Efficient Entity Matching over Multiple Data Sources with
MapReduce

Demetrio Gomes Mestre, Carlos Eduardo Santos Pires

Universidade Federal de Campina Grande, Brazil
demetriogm@gmail.com, cesp@dsc.ufcg.edu.br

Abstract. The execution of data-intensive tasks such as entity matching on large data sources has become a common
demand in the era of Big Data. To face this challenge, cloud computing has proven to be a powerful ally to efficient
parallel the execution of such tasks. In this work we investigate how to efficiently perform entity matching over multiple
large data sources using the MapReduce programming model. We propose MSBlockSlicer, a MapReduce-based approach
that supports blocking techniques to reduce the entity matching search space. The approach utilizes a preprocessing
MapReduce job to analyze the data distribution and provides an improved load balancing by applying an efficient block
slice strategy as well as a well-known optimization algorithm to assign the generated match tasks. We evaluate our
approach against an existing one that addresses the same problem on a real cloud infrastructure. The results show that
our approach increases significantly the performance of distributed entity match tasks by reducing the amount of data
generated from the map phase and minimizing the execution time.

Categories and Subject Descriptors: H.2.4 [Systems|: Distributed Databases; H.3.4 [Systems and Software|: Dis-
tributed Systems

Keywords: Entity Matching, Load Balancing, MapReduce, Multiple Data Sources

1. INTRODUCTION

Distributed computing has received a lot of attention lately to perform high data-intensive tasks.
Extensive powerful distributed hardware and service infrastructures capable of processing millions of
these tasks are available around the world. Programming models have being created to make efficient
use of such cloud environments. In this context, MapReduce (MR) [Dean and Ghemawat 2008|, a
well-known programming model for parallel processing on cloud infrastructures, emerges as a major
alternative for the efficient distributed data-intensive tasks.

Entity Matching (EM) (also known as entity resolution, deduplication, or record linkage) is a
data-intensive and performance critical task and demands studies on how it can benefit from cloud
computing. EM is applied to determine all entities (duplicates) referring to the same real world object
given a set of data sources [Kopcke and Rahm 2010]. The task has critical importance for data cleaning
and integration, e.g., to find duplicate product descriptions in databases.

Two common situations can be found when dealing with EM over data sources, the single and the
multiple data sources matching. The first one refers to find all the duplicate entities in a single data
source (traditional) and the second one, focus of this work, refers to the special case of finding the
duplicates between two or more data sources [Kopcke and Rahm 2010]. Both situations share the
main problem that makes EM heavy to perform: the need of applying matching techniques on the
Cartesian product of all input entities (naive) leading to a quadratic complexity of O(n?). For large
datasets, the application of such approach is very ineffective.
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To minimize the workload caused by the Cartesian product execution and to maintain the match
quality, techniques like blocking [Baxter et al. 2003] become necessary. Such techniques work by
partitioning the input data into blocks of similar entities according to a specific blocking key and
restricting EM to entities of the same block. For instance, it is sufficient to compare entities of the
same manufacturer (blocking key) when matching product offers. A good example of how blocking
techniques can effectively reduce the execution time of the EM tasks and still maintain the matching
quality can be found in the work of Evangelista et al. [2010]. The authors used several machine learning
processes to find the best blocking function, based on a combination of low cost rules, aiming to define
the most suitable way to perform a blocking scheme according to the scenario. Their strategy, even
performing a blocking scheme, still achieved an accuracy rate in detecting duplicate entities in the
order of 95%. We could have made use of their strategy to improve the duplicate detection quality of
our approach, but since the focus of our work is efficiency in terms of execution time, we preferred to
use a simplified blocking scheme that will be discussed in Section 5.

Nevertheless, even using blocking techniques, EM remains hard to process for large datasets [Kolb
et al. 2012a]. Therefore, EM is an ideal problem to be treated with a distributed solution. The
execution of blocking-based EM over single and multiple sources can be done in parallel with the
MR model by using several map and reduce tasks. More specifically, the map tasks can read the
input entities in parallel and redistribute them among the reduce tasks according to the blocking key.
Entities sharing the same blocking key are assigned to a common reduce task and several blocks can
be matched in parallel.

However, this simple MR implementation, known as Basic, has vulnerabilities. Severe load imbal-
ances can occur due to large blocks (skew problem) occupy a node for a long time and leave the other
nodes idle. This is not interesting since there is an urgency to complete the EM process as quickly
as possible. Furthermore, idle but instantiated nodes may produce unnecessary costs because public
cloud environments (e.g., Amazon EC2) usually charge per utilized machine hours [Kolb et al. 2012a).

The load imbalance problem when dealing with single sources has been addressed by BlockSplit
[Kolb et al. 2012a], a general load balancing MR-based approach that takes the size of blocks into
account. It splits larger blocks, according to the load balancing constraints, into smaller chunks
based on the input partitions to enable their parallel matching. The approach also uses a heuristic
to assign the entire blocks and the smaller chunks to the reduce tasks. More details about this work
will be shown in the Related Work section. However, this solution has load imbalances and excessive
entity replication issues that undermine its running time. Consequently, BlockSplit’s extension that
addresses the multiple data sources problem, also found in the work by Kolb et al. [2012a], extends
the same issues of the single source solution. To overcome these problems, we make the following
contributions:

—We propose M SBlockSlicer (Multiple Source BlockSlicer), an extension of our BlockSlicer
approach [Mestre and Pires 2013b] (proposed to address the single source problem) that provides a
load balancing improvement by applying an efficient block slice strategy over multiple data sources.
The approach takes the size of blocks into account and generates match tasks of entire blocks only if
this does not violate the load balancing constraints. Larger blocks are sliced into several match tasks
to enable a fewer number of comparisons respecting the Cartesian product. A greedy optimization
is used to assign match tasks of entire blocks and sliced ones to the proper reduce tasks aiming to
optimize the load balancing parallel matching.

—We evaluate MSBlockSlicer against BlockSplit’s extension for multiple data sources and show
that our approach is robust in the presence of data skewness and provides a better load balancing
strategy by reducing the amount of data generated from the map phase and diminishing the overall
execution time. The evaluation is performed on a real cloud environment and uses real-world data.

This article extends a previous work [Mestre and Pires 2013a/ in several aspects: (i) a section was
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Fig. 1. A MapReduce program example for counting word occurrences in a set of documents (adapted from [Kolb et al.
2012b]).

included to provide a background about MapReduce and Entity Matching; (ii) a detailed explanation
about the MSBlockSlicer was included and (iii) a new evaluation was included aiming to study the
robustness of the load balancing approaches ability to handle data skew.

The remainder of this work is organized as follows. Section 2 introduces the MapReduce program-
ming paradigm and describes how MapReduce-based Entity Matching can be processed. Section 3
discusses about related work. Section 4 describes a general MR-based Entity Matching workflow for
load balancing, a preprocessing phase used to collect information about the datasets’ characteristics
and our approach for optimized block-based load balancing EM with MapReduce over multiple data
sources, MSBlockSlicer. Section 5 presents the performed experiments and evaluation. Finally,
Section 6 concludes the article and presents suggestions for future work.

2. MAPREDUCE AND ENTITY MATCHING

MapReduce is a programming model designed for parallel data-intensive computing in shared-nothing
clusters with a large number of nodes [Dean and Ghemawat 2008]. The key idea relies on data
partitioning and storage in a distributed file system (DFS). Entities are represented by (key, value)
pairs. The computation is expressed with two user-defined functions:

map : (keyin, value;,) — list(keyimp, valuetmy)
reduce : (keYimp, list(valuemy)) — list(keyour, valueqyt)

Each of these functions can be executed in parallel on disjoint partitions of the input data. For each
input key-value pair, the map function is called and outputs a temporary key-value pair that will be
used in a shuffle phase to sort the pairs by their keys and send them to the reduce function. Unlike
the map function, the reduce function is called every time a temporary key occurs as map output.
However, within one reduce function only the corresponding values list(valuesy,y) of a certain keyym,y
can be accessed. A MR cluster consists of a set of nodes that run a fixed number of map and reduce
jobs. For each MR job execution, the number of map tasks (m) and reduce tasks (r) is specified.
The framework-specific scheduling mechanism ensures that after a task has finished, another task is
automatically assigned to the released process.

For example, the data flow of a MapReduce computation is shown in Figure 1. The MapReduce
process counts the number of term occurrences in a given input (set of documents), which is a common
task in Information Retrieval. In the example of Figure 1, the input data is partitioned in two map
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tasks to show how the parallelism idea works. Although the input data has a tiny size, normally map
tasks process larger datasets. Figure 1 shows that the two instances of map functions read all words
existing in the dataset and emits a list of (term, 1) pairs hash-partitioned on the key. Thereafter,
during the intermediate phase between the map process and the reduce process, the (key, value) pairs
are sorted by their key and then sent across the cluster in a shuffle phase, which means that each (key,
value) pair will be accessed for the proper reduce task. In the example, all keys (words) starting with
a letter from a to m are sent to the first reduce task and the rest of the keys are sent to the second
reduce task. Thus, each reduce function instance accounts and outputs the number of occurrences
per key (word).

Although there are several frameworks that implement the MapReduce programing model, in the
scientific community, Hadoop is the most popular implementation of this paradigm [Dean and Ghe-
mawat 2008]. We are therefore implementing and evaluating our approach with Hadoop.

Parallel EM implementation using blocking approaches with MR can be done without major dif-
ficulties. In the Basic implementation [Kolb et al. 2012a], already mentioned in section 1, the map
process defines the blocking key for each input entity and outputs a key-value pair (blockingKey,
entity). Thereafter, the default hash partitioning in the shuffle phase can use the blocking key to
assign the key-value pairs to the proper reduce task. The reduce process is responsible for performing
the entity matching computation for each block. An evaluation of the Basic approach showed a
poor performance due to the data skewness caused by varying size of blocks [Kolb et al. 2012a|. The
data skewness problem occurs when the match work of large blocks of entities is assigned to a single
reduce task. It can lead to situations in which the execution time may be dominated by a few reduce
tasks and thus enable serious memory and load balancing problems when processing too large blocks.
Therefore, concerns about lack of memory and load imbalances become necessary.

3. RELATED WORK

Entity Matching is a very studied research topic. Many approaches have been proposed and evaluated
as described in recent surveys [Kopcke and Rahm 2010; Christen 2012]. However there are only a few
approaches that consider parallel entity matching. The first steps in order to evaluate the parallel
Cartesian product of two sources is described in the work of Kim and Lee [2007]. Kirsten et al. [2010]
propose a generic model for parallel entity matching based on general partitioning strategies that take
memory and load balancing requirements into account.

In this context, when we deal with MapReduce-based large-scale Entity Matching, two well-known
data management problems must be treated: load balancing and data skewness handling. MR has
been criticized for having overlooked the skew issue [Kolb et al. 2012a]. Parallel hash join processing
[Lin 2009], a skew handling mechanism available in parallel database systems, share many similarities
with our problem. However, the real performance gain when dealing with MapReduce comes from
the injection of skew handling into user-defined functions (map, reduce). Our work does not aim
to prioritize skew handling, but minimize its effects on performance by efficiently distributing entity
replication among all nodes.

Few MR-based approaches address the load balancing and skew handling problem. Okcan and
Riedewald [2011] applied a static load balancing mechanism, but it is not suitable for generality due
to arbitrary join assumptions. Similarly to our work, the authors employ a previous analysis phase
to determine the datasets’ characteristics (using sampling) and thereafter avoid the evaluation of the
Cartesian product. This approach focus on data skew handle in the map process output, which leads
to an overhead in the map phase and large amount of map output.

MapReduce has already been employed for EM [Wang et al. 2010], but load balancing was not
the main focus and only one mechanism of near duplicate detection by the PPjoin paradigm adapted
to the MapReduce framework can be found. Kolb et al. [2012b] study load balancing for Sorted
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Neighborhood (SN). However, SN follows a different blocking approach (fixed window size) that is
by design less vulnerable to skewed data. Vernica et al. [2010] show another approach for parallel
processing entity matching on a cloud infrastructure and an extension that addresses the multiple data
source problem. This study explains how a single token-based string similarity function performs with
MR. However, this approach suffers from load imbalances because some reduce tasks process more
comparisons than the others.

As mentioned in the introduction, Kolb et al. [2012a] address our problem. The authors present
two approaches, BlockSplit and PairRange. BlockSplit is a two-step algorithm that processes
small blocks within single match tasks. The larger blocks are split according to the m input partitions
into m sub-blocks obeying an appropriate scheme of entity replication (based on m input partitions).
Each sub-block is processed by a single match task. PairRange on the other hand implements a
virtual enumeration of all entities and the relevant comparisons (pairs) based on the data distribution
provided by the so-called BDM, Block Distribution Matrix, aiming to send entities to all reduce tasks
according to the relevant comparisons belonging to ranges previously established based on the average
workload. PairRange neither consider input partitions nor blocks, but instead ranges of comparisons.
Despite PairRange provides a little more uniform distribution than BlockSplit, it generates too
much entity replication (for load balancing purposes) which leads to an extra overhead. According
to Kolb et al. [2012a], this overhead leads PairRange to perform equals or worse than BlockSplit.
In addition, such overhead can lead to lack of memory problems in the cloud infrastructure when
executing PairRange for huge datasets. For this reason, we have only implemented BlockSplit and
compare it with our work in an experimental evaluation.

4. GENERAL MR-BASED ENTITY MATCHING WORKFLOW FOR LOAD BALANCING

The goal of this work is to improve the load balancing of the blocking-based EM with MapReduce
over multiple data sources. As mentioned in section 3, the state of the art approach (BlockSplit)
is performed with two MR jobs (two-step). The first MR job collects and stores information about
the entities distribution, blocks and input partitions in the Block Distribution Matrix (BDM). The
second MR job performs the load balancing strategy in the map phase and the comparisons between
the entities during the reduce phase. To achieve our goal, we made an improvement in the state of
the art process aiming to enhance the EM performance in terms of execution time. Basically, the
improvement consists in the replacement of the second MR job, where the load balancing strategy
and the entities comparisons are processed, by a new approach that, besides carrying out the BDM
reading only in the map phase, provides a better load balancing uniformity. The two MR jobs needed
to perform our load balancing approach are illustrated in Figure 2.

The first job [Kolb et al. 2012a] generates the so-called Block Distribution Matrix (BDM) that spec-
ifies the number of entities belonging to each input partition. The BDM is an essential mechanism to
support the load balancing strategy (in the second MR job) because it provides information about the
entity distribution for parallel matching of blocks with different sizes. Note that an additional output
is generated having the same entities of the original input partitions followed by their corresponding
blocking key. Thus, it is ensured that the BDM is representative since the second job receives the
same partitioning of the input data as the first job. This additional output, as well as the BDM, is
stored in the distributed file system.

The second job, denoted by MSBlockSlicer, performs our load balancing optimization approach
for EM over multiple data sources. Since the EM of multiple data sources problem can be simpli-
fied to the pairwise comparisons of all involved data sources, this section describes an extension of
BlockSlicer [Mestre and Pires 2013b| for matching two sources R and S. To achieve effective per-
formance optimization, MSBlockSlicer performs the load balancing in the map phase and performs
the similarity computation in the reduce phase. Our approach follows the idea that map generates
a systematic constructed composite key aiming to allow entity distribution in order to enable load
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Fig. 2. Overview of the MR-based matching process with load balancing (adapted from [Kolb et al. 2012al).
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balancing optimization in the matching process. This composite key combines information about the
target reduce task(s), the entity blocking key and the entity itself. Since MR, partitioning, in addition
to routing map outputs, also groups together key-value pairs sharing the same blocking key (compo-
nent of the composite key), it is ensured that only entities of the same block are compared within the
reduce phase when the local EM is performed.

Before presenting more details about the two MR jobs used in the proposed approach, it is important
to mention that throughout Section 4 it will be presented an example that illustrates a product
description matching process. To facilitate understanding, the products are splited in 4 blocks, i.e.,
smartphones (block w), ipods (block ), MP4 Players (block y), and Cameras (block z). Each product
is represented by a corresponding letter, e.g., iphone 4 16G corresponds to letter A which in turn
belongs to block w (smartphones), as presented in the left part of Figure 3. Be aware that all
comparisons performed will be made between entities belonging to the same block.

4.1 First Job: Analysis (Block Distribution Matrix)

The Block Distribution Matrix (BDM) is a simple preprocessing step to determine some datasets’
characteristics. The BDM consists in a b x m matrix that specifies the number of entities of b blocks
across m input partitions. Its computation using MR is illustrated in Figure 3 for an example dataset.
As shown in the example, we utilize the entities A-N and the blocking keys w-z. Each entity belongs
to one of the two data sources R and S. Source R is stored in the partition Iy and source S is stored in
the partitions II; and IT5. The sources are automatic partitioned according to the number of available
map tasks (3 in the example). Each entity has a blocking key (w-z) denoted as index. For example,
the map output key of H is S.z.1 because H'’s blocking key equals z and H appears in the second
partition of source S (partition index=1). The entities sharing this key (S.z.1) are assigned to the
last reduce task which in turn outputs [S, z, 1, 2] because there are 2 entities in the second partition
for blocking key z. The combined reduce outputs correspond to the BDM. To assign blocking keys
to rows of the BDM, we use the order of the blocks from the reduce output, i.e., we assign the first
block (key w) to block index position 0, and so on.

The block sizes (#E) for each data source in the example vary from 1 (z from data source S) to
3 (z from data source S) entities. The match work (#P) to compare all entities per block against
each other thus ranges from 2 (z) to 6 (z) comparisons; the largest block with key z entails 50% (6
of 12) of all comparisons although it contains only 30% (5 of 14) of all entities. The match work of
any b block (#P,) is calculated as follows: #P, = |®f| x |®7|, where |®F| is the number of entities
of block b belonging to the data source R and |<I>;)9 | is the number of entities of block b belonging to
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Fig. 3. Dataflow example for computing the Block Distribution Matrix.

the data source S. Thus, as the z block contains 5 entities, 2 from the data source R and 3 from the
data source S, the #P, (2 x 3) is equal to 6 comparisons. The expected match-pairs for this running
example is shown in the upper part of Figure 3.

4.2 Second Job: Matching (MSBlockSlicer)

The block-based approach MSBlockSlicer is responsible for creating match tasks per block and
distributing these match tasks among the reduce tasks effectively. To be more specific, our approach
uses the following key ideas:

—Smaller blocks are processed within a single match task. Larger blocks are sliced according to a
cutting strategy aiming at performing the Cartesian product of such blocks in parallel and ensuring
that all comparisons of the original block will be computed;

—MSBIlockSlicer determines the number of comparisons per matching task and assigns match tasks
to the reduce tasks using a greedy algorithm for optimization purposes. Thus, a load balancing
optimization is ensured.

Our approach makes use of the BDM as well as the composite map output keys. Each map function
generates a well-defined composite key that (together with the associated partition) allows an opti-
mized load balancing distribution. The composite key thereby combines information about the target
reduce task(s) and the entity block. If this entity is supposed to be processed by multiple reduce
tasks, the map function generates multiple keys per entity and the information about the entity itself
is added to its key. The reduce phase performs the EM by computing match similarities between
entities of the same block. Since the reduce phase consumes the vast majority of the overall runtime
(more than 90%, according to our experiments), our load balancing approach solely focuses on the
data redistribution for reduce tasks.

MSBlockSlicer’s mappers output key-value pairs with key = (reducelndex ® blockIndex) and
value = (entity). If one entity has to be processed by multiple reduce tasks, as mentioned before, its
key is composed by reducelndexr ® block-Index © slice. The reduce task index has a value between
0 and r — 1, where r is the number of reduce tasks available, and is used by the MR function part
to perform assignments to the reduce tasks. Since the block index is part of the key and the MR
function group takes the entire key into account, it is ensured that each reduce function only receives
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entities of the same block. The slice value indicates what kind of match task has to be performed by
the reduce function, i.e., whether a complete block or sliced-blocks need to be processed.

At the beginning of the execution, the map phase reads the BDM and computes the number of
comparisons per block as well as the number of comparisons T" over all b blocks ®:

b—1
7= |9 x |®f]. (1)
k=0

For each block ®j, the map phase also checks if the number of comparisons is above the average
reduce task workload, i.e., if

K] x |[®F] > T/r. (2)

If |®F| x |®%] is not above the average workload @, can be processed within a single match task
(as mentioned before, the map output key only contains information about the reduce index and the
block index k). Otherwise, the block is sliced into n sliced-blocks.

Each sliced-block is generated according to a special cutting strategy based on the average reduce
task workload. The basic idea is defined as follows. Given a block b, the sliced-block sb consists in
allowed entities byjoweqd belonging to the same source (R or S) and the not allowed entities byot Allowed
belonging to the other source. bgjoweq 18 extracted from the source (R or S) that contains the
largest number of entities from b. Thereafter, the entities belonging to bsjjoweq Will no longer iterate
comparisons among themselves, but only with the entities belonging to byt Aliowed- In this case, if the
permutation of byjjoweq entities with by,o¢ aniowed entities generates a number of pairs above the average
workload, then sb is sliced into two new sliced-blocks to enable load balancing. The slicing is processed
only on entities belonging to bgjoweq and all the entities belonging to b,orAijowed are emitted for each
new sliced-block generated. To differentiate entities belonging to baijowed from byor Atiowed sliced-blocks,
all entities belonging to b0t Allowed are marked with an ”*” in the map output value. The exact slicing
is calculated as:

[7/r] ;
| notAllowed|

After the slicing phase, the remaining entities of byjjoweq are submitted to a new average workload
constraint verification. If the number of pairs is still above the average workload, the remaining

entities of byjiowed are submitted to a new slicing process (recursive procedure).

| ballowed |:

For illustration purposes, according to the workflow example of Figure 3, the BDM indicates 12
overall pairs. The largest block ®3 (z) has 5 entities, 2 entities belonging to source R and 3 entities
belonging to source S. The number of comparisons generated by this block is 6 (2 x 3) and the average
workload is equal to 4 as shown in Figure 4. Note that, in the example, the number of comparisons
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Fig. 5. Example of a MSBlockSlicer dataflow for two sources.

generated by block z is above the average workload (6 > 4) and thus z is sliced and transformed
into two sliced-blocks: z’ and z”. The sliced-block z’ is generated by keeping the two allowed entities
calculated in the first cut (H and K) and all entities from b0t a110wed (C and E) marked with an 7*”.
Thereafter, the sliced-block 2" is generated by keeping the remaining allowed entities of the first cut
(L) and all entities replicated from b,ot As1owed (C and E) also marked with an ™. Figure 4 shows that
batlowed value is 2, in this case, only the first 2 entities (F and G) are allowed to perform comparisons
in this block with all byot aliowed entites. The second sliced-block generated (z”) is subjected to a new
average workload constraint verification and since its T (T" = 2) is not above the average workload (2
< 4) there is no need to slice z”.

Thus, the slice phase results in two new sliced-blocks: the match tasks 3.0 (2/) and 3.1 (2”). Since
all match tasks are defined both for non-sliced blocks and sliced-blocks, we apply a greedy algorithm
to optimally determine the reduce task for each match task, as shown in Figure 4. Firstly, all match
tasks are sorted in descending order of their number of pairs (comparisons): 3.0 (4 pairs, reduceg),
0 (4 pairs, reducey), 2 (2 pairs, reduces) and 3.1 (2 pairs, reduces). Thereafter, match tasks are
assigned to reduce tasks in this order so that the current match task is assigned to the reduce task
with the lowest number of already assigned pairs. In the following, we denote the reduce task index
for match task k.xz as R(k.x).

The dataflow is shown in Figure 5. Partitioning is based on the reduce task index only, for routing
all data to the reduce tasks whereas sorting is done based on the entire key. The reduce function is
called for every match task k.(¢) and compares entities considering only pairs from different entity
types (allowed against not allowed). For illustration, Figure 5 shows that H is an allowed entity from
match task 3.0 and is only compared with the not allowed entities (marked with an "*"), i.e., the
entities C and E.

5. EVALUATION

In the following, we evaluate? MSBlockSlicer against BlockSplit’s extension approach. The latter
was implemented according to the pseudo-code available in [Kolb et al. 2012a], regarding two per-
formance critical factors: the degree of data skew (Section 5.1) and the number of available nodes
(n) in the cloud environment (Section 5.2). In each experiment we evaluate the algorithms aiming to
investigate their robustness regarding the presence of data skew and the behavior when dealing with

2The datasets and codes are available in https://sites.google.com /site/demetriomestre/activities
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Fig. 6. Execution times for different data skews (n=10).

the resources consumption caused by the use of many map and reduce tasks and how they scale with
the number of available nodes.

We ran our experiments on a 10-node HP Pavilion P7-1130 cluster. Each node had one Intel I5
processor with four cores, 4GB of RAM, and one 1TB of hard disk. Thus the cluster consists of 40
cores and 10 disks. On each node, it was installed the Windows 7, 64-bit, JAVA 1.6, cygwin and
Hadoop 0.20.2. Each node runs at most two map and reduce tasks in parallel.

We utilized one real-world dataset. The dataset DS1, DBLP, contains about 1.46 million publication
records and was divided into two data sources (R and S) containing about 730,000 entities each. The
first three letters of the publication title form the default blocking key. Two entities were compared
by computing the Jaro-Winkler [Cohen et al. 2003| distance of their comparing attributes and those
pairs with a similarity > 0.7 were regarded as matches.

5.1 Robustness: Degree of skewness

In our first experiment, we study the robustness of the load balancing approaches ability to handle
data skew. For this study, we control the degree of data skew by modifying the blocking key function
and generating block distributions according to an exponential distribution. Given a fixed number
of blocks b=100, the number of entities in the k** block is proportional to e=** where s > 0 is
the skew factor representing the degree of data skew. Note that the entities distribution over all
blocks determines the overall number of entity pairs. For example, suppose that 100 entities must
be split into two blocks (100/2 = 50), each block having its entity set equally divided in the data
sources R and S (50/2 = 25), and we want s = 0 (no skewness). In this case, the entities must be
distributed equally, 50 entities for each block or 25 entities of each block per data source, leading to
(25-25) 4+ (25 - 25) = 1,250 comparison pairs. If the same 100 entities are split 90 vs. 10, the overall
number of entity pairs is equal to (45 - 45) + (5 - 5) = 2,050 comparison pairs. To compare the load
balancing approaches for different data skews, we are interested in the average execution time per
entity pair.

The average execution time per 10 pairs for different data skews of DS1 (n = 10, m = 20, r
= 40) is shown in Figure 6. As we can see, MSBlockSlicer performs better than BlockSplit’s
extension. This result is related to one of the vulnerabilities present in the BlockSplit’s extension
approach in which the workload distribution is strongly dependent on how the entities are distributed
among the input (map) partitions. If most of the entities belonging to a large block are in the same
input partition, the workload distribution potential will be deteriorated. This is evident when the
data skew factor is equal to 0 because the load balancing mechanism does not need to act since the
input is already balanced. The dependency of input partitions problem will be better discussed in
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Fig. 7. Execution times and speedup for both approaches
using DS1.

the next subsection. Nevertheless, what is important to discuss here is that both MSBlockSlicer
and BlockSplit’s extension are stable across all data skews since we can notice the regularity of each
approach when the data skew factor grows.

5.2 Scalability: Number of nodes

As mentioned in the introduction, scalability is important for many reasons. One of them is financial.
The number of nodes should be carefully estimated since distributed infrastructure suppliers usually
charge per hired machines even if they are underutilized. To analyze the scalability of the two ap-
proaches, we vary the number of nodes from 1 to 10. Following the Hadoop’s documentation, for n
nodes, the number of map tasks is set to m = 2-n and the number of reduce tasks is set tor = 4-n, i.e.,
adding new nodes leads to additional map and reduce tasks. The resulting execution time values are
shown in Figure 7 and the respective number of generated key-value pairs are illustrated in Figure 8.

We can note that both MSBlockSlicer and BlockSplit’s extension approaches scale almost lin-
early showing their ability to evenly distribute the workload across reduce tasks and nodes. However,
by design, BlockSplit’s extension approach hugely depends on the input (map) partitions and thus
its ability to split large blocks can be affected if most of the entities belonging to the same block
are present in only one input partition. This is what mainly happened in Figure 7 when the exper-
iment varied from 7 to 8 nodes. Sixteen map tasks were needed to split a large block significantly
and consequently improve the load balancing. Thus, BlockSplit’s execution time is compromised by
the deficiency of properly split larger blocks with few input partitions. This deficiency is the main
reason of BlockSplit’s extension approach to perform around 1000 seconds slower than M SBlock-
Slicer on experiments with 10 nodes (m=20 and r=40). The difference is highlighted by the speedup
(MSBlockSlicer has almost one extra node working).

Furthermore, Figure 8 shows, by the map output generation, an overgrowth of output entities
during the BlockSplit’s map phase. This map output study is important because too many emitted
key-value pairs lead the MapReduce process to an associated overhead, i.e., extra network resources
consumption due to additional data transfer, deterioration of the reduce tasks execution by sorting
large data streams and high OS memory management. Such overhead does not significantly impact
the execution times up to a moderate size of the utilized cloud infrastructure due to the fact that
the matching process in the reduce phase is by far the dominant factor of the overall execution time.
However, when dealing with really huge volumes of data, the cloud infrastructure can suffer to manage
the memory used and the data transfer, and thus deteriorate the execution time. Besides, depending
on the entities length or dataset size, such situation can cause serious problems of lack of memory.
Note that, for 10 nodes, the amount of output generated by the BlockSplit’s extension approach is
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almost twice the amount generated by the MSBlockSlicer one. This limits BlockSplit’s extension
to be used with huge datasets sustainably.

6. SUMMARY AND OUTLOOK

We proposed an improved load balancing approach, MSBlockSlicer, for distributed blocking-based
entity matching over multiple data sources using a well-known MapReduce framework. The solution is
by design efficient to provide load balancing to an entity matching process of huge datasets without de-
pending on the data distribution or order of the input partitions with a significant improved reduction
of the information emitted from map to reduce phases (map output). It is able to deal optimally with
skewed data distributions and workload among all reduce tasks by slicing large blocks. Our evaluation
on a real cloud environment using real-world data demonstrated that MISBlockSlicer scale with the
number of available nodes without relying on any extra architecture configuration. We compared
our approach against an existing one (BlockSplit’s extension) and verified that MSBlockSlicer
overcomes BlockSplit’s extension in performance terms.

In future work, we will investigate how we can improve our solution to also address the horizontal
skew problem (entities with disproportionate lengths). Also, we will further investigate how our load
balancing approach can be adapted to address other MapReduce-based techniques for different kinds
of data-intensive tasks, such as join processing or data mining.
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