respective execution value to which they belong. Its value is equal to [1] (Gp1). For
instance, the edge between nodes that represent programs P4 and P5 exists in the graph Gp1, but not
in graph Gs0. Therefore, this edge is inserted in Gs1 and the value of its “exec” attribute is equal to [1].
The nodes of the Gp1 not found in Gs0 are inserted into Gs1 along with their edges. For example, the
node that represents the program P8 does not exist in Gs0. Thus, that node and its associated edges
are inserted into Gs1, and their “exec” attributes are set to [1]. Finally, the nodes of Gs0 that do not
exist in Gp1 and their respective edges are inserted into the Gs1, along with the attribute “exec” equal
to [0], since they belong only to Gs0. For example, nodes that represent programs P12 and P10, and
the edge between them, exist in Gs0, but not in Gp1. So they are inserted into Gs1 with the attribute
“exec” equal to [0]. At the end of this iteration, the summary graph Gs1 is generated containing all
the nodes and edges of the two input graphs, but with the redundant nodes and edges summarized. In
second iteration (figure 3), SGProv compares Gp2 and Gs1. In Gs2, nodes representing programs P1,
P2, P4 and P5 are present in all executions, because they lack the attribute “exec”. Nodes representing
programs P3, P8 and P10 are common to Gs1 and Gp2, but the nodes that represent the programs
P3 and P10 belong to executions 0 and 2, while the node that represents the program P8 belongs to
executions 1 and 2. Edges in Gs2 also have their attribute values updated with the identifiers of the
executions to which they belong to. For example, the edge between nodes P2 and P3 is common to
the graph Gs1 (exec=0) and graph Gp2. In graph Gs2, this edge has its attribute “exec” updated with
the execution value of 2 (Gp2). As all of the graphs of the input set were analyzed, the summarization
mechanism is finished.

By analyzing the example, it is possible to verify the potential efficiency of SGProv. In figure 2,
Gs1 was produced from Gp0 and Gp1. Together, these graphs have 17 nodes and 22 edges. Gs1

has 13 nodes and 20 edges. Thus, a reduction of approximately 23% of nodes and 9% of edges was
obtained, at a cost of 27 attributes (“exec”). In figure 3, Gs2 was produced from Gs1 and Gp2. If
the summarization was not applied, the amount of actual data would correspond to the sum of the
volumes of the original graphs Gp0, Gp1 and Gp2. These three graphs have 26 nodes and 32 edges,
while Gs2 has 15 nodes and 25 edges. Thus, reductions of approximately 42% and 21% of the nodes
and edges, respectively, were obtained at a cost of 35 attributes (“exec”). Thus, after each SGProv
iteration, the reduction of the data volume becomes more significant. After m − 1 iterations on m
provenance graphs, a final summary graph is obtained, containing all the nodes and edges of the
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Fig. 2. SGProv first iteration.

original graphs without redundancy. In the example, by querying only the summary graph, Gs2 it
is possible to query Gp0, Gp1 and Gp2 data without the need for individually traversing each graph.
For this, the values of the “exec” parameter of nodes and edges of Gs2 are examined. Thus, the nodes
and edges that do not have this attribute belong to all executions; those that have value 0 in their
“exec” belong to Gp0; those that have the value 1 in their “exec” belong to Gp1; and those that have
the value 2 in their “exec” belong to Gp2.
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Fig. 3. SGProv second iteration.

4. SGPROV ALGORITHM

The SGProv algorithm (figure 4) takes as input a set of provenance graphs (CGp). The algorithm
complexity does not affect queries, since they are executed on summary graph generated at the end
of the SGProv run. SGProv is intended to be executed as a standalone process that prepares data
to be used by future queries. The SGProv runs iteratively and, in each iteration, traverses, compares
and summarizes the summary graph (Gs) produced in the previous iteration and the next graph from
the input set, producing as output a new summary graph, an updated version of Gs. This will be
used in the next iteration, until the entire set of input graphs is processed. In the first iteration, as
no Gs is created, the first graph of the input set is assigned as the initial summary (line 1). Then,
the algorithm runs m − 1 iterations, where m is the total number graphs in the CGp. At the end of
all iterations, the final Gs is produced. In a given iteration n, a provenance graph G = CGp [n] is
taken. The algorithm first searches for G nodes that have the same type and name of nodes in Gs

(lines 5-23). If any node of G is found, it marks the corresponding Gs node (“found” attribute receives
the value 1) and updates its “exec” attribute with the number of the current execution (lines 9-14).
Then, the procedure UpdateEdges (line 16) inserts into Gs the edges of the corresponding node in
G not present in the summary graph. If no corresponding Gs node is found for the G node, it is
inserted into the gNode list (lines 20-22). The algorithm continues until all nodes in G are compared
with the nodes of Gs. In the second phase, the algorithm searches for marked nodes (found=1) in Gs

and unmarks (found:=0) them. Unmarked nodes (found=0) are inserted into the sNode list (lines
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Table I. Characteristics of the test base and summary graph produced after applying the SGProv.
Test Base Summary Graph Approximate Reduction

Number of nodes 8,490 30 99%
Number of edges 10,149 305 97%

24-30). Then, the algorithm inserts the nodes and edges of the gNode list into Gs (lines 31-47) and
updates the “exec” attribute of the nodes and edges of the sNode list with the number of all previous
runs, leaving the current run out of the list (lines 48-62). The n variable is incremented (line 63) and
the gNode and sNode lists are reset (lines 64-65). The algorithm continues until there are no more
provenance graphs in the input set, producing the final summary graph Gs as output.

5. EXPERIMENTAL EVALUATION

SGProv was implemented using the Neo4j1 GDB and queries were implemented using its Cypher2
query language. Neo4j showed good performance for storing and querying graphs from the database.
However, a broader analysis about the use of GDB to manage provenance graphs requires tests with
other graph-oriented DBMS. The experiments were performed on a computer with 2.4 GHz Intel Core
i7 processor, 8GB RAM and 750 GB 5400 rpm HD. To perform an initial assessment of SGProv
performance, a test database with 1000 provenance graphs was generated from synthetic scientific
workflows executions. Some graphs have similar (but not identical) structures, and others have very
different structures. They follow the Prov-DM3 data model proposed by the W3C4 (World Wide Web
Consortium) as the standard for provenance data. On the test database, graph nodes represent pro-
grams used by scientists in their experiments, in which a program can belong to one or more graphs.
Thirty distinct programs were defined for synthetic workflows that have, on average, 15 programs,
and, at each run, some programs are replaced by similar ones or new programs are included. Table I
shows the characteristics of the test data originally produced, those of the summary graph produced
by SGProv (each one stored in a different database), and approximate data volume reduction. The
databases are managed by Neo4j. Since 30 programs are repeatedly referenced by each provenance
graphs, the summary graph is composed of 30 nodes. This is because the summarization mechanism
groups graph nodes with the same program names. As the same dependencies (edges) between pro-
grams can be found in many graphs, the summarization mechanism groups the edges that have the
same source and destination program, producing a small number of edges in the summary.

In scientific experiments, scientists need to query the provenance database to obtain information
such as: the relationship between production and consumption of data sets by processes, data deriva-
tion history and intermediate results obtained. It is thus possible to interpret, evaluate and validate
experiments and detect possible errors [Gadelha et al. 2011]. Typical provenance queries defined in
Woodman et al. [2011] were executed on the test base and on the summary graph in order to assess
the variation in processing time in both cases. Queries were implemented in Neo4j Cypher query
language, and were repeated 100 times. Table II shows the queries and the average processing times
obtained for each one.

Query Q1 traverses all nodes of the graph and returns the destination nodes of its edges. Running
Q1 on the summary graph obtained an average processing time much lower than that obtained with
graphs of the test base. This is because the data volume of the summary is much smaller than the
volume of the graphs of the test base. With Q1 running on the summary graph, it would also be
possible to return the number of workflow execution to which each edge of the queried nodes belongs,
by adding “r.exec” in the RETURN clause.

1http:\\www.neo4j.org
2http:\\www.neo4j.org\learn\cypher
3http:\\w3c.org\TR\2012\WD-prov-dm-20120202
4http:\\w3c.org\TR\prov-aq
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Fig. 4. SGProv algorithm and procedure UpdateEdges.
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Table II. Average processing time for provenance queries.
Queries Test base Summary

Q1. Obtain all graph programs and its descendants. 110ms 15ms
Cypher START n=node(*)

MATCH n-[r]->m
RETURN n.name, m.name
ORDER BY n.name, m.name;

Q2. Obtain direct descendants and descendants of descendants (indirect descendants)
of the node representing the program whose attribute “name”= P5.

93ms 2ms

Cypher START n=node:node_auto_index(name = ’P5’)
MATCH n-[r1:INFORMED]->n2-[r2:INFORMED]->n3
RETURN n.name, n2.name, n3.name;

Q3. Obtain shortest path between nodes that represent programs whose attribute
“name” = P1 and whose attribute “name” = P4 and search for dependencies between
programs whose attribute “name” = P4 and whose attribute “name” = P5.

- 1ms

Cypher START n=node:node_auto_index(name = ’P1’),
n2=node:node_auto_index(name = ’P4’),
n3= node:node_auto_index(name = ’P5’)

MATCH p = shortestPath(n-[:INFORMED*..50]->n2),
p2 = n2-[r : INFORMED]->n3

RETURN length(p), n.name, n2.name, n3.name, r
Q4. Obtain all programs that generated input data to programs whose attribute
“name” = P10 (ascendant query).

35ms 1ms

Cypher START n=node:node_auto_index(name = ’P10’)
MATCH n2-[r]->n
RETURN n2.name, n.name, r;

Query Q2 is the most generic provenance query and is considered a baseline query that all prove-
nance query systems should support [Woodman et al. 2011]. Q2 returns all the direct and indirect
descendants of the program whose attribute “name” = P5. This query obtained a much lower process-
ing time in the summary graph than in the test base. By running Q2 on the summary graph, it would
also be possible to return to which workflow executions P5 edges and its descendants belong, as in
the query Q1. In order to do this, it would suffice to include “r1.exec” and “r2.exec” in the RETURN
clause.

Query Q3 gets the shortest path between programs P1 and P4. It then seeks for paths between
them. The query returns the path length between programs P1 and P4, the programs and edges
present in the path and the paths between P4 and P5. In the summary graph, this query ran in a very
short processing time. On the other hand, when running on the test base, it timed out. This can be
explained by the large volume of graphs on the test base and the large number of nodes representing
programs P1, P4 and P5. One way to minimize this problem would be to individually query each
graph in the test base. However, the processing time of each query was on average 5,000 ms, in other
words, more than 1 hour to query all provenance graphs. On the other hand, the processing time
running on summary graph was 1 ms.

Query Q4 is used to explain the presence of output data produced by a program. Q4 returns all
programs that have directly or indirectly contributed to generate the output data. This query is
especially useful when an error is found in the output data and scientists wish to seek the probable
cause [Woodman et al. 2011]. Q4 running on the summary graph resulted in much less processing
time than on the test base. Query Q4 could also be run on the summary graph and return to which
workflow executions each edge of the result belongs. For this, it would suffice to include “r.exec” in
the RETURN clause.

The reduction in processing time obtained with queries acting on the summary graph shows the
potential of SGProv. Q1 processing time was reduced by approximately 87%, Q2 and Q4 approxi-
mately 97%, and Q3 cannot be answered running on the test base. Thus, increasing the number of
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graphs in a test base, query processing time must also increase. As the summary graph represents all
provenance graphs in test base, eliminating redundant data, queries can be answered based only on
it. In the experiment, the generation time of the summary graph was 58 seconds. Even though it may
take longer to obtain the summary than executing some of the queries using the whole test base, in
some cases, like Q3, it would easily payoff. In addition, summary is generated only once and queried
many times, since provenance data does not suffer from updates.

According to Freire et al. [2008], in scientific experiments, provenance helps to interpret and under-
stand the results: by examining the sequence of steps that led to a result, the scientist may have the
perception of the chain of reasoning used in its production, verify that the experiment was performed
according to accepted procedures, identify entries in the experiment and, in some cases, to reproduce
the results. Therefore, powerful analytical provenance queries are critical along the exploratory nature
of developing science.

6. CONCLUSIONS

The SGProv summarization mechanism considerably reduced the volume of test base graphs in the
example analyzed. In the example, the more programs and their dependencies with each other are
repeated in the provenance graphs, the better is the result obtained with summarization. The extra
cost corresponds to the introduction of the ““exec”” attribute, which will be assessed in future work.
Metrics to evaluate the quality of the summary and proof of correctness are under development. One
way to evaluate quality is to analyze the participation rate of origin and destination nodes of super-
nodes in each super-edge. Participation rates greater than 50% indicate a strong super-edge, otherwise
it is considered a weak one. The ideal summary should have the largest possible number of strong
super-edges [Tian and Patel 2010]. One way to verify correctness would be to reconstruct the original
graph from the summary and analyze the results of provenance queries running on the test base and
on the summary graph to identify if they return the same values without losses or redundancies.

The results obtained in the experimental tests showed a significant reduction in query processing
time when they are executed on the summary graph. SGProv is of limited value when the base graphs
are very different from each other, regarding programs and their dependencies. In this scenario, the
summarization mechanism would produce a summary graph as massive as the test base, compromising
query processing time. A way to overcome this could be to make the summarization based on other
characteristics of nodes and edges of the provenance graphs. One approach might be to group nodes
that have the same set of neighboring nodes [Liu and Yu 2011]. However, the main characteristic of
provenance graphs from the same experiment is the great similarity between them.

The summarization mechanism considered repeated programs for grouping nodes and edges. Prove-
nance graphs in the PROV-DM format, besides programs (activities), have other types of nodes, such
as agents and entities (data), and four types of edges that need to be evaluated. Furthermore, the
programs may have several attributes with different values. Currently, queries submitted to SGProv
that do not use programs in their specifications would not benefit from summaries and would be sub-
mitted to the whole database. However, data entities also present opportunities for summarization.
A workflow may be executed several times with the same input data, changing other data like a filter
value, a similarity metric or a time step. Entity summarization is an on-going effort within SGProv.
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