
Strategies for Mining User Preferences in a
Data Stream Setting

Jaqueline A. J. Papini, Sandra de Amo, Allan Kardec S. Soares

Federal University of Uberlândia, Brazil
jaque@comp.ufu.br, deamo@ufu.br, allankardec@gmail.com

Abstract. In this article, we formally introduce the problem of mining contextual preferences in a data stream setting.
Contextual Preferences have been recently treated in the literature and some methods for mining this special kind of
preference have been proposed in the batch setting. Besides the formalization of the contextual preference mining
problem in the stream setting, we propose two strategies for solving this problem. In order to evaluate our proposals,
we implemented one of these strategies, the greedy one, and we compared its performance with a well known baseline
in the literature, showing its efficiency through a set of experiments over real data.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining; I.2.6
[Artificial Intelligence]: Learning—concept learning

Keywords: context-awareness, data mining, data streams, incremental learning, preference mining

1. INTRODUCTION

A data stream may be seen as a sequence of relational tuples that arrive continuously in variable time.
Some typical fields of application for data streams are: financial market, web applications and sensor
data. Traditional approaches for data mining cannot successfully process the data streams mainly
due to the potentially infinite volume of data and its evolution over time. Consequently, several data
stream mining techniques have emerged to deal properly with this new data format [Domingos and
Hulten 2000; Bifet and Kirkby 2009; Vivekanandan and Nedunchezhian 2011].

Most of the research on preference mining has focused on scenarios in which the mining algorithm
has a set of static information on user preferences at its disposal [Jiang et al. 2008; Amo et al. 2012].
The most crucial issues which make the process of mining in a stream setting much more challenging
than in batch setting are the followings: (1) data are not stored and are not available whenever needed;
(2) the mining process has to cope with both limited workspace and limited amount of time; (3) the
mining algorithm should be able to produce the best model at any moment it is asked to and using
only the training data it has observed so far. For more details see [Rajaraman and Ullman 2011].

As a motivating example on the dynamic character of the user preferences, consider an online news
site that wants to discover the preferences of its users regarding news and make recommendations
based on that. User’s preferences on news depend on many factors, such as the media in which the
news is available, its category, author and keywords. Notice that due to the dynamic nature of news,
it is plausible that user’s preferences would evolve rapidly with time. It may be the case that a news
category could attract much attention at a particular time of the year, for example, political news at
election time. Thus, at this time a user can be more interested in politics than in sports. However, at
Olympic Games time, this same user might consider sports as his or her favorite news category.

This work focuses on a particular kind of preferences, the contextual preferences. Preference Models

We thank the Brazilian Research Agencies CNPq, CAPES and FAPEMIG for supporting this work.
Copyright c©2014 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014, Pages 64–73.

Strategies for Mining User Preferences in a Data Stream Setting · 65

can be specified under either a quantitative [Crammer and Singer 2001] or a qualitative [Amo et al.
2012] framework. In the quantitative formulation, preferences about movies for instance can be elicited
by asking the user to rate each movie. In the qualitative formulation, the preference model consists in
a set of rules specified in a mathematical formalism, able to express user preferences. In this article,
we consider the contextual preference rules (cp-rules) introduced in by Wilson []. A cp-rule allows to
inform the preference on the values of an attribute depending on the values of other attributes.

Proposals for suitable algorithms to solve the problem of mining user preferences in streams have
been little explored in the literature. Jembere et al. [2007] present an approach to mine preferences
in an environment with multiple context-aware services, but uses incremental learning only for the
context, and not for the user’s preferences. Somefun and La Poutré [2007] present an online method
that aims at using aggregated knowledge on the preferences of many customers to make recommenda-
tions to individual clients. Finally, Shivaswamy and Joachims [2011] propose an online learning model
that learns through preference feedback, and is especially suitable for web search and recommendation
systems. None of them specifically addresses the problem we tackle in the present article.

In this article we propose two strategies for mining contextual preferences from preference data
samples coming in a stream format. An extensive set of experiments on real data has been designed
to compare one of these strategies with two baseline algorithms consisting in adapting well known
classification techniques in streams in order to extract a quantitative preference model from a pref-
erence stream. The results show that our strategy is efficient to mining preferences in streams and
outperforms the accuracy and comparability rate of the baseline algorithms.

2. BACKGROUND

In this section we briefly introduce the problem of mining contextual preferences in a batch setting.
Please see [Amo et al. 2012] for more details on this problem.

A preference relation on a finite set of objects A = {a1, a2, ..., an} is a strict partial order over A,
that is a binary relation R ⊆ A× A satisfying the irreflexivity and transitivity properties. Typically,
a strict partial order is represented by the symbol >. So if > is a preference relation, we denote by
a1 > a2 the fact that a1 is preferred to a2.

Definition 2.1 Preference Database. Let R(A1, A2, ..., An) be a relational schema. Let Tup(R) be
the set of all tuples over R. A preference database over R is a finite set P ⊆ Tup(R) × Tup(R) which
is consistent, that is, if (u, v) ∈ P then (v, u) 6∈ P. The pair (u, v), usually called bituple, represents
the fact that the user prefers the tuple u to the tuple v.
Example 2.1. Let R(A,B,C,D) be a relational schema with attribute domains given by dom(A)

= {a1, a2, a3}, dom(B) = {b1, b2}, dom(C) = {c1, c2} and dom(D) = {d1, d2}. Let I be an instance
over R as shown in Fig. 1(a). Fig. 1 (b) illustrates a preference database over R, representing a
sample provided by the user about his/her preferences over tuples of I.

The problem of mining contextual preferences in the batch setting consists in extracting a preference
model from a preference database provided by the user. The preference model is specified by a Bayesian

Id A B C D
t1 a1 b1 c1 d1
t2 a1 b1 c1 d2
t3 a2 b1 c1 d2
t4 a1 b2 c1 d2
t5 a2 b1 c2 d1
t6 a3 b1 c1 d1

(a)

(t1,t2)
(t1,t3)
(t4,t5)
(t4,t2)
(t5,t6)
(t3,t5)
(t4,t1)

(b) (c)

Fig. 1. (a) An instance I, (b) A Preference Database P, (c) Preference Network PNet1

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

66 · J. A. J. Papini, S. de Amo and A. K. S. Soares

Preference Network defined next.

Definition 2.2 Bayesian Preference Network (BPN). A Bayesian Preference Network (or BPN for
short) over a relational schema R(A1, ..., An) is a pair (G, θ) where: (1) G is a directed acyclic graph
whose nodes are attributes in {A1, ..., An} and the edges stand for attribute dependency; (2) θ is a
mapping that associates to each node of G a conditional probability table of preferences, that is, a
finite set of conditional probabilities of the form P [E2|E1] where: (1) E1 is an event expressed by
the formula (Ai1 = ai1) ∧ . . . ∧ (Aik = aik) such that ∀j ∈ {1, ..., k}, aij ∈ dom(Aij), and (2) E2

is an event of the form “(B = b1) is preferred to (B = b2)”, where B is an attribute of R, B 6= Aij
∀j ∈ {1, ..., k} and b1, b2 ∈ dom(B), b1 6= b2.
Example 2.2 BPN. Let R(A,B,C,D) be the relational schema of the Example 2.1. Fig. 1(c)

illustrates a preference network PNet1 over R.

Each conditional probability P [E2|E1] in a BPN table stands for a probabilistic cp-rule, where the
condition event E1 is the context and the event E2 is the preference. For instance P [D = d1 > D =
d2|C = c1] = 0.6 means that the probability of D = d1 be preferred to D = d2 is 60% given that
C = c1.

Before defining the accuracy, comparability rate and precision of a preference network, we need to
define the strict partial order inferred by the preference network.

Example 2.3 Preference Order. Let us consider the BPN PNet1 depicted in Fig. 1(c). This BPN
allows to infer a preference ordering on tuples over R(A,B,C,D). According to this ordering, tuple
u1 = (a1, b1,c1,d1) is preferred to tuple u2 = (a2, b2,c1,d2). In order to conclude that, we execute
the following steps: (1) Let ∆(u1, u2) be the set of attributes where the u1 and u2 differ. In this
example, ∆(u1, u2) = {A,B,D}; (2) Let min(∆(u1, u2)) ⊆ ∆(u1, u2) such that the attributes in
min(∆) have no ancestors in ∆ (according to graph G underlying the BPN PNet1). In this example
min(∆(u1, u2)) = {D,B}. In order to u1 be preferred to u2 it is necessary and sufficient that u1[D] >
u2[D] and u1[B] > u2[B]; (3) Compute the following probabilities: p1 = probability that u1 > u2
= P [d1 > d2|C = c1] ∗ P [b1 > b2|C = c1] = 0.6 * 0.6 = 0.36; p2 = probability that u2 > u1 =
P [d2 > d1|C = c1] ∗ P [b2 > b1|C = c1] = 0.4 * 0.4 = 0.16. In order to compare u1 and u2 we select
the higher between p1 and p2. In this example, p1 > p2 and so, we infer that u1 is preferred to u2. If
p1 = p2 we conclude that u1 and u2 are incomparable.

Definition 2.3 Accuracy, Comparability Rate and Precision. Let PNet be a BPN over a relational
schema R. Let P be a test preference database over R. The accuracy (acc) of the PNet with respect
to P is defined by acc(PNet,P)= N

M , where M is the number of bituples in P and N is the amount
of bituples (t1, t2) ∈ P compatible with the preference ordering inferred by the PNet on the tuples
t1 and t2. The comparability rate (CR) is defined by CR(PNet,P)= F

M where F is the number of
elements of P which are comparable by the PNet. The precision (prec) is defined by prec(PNet,P)=
acc
CR = N

F . Notice that each one of the three measures can be derived from the two others.

3. PROBLEM FORMALIZATION IN THE STREAM SETTING

The main differences between the batch and the stream settings as far as the contextual preference
mining problem is concerned may be summarized as follows:

—Input data: to each sample bituple (u, v) collected from the stream of clicks from a user on a site,
is associated a timestamp t standing for the time the user made this implicit choice. In this case,
consider for example that the object represented by the tuple u was clicked first that the object
represented by v (which may suggest that u is preferred to v), or even the object represented by v
has not been clicked by the user. Let T be the infinite set of all timestamps. So, the input data from
which a preference model will be extracted is a preference stream defined as a possibly infinite set
P ⊆ Tup(R)× Tup(R)× T which is temporally consistent, that is, if (u, v, t) ∈ P then (v, u, t) /∈ P .
The triple (u, v, t) that we will call temporal bituple, represents the fact that the user prefers tuple
u over tuple v at the time instant t.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Strategies for Mining User Preferences in a Data Stream Setting · 67

time0 t1 t2 t3 t4

Test TestT1 T2

PNett1 PNett2

Fig. 2. The dynamics of the mining and testing processes through time

—Output : the preference model to be extracted from the preference stream is a temporal BPN, that
is, a sequence of BPNs < PNett : t ∈ N >. At each instant t the algorithm is ready to produce a
preference model PNett which will be used to predict the user preferences at this moment.

—The preference order induced by a BPN at each instant t: At each instant t we are able to compare
tuples u and v by employing the Preference Model PNett updated with the elements of the pref-
erence stream until the instant t. The preference order between u and v is denoted by >t and is
obtained as illustrated in example 2.3.

—The accuracy and comparability rate at instant t: The quality of the preference model PNett
returned by the algorithm at instant t is measured by considering a finite set Test of preference
samples arriving at the system after instant t, that is, by considering a finite set Test whose elements
are of the form (u, v, t′) with t′ ≥ t. Let P be the (non temporal) preference database obtained from
Test by removing the timestamp t′ from its elements. The acc and CR measures of the preference
model PNett obtained at instant t are evaluated according to the formulae given in the previous
section applied to the (static) BPN PNett and the non temporal preference database P.

Fig. 2 illustrates the dynamic process of mining and testing the preference models from the prefer-
ence stream. In fact, as we will see in the following section, the mining algorithm is able to produce
the preference model by using a reduced set of statistics extracted from the training sets Ti.

Now we are ready to state the problem of Mining Contextual Preferences in a Preference Stream:
Input : a relational schema R(A1, A2, ..., An), and a preference stream over R.
Output : whenever requested, return a BPNt over R having good accuracy and comparability rate,

where t is the time instant of the request.

4. PROPOSED STRATEGIES

In this article we propose two strategies for mining user contextual preferences in the stream setting:
the Greedy Strategy and the Heuristic Strategy.

In order to save processing time and memory, in both strategies we do not store the elements of the
preference stream processed so far, we just collect sufficient statistics from it. Thus, the training of
the model is made by online updating its sufficient statistics for every new element that comes in the
stream. Example 4.1 illustrates the sufficient statistics collected from a preference stream S.

Example 4.1 Sufficient Statistics. Let R(A,B,C) be a relational schema with a1, a2 ∈ dom(A), b3,
b5, b6 ∈ dom(B) and c1, c2, c4, c5 ∈ dom(C). Let S be a preference stream over R as shown in Fig.
3(c), where T column shows the timestamp that the temporal bituple was generated, and u1 >ti u2 for
every temporal bituple (u1, u2, ti) in the preference stream, with 1 ≤ i ≤ 10. Consider the sufficient
statistics for attribute C shown in the Fig. 3(a) collected from the preference stream S until time
instant t9. Table on top of the Fig. 3(a) shows the context counters regarding the preferences over the
attribute C, and table on the bottom shows the general counters over C. Context counters account
for the possible causes for a particular preference over an attribute, and general counters stores the
number of times that a particular preference over an attribute appeared in the stream. With the
arrival of a temporal bituple at the time instant t10 - call it h, the sufficient statistics are updating as
follows (see Fig. 3(b)): (1) Compute ∆(u1, u2), which is the set of attributes where u1 and u2 differ
in h. In this example, ∆(u1, u2) = {C}, then only the attribute C will have their statistics updated
according to h; (2) Increment context counters a1 and b6 regarding the preference c2>c1 (table on top

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

68 · J. A. J. Papini, S. de Amo and A. K. S. Soares

c1>c2 c2>c1 c4>c5

A
a1 3 1 -
a2 - - 2

B
b3 1 - 1
b5 1 - 1

c1>c2 4
c2>c1 2
c4>c5 3

(a)

c1>c2 c2>c1 c4>c5

A
a1 3 2 -
a2 - - 2

B
b3 1 - 1
b5 1 - 1
b6 - 1 -

c1>c2 4
c2>c1 3
c4>c5 3

(b)

u1 u2

T A B C A B C
t1 a1 b3 c1 a1 b3 c2
t2 a1 b3 c2 a1 b5 c1
t3 a2 b5 c2 a1 b3 c1
t4 a2 b3 c4 a2 b6 c5
t5 a1 b5 c1 a1 b5 c2
t6 a2 b3 c4 a2 b3 c5
t7 a1 b3 c1 a1 b5 c2
t8 a2 b5 c1 a1 b6 c2
t9 a1 b5 c4 a2 b5 c5

t10 a1 b6 c2 a1 b6 c1
(c)

Fig. 3. (a) Sufficient statistics for attribute C at the time instant t9. (b) Sufficient statistics for attribute C at the time
instant t10. (c) Preference stream S until time instant t10.

of the Fig. 3(b)). Notice that in the temporal bituple h the values a1 and b6 are possible contexts
(causes) for the preference c2>c1, just because they are equal in both tuples, i.e., u1[A] = u2[A] and
u1[B] = u2[B]. As until now we had no context b6, it is inserted in the statistics; (3) Increment general
counter of the preference c2>c1 (table on the bottom of the Fig. 3(b)).

Memory Management. In order to limit the growth of the sufficient statistics, both strategies
perform a simple memory management procedure described as follows. We can abstract our statistics
as a tree, where the leaves are represented by general counters and context counters. For each leaf,
we store the time of its last update. Periodically, in order to reduce runtime overhead, the strategies
perform the memory management of their statistics, which in short consists in eliminating leaves that
have not been visited since a long time (i.e., the time of its last update differs from the current time
by an amount greater than a threshold). When a leaf is removed, we verify if the nodes traversed to
reach this leaf recursively need to be removed as well, in the case of these nodes do not have other
children. This means discarding information that is very old and is no longer relevant to the current
scenario. According to tests carried out on real data this mechanism proved to be effective.

4.1 Greedy Strategy

The main idea of the Greedy Strategy is to create a preference relation from the most promising
dependencies between attributes of a preference stream. In order to measure the dependence between
a pair of attributes, we use the concept of degree of dependence. The degree of dependence of a pair
of attributes (X,Y) is a real number that estimates how preferences on values for the attribute Y are
influenced by values for the attribute X. We adapted the concept of degree of dependence defined
in [Amo et al. 2012] to work with sufficient statistics. Its computation is carried out as described
in Alg. 1. In order to facilitate the description of Alg. 1 we introduce some notations as follows:
(1) We denote by T timeyy′ the finite subset of temporal bituples (u1, u2, t) ∈ S, such that t ≤ time,
(u1[Y] = y ∧ u2[Y] = y′) or (u1[Y] = y′ ∧ u2[Y] = y); (2) We denote by Stimex|(y,y′) the subset of T timeyy′

containing the temporal bituples (u1, u2, t) such that u1[X] = u2[X] = x. Example 4.2 illustrates the
computation of the degree of dependence on the statistics.

Example 4.2 Degree of Dependence on the Statistics. Let us consider the preference stream in the
Fig. 3(c) until the time instant t10 and the snapshot (picture) Q of their sufficient statistics for
attribute C shown in Fig. 3(b). In order to compute the degree of dependence of the pair (A,C)
with respect to Q, we first identify the context counters related to A in the Fig. 3(b). The thresholds
we consider are α1 = 0.1 and α2 = 0.2. The support of (c1, c2) and (c4, c5) are (4 + 3)/10 = 0.70
and 3/10 = 0.30, respectively. Therefore, we do not discard any of them. Entering the inner loop for
(c1, c2) we have only one set namely Sa1|(c1,c2). The support of Sa1|(c1,c2) is 5/5 = 1.0 and N = 3/5.
Hence, f1(Sa1|(c1,c2)) = 3/5 and f2(Tc1c2) = 3/5. In the same way, for (c4, c5) we have Sa2|(c4,c5) with
support 2/2 = 1.0 and N = 2/2 = 1.0. Therefore, f1(Sa2|(c4,c5)) = 1.0 and f2(Tc4c5) = 1.0. Thus,
the degree of dependence of (A,C) is f3((A,C), Q) = max{3/5, 1.0} = 1.0. Besides, the degree of
dependence of (B,C) is f3((B,C), Q) = 1.0.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Strategies for Mining User Preferences in a Data Stream Setting · 69

Algorithm 1: The degree of dependence of a pair of attributes
Input: Q: a snapshot of the sufficient statistics from the preference stream S at the time instant time;

(X,Y): a pair of attributes; two thresholds α1 > 0 and α2 > 0.
Output: the degree of dependence of (X,Y) with respect to Q at the time instant time

1 for each pair (y, y′) ∈ general counters over Y from Q, y 6= y′ and (y, y′) comparable do
2 for each x ∈ dom(X) where x is a cause for (y, y′) being comparable do
3 Let f1(Stime

x|(y,y′)) = max{N, 1−N}, where

N =
|{(u1, u2, t) ∈ Stime

x|(y,y′) : u1 >t u2 ∧ (u1[Y] = y ∧ u2[Y] = y′)}|
|Stime

x|(y,y′)|
4 Let f2(T time

yy′) = max {f1(Stime
x|(y,y′)) : x ∈ dom(X)}

5 Let f3((X,Y), Q) = max{f2(T time
yy′) : (y, y′) ∈ general counters over Y from Q, y 6= y′, (y, y′)

comparable}
6 return f3((X,Y), Q)

Given this, our strategy is straightforward and builds a BPNt from sufficient statistics as follows:
(1) Let S be a preference stream over the relational schema R. Take a snapshot Q of the sufficient
statistics from S at the time instant t; (2) Calculate the degree of dependence (Alg. 1) between
each possible pair of attributes of R according to Q. Let Ω be the resulting set of these calculations,
with elements of the form (Ai, Aj , dd), where Ai and Aj are attributes of R and dd is the degree of
dependence between (Ai, Aj); (3) Eliminate from Ω all elements whose dd < 0.5 (such dd indicates
weak dependence); (4) Order the elements (Ai, Aj , dd) in Ω in decreasing order according to their dd;
(5) Consider that the graph Gt of the BPNt starts with a node for each attribute of R. Within a
loop, take each (Ai, Aj , dd) ∈ Ω and insert the edge (Ai, Aj) in the graph Gt only if the insertion does
not form cycles in Gt. Thus, graph Gt of the BPNt is created; (6) Once we have Gt, we are now
seeking for estimates of the conditional probabilities tables θt of the BPNt. Since we have Q, we can
estimate such parameters using the Maximum Likelihood Principle (see [Amo et al. 2012] for details).

This strategy is characterized as greedy, once in the attempt to construct a graph with no cycles it
disposes edges that could be useful. However, this method is extremely efficient in terms of time and
memory, and tends to produce good results, as shown in Section 5.

4.2 Heuristic Strategy

This strategy uses a heuristic method based on an incremental genetic algorithm (IGA) over a pref-
erence stream to perform the learning phase of the graph structure Gt of the BPNt.

The main idea consists in evaluating the population of the IGA, not on a static database, but on the
data coming from a stream. However, unlike the IGA proposed by Vivekanandan and Nedunchezhian
[2011], which evaluates the population over a window of the stream, we evaluated the population over
the statistics collected from the preference stream S. This implies a low memory usage besides a
higher processing speed. The fitness function used is the same proposed by Amo et al. [2012] (score
function), based in concept of degree of dependence between a pair of attributes (Alg. 1). However, in
our strategy, the application of this function will be on a snapshot Q of the statistics. The snapshot is
only for the evaluation process to be fair, so that individuals in a same population are not evaluated
on different data. The score function assigns a real number in [-1, 1] for a candidate structure Gt,
aiming to estimate how good it captures the dependencies between attributes in S. In this sense, each
edge of the graph is “punished” or “rewarded”, according to the matching between each edge (X, Y)
in Gt and the corresponding degree of dependence of the pair (X, Y) with respect to Q.

In this strategy, the model learning process consists of two phases running in parallel: (1) Online
updating of the sufficient statistics for every new temporal bituple that comes in the preference stream,
just as the Greedy Strategy; (2) Running the IGA, where its population is always evaluated taking
into account new data from the stream. In each generation of the IGA, the best individual (Gt) of

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

70 · J. A. J. Papini, S. de Amo and A. K. S. Soares

the population is kept in a variable called BEST along with its conditional probability tables (θt),
built in the same way as in the Greedy Strategy. Thus, whenever the model is tested over time, the
BPNt used will be the one stored in BEST .

This strategy builds a BPNt as follows: (1) Let S be a preference stream over the relational schema
R. Randomly generate an initial population P0 of graphs without cycles over R; (2) Take a snapshot
Q0 of the statistics from S; (3) Evaluate the individuals in the population P0 over Q0 according to
the score function [Amo et al. 2012]; (4) For each generation i, until there are data in the stream, do
the following: (4.1) Select pairs of individuals for the crossover in Pi; (4.2) Apply crossover for each
pair, generating an offspring population Fi; (4.3) Apply mutation over some individuals from Fi; (4.4)
Take a snapshot Qi of the statistics from S; (4.5) Evaluate the individuals of the population Fi over
Qi; (4.6) From Pi ∪ Fi, select the |Pi| fittest individuals according to their score in order to build the
next population Pi+1; (4.7) Set in the variable BEST the best individual of the population Pi, along
with its set of conditional probability tables.

4.3 Complexity Analysis of Both Strategies

We divided the complexity analysis of both strategies in three parts, as explained below.
–The complexity of processing each element of the stream and update the sufficient statistics: (i) Scan
a temporal bituple to save the ∆ (set of attributes that have different values in the two tuples) and
the B (set of attributes that have equal values in the two tuples) are O(l), where l is the number
of attributes; (ii) Update the statistics of an attribute is O(|B|). Thus, update the statistics for all
attribute in ∆ is O(|∆|.|B|). Therefore, the complexity for processing each element in both strategies
in the worst case is O(|∆|.|B|), where |∆|+ |B| = l, and in the best case is O(l).
–The complexity of creating the preference model (BPN): (i) the computation of the degree of depen-
dence between the pairs of attributes is O(l2); (ii) for the Greedy Strategy the computation of the
topology is O(l2.e), where e is the number of edges of the BPN. The sub-steps used in this calculation
were: (a) the elimination of the pairs of attributes whose dd < 0.5 is O(l2), (b) the ordination of the
pairs of attributes is O(l2. log l) in the average case, and (c) for each pair of attributes the acyclicity
test of the insertion of its edge in the graph is O(e), so the total complexity of this sub-step is O(l2.e).
For the Heuristic Strategy the computation of one iteration of the IGA is O(l2.q), where q is the pop-
ulation size. The sub-steps used in this calculation were: (a) the selection for the crossover is O(q), (b)
the crossover operation is O(l2.q), (c) the mutation operation is O(q), (d) the calculation of the fitness
is O(l2.q), and (e) the select of the fittest individuals through an elitism procedure is O(q. log q); (iii)
the computation of the conditional probability tables is O(e.m), where m is the number of training
instances processed. Therefore, the total complexity for building the model in the Greedy Strategy is
O(e.(l2 +m)) and in the Heuristic Strategy is O(l2.q+ e.m). Notice that the difference of complexity
between the two strategies is in the computation of the topology (in bold text), where the Greedy is
dependent on the number of edges e (satisfying e ≤ l.(l − 1)/2) and the Heuristic is dependent on
population size q of the IGA. Thus, for a small number of attributes (e < q), the Greedy Strategy
tends to have better performance than the Heuristic Strategy. On the other hand, for large numbers
of attributes and reasonable population sizes (e > q), the Heuristic Strategy tends to be more efficient.
–The complexity of using the model (BPN) for ordering a temporal bituple in both strategies is O(l+e),
which can be reduced to O(l) when the BPN is a sparse graph.

5. EXPERIMENTAL RESULTS

We have implemented just the Greedy Strategy so far. In this section we describe the results concerning
the execution of the Greedy Strategy over real datasets and the results comparing its performance
with two well known baseline algorithms in the literature. The Greedy Strategy was implemented in
Java and all the experiments performed on a Windows 7 machine with 3.40 GHz clocked processor
and 12 GB RAM.

The Experiments Protocol. In order to evaluate the Greedy Strategy, we adapted the sampling

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Strategies for Mining User Preferences in a Data Stream Setting · 71

Greedy Strategy Hoeffding Tree Naive Bayes
User Bituples acc CR prec acc γ CR γ prec acc γ CR γ prec
U1 183,600 0.65 0.93 0.70 0.36 0.03 0.64 0.02 0.54 0.35 0.02 0.49 0.02 0.71
U2 178,500 0.58 0.82 0.70 0.41 0.03 0.66 0.05 0.63 0.39 0.03 0.56 0.05 0.69
U3 127,500 0.59 0.94 0.63 0.32 0.04 0.59 0.04 0.52 0.26 0.03 0.40 0.05 0.66
U4 112,200 0.60 0.93 0.64 0.37 0.05 0.66 0.04 0.54 0.28 0.05 0.47 0.05 0.59
U5 112,200 0.60 0.90 0.66 0.33 0.03 0.63 0.03 0.52 0.24 0.04 0.40 0.06 0.61
U6 102,000 0.59 0.94 0.62 0.31 0.05 0.55 0.08 0.48 0.24 0.05 0.36 0.05 0.69
U7 91,800 0.68 0.91 0.74 0.39 0.03 0.66 0.03 0.55 0.39 0.02 0.54 0.04 0.72
U8 86,700 0.61 0.90 0.69 0.36 0.06 0.60 0.08 0.52 0.35 0.02 0.54 0.03 0.65
U9 76,500 0.58 0.90 0.64 0.32 0.07 0.64 0.08 0.47 0.30 0.05 0.51 0.08 0.59
U10 76,500 0.61 0.91 0.66 0.39 0.07 0.62 0.07 0.58 0.30 0.05 0.48 0.04 0.61

(a)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000

0.6

0.8

1

training instances processed

C
R

(b)

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000
0

0.1

0.2

0.3

training instances processedm
od

el
-r
ef
re
sh
in
g
ti
m
e(
s)

(c)
Fig. 4. Experimental Testing Set

technique proposed by Bifet and Kirkby [2009] (holdout for data stream) to the preference mining
scenario. This technique takes three parameters as input : ntrain, ntest and neval. The ntrain and
ntest variables represent, respectively, the number of elements in the stream to be used to train and
test the model at each evaluation. The variable neval represents the number of evaluations desired
along the stream. For example, let us consider the values ntrain = 5,000, ntest = 100 and neval =
36. Let S = {e1, e2, e3, ...} be a preference stream. The dynamic of evaluation for this example is as
follows: (1) elements e1 to e5000 from S are used to train the model; (2) elements e5001 to e5100 are
used to test the quality of the model. The acc, CR and prec of the model are calculated according to
this period; (3) elements e5101 to e10100 are used to train the model, and so on for 36 cycles.

Real Data. In order to evaluate the Greedy Strategy over real-world datasets, we considered data
containing preferences related to movies collected by the GroupLens Research1 from the MovieLens
web site2 concerning ten different users (named Ui, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). We simulated
preference streams from these data, as follows: we stipulated a time interval λ, and each tuple in the
dataset Di of movies evaluated by the user Ui was compared to all others movies of Di in a radius
λ relative to its timestamp, thus generating temporal bituples for each user Ui. We calculated the λ
(in days) for each user Ui according to the sparsity related to the time of the tuples in the dataset
Di, and the values obtained were: U1 = 77, U2 = 37, U3 = 6, U4 = 82, U5 = 140, U6 = 50, U7 = 60,
U8 = 69, U9 = 7 and U10 = 135. The resulting preference stream Si has five attributes (director,
genre, language, star and year), and its elements correspond to preferences on movies concerning user
Ui. For example, the dataset D1 is constituted by movies evaluated by the user U1 from 5th Aug 2001
to 3rd Jan 2009 and the period comprising the ratings given by the ten users is Aug 2000 to Jan 2009.

The Baseline Algorithms. We did not find any algorithm in the literature that addresses the exact

1Available at http://www.grouplens.org/taxonomy/term/14
2Available at http://movielens.umn.edu

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

72 · J. A. J. Papini, S. de Amo and A. K. S. Soares

same problem we address in this article. Nevertheless, the classification task is the closest to the
mining preference task among the numerous existing data mining tasks. So, we decided to design a
baseline by adapting a classifier to compare the performance of the Greedy Strategy. In this approach,
the classes correspond to the scores given by the users to the movies and can take the values: 1, 2,
3, 4 or 5 (the best score). This baseline has been designed in such a way that at each cycle of the
holdout, both the training sample set and the test sample set of the classifier contain the same movies
involved in temporal bituples used by the Greedy Strategy. This ensures a fair evaluation process.
Besides, for a classifier to get a hit it is not necessary that it hits exactly the score given by the user
to a particular movie in the test sample set. For example, suppose that the classifier has predicted
the class c1 to the movie f1 and the class c2 to the movie f2, where f1 and f2 are in the test sample
set. In this case, if f1 was better rated than f2 by the user in reality, so it is enough that c1 > c2 for
the classifier to get a hit. On the other hand, if f1 was better rated than f2 by the user in reality and
c1 = c2, then the baseline infers that the pair (f1, f2) is incomparable.

The Experiment Results. We consider a paired difference one tailed t-test to measure the statistical
significance of the differences between the accuracy (resp. the comparability rate (CR), the precision
(prec)) of the Greedy Strategy and the respective measure for each of the two baseline algorithms.
We adapted the technique described by Tan et al. [2005] (originally designed for comparing classifiers
in a batch setting) for our preference mining task on data stream. For each one of the three quality
measures d (where d ∈ {CR, acc, prec}) let d be the difference between the d-measure of the Greedy
Algorithm and the respective d-measure of a given baseline algorithm. The main objetive of the
t-test is to compute the confidence interval γ for d and test if the Null Hipothesis (H0) is rejected.
The confidence interval γ is calculated as follows: γ = t(1−α),neval−1 × σ̂d, where t(1−α),neval−1 is a
coeficient obtained in the t-distribution table with (1−α) being the level of t-test and neval− 1 is the
degree of freedom. In all the experiments we considered α = 0.95 and neval varied according the size
of the stream. We evaluated the statistical significance of d where d = CR and d = acc, since these
measures are evaluated on samples of equal sizes for both algorithms.

Fig. 4(a) compares the performance of the Greedy Strategy with two baseline algorithms obtained
by instantiating the baseline construction methodology described earlier with two classifiers widely
used in the literature: Hoeffding Tree (HT) and Naive Bayes (NB). We used the MOA [Bifet et al.
2010] implementation of Naive Bayes and Hoeffding Tree in the default parameter setting3. The values
for the holdout parameters were ntrain = 5, 000 and ntest = 100. For each user Ui, we calculated the
value of neval in order to cover the whole stream Si, and the following values were obtained: U1 = 36,
U2 = 35, U3 = 25, U4 = 22, U5 = 22, U6 = 20, U7 = 18, U8 = 17, U9 = 15 and U10 = 15. For the
Greedy Strategy we used α1 = 0.2 and α2 = 0.1 as default values for the parameters of the Alg. 1
(referring to the degree of dependence). The choice of the parameters α1 and α2 depends on the data
used in the tests and in this article they were chosen through an experimental study.

For these experiments, the main question is: With α = 95% of certainty, can we conclude that
the Greedy Strategy outperforms the other methods? The null and alternate hypotheses for acc and
CR are H0 : Greedy Strategy ≤ HT , NB and HA : Greedy Strategy > HT , NB. The results
show that H0 is rejected (since all the values contained in the confidence interval are positive), and
thus, HA is substantiated. This shows that even with limited data streams, the Greedy Strategy
performs well, and outperforms both algorithms used as baselines. The poor results produced by
these classifiers suggest that classifiers are not quite suitable for preference mining tasks. Thus, we
argue that the Greedy Strategy, an algorithm specifically designed for preference mining, performs
better than classical classifiers adapted for the preference mining task.

Performance Analysis. Fig. 4(b) shows the evolution of the comparability rate of the Greedy Strat-
egy over the number of training instances processed. In this test, we used the stream S1 (concerning

3Hoeffding Tree: gracePeriod g = 200, splitConfidence c = 10−7, tieThreshold t = 0.05, numericEstimator
n = GAUSS10

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Strategies for Mining User Preferences in a Data Stream Setting · 73

the user U1) and we ploted all CR values used to compute the CR of 93% shown in the Fig. 4(a).
Notice that with few training instances processed the Greedy Strategy can not compare many pairs of
movies due the limited information that it has received so far. With the increasing in the number of
processed training instances, the Greedy Strategy can learning more about the user’s preferences and
therefore it is able to compare more pairs of movies. Notice also that from 40,000 training instances
processed the Greedy Strategy is able to compare almost all pairs of movies which are presented to it.

Execution Time. Fig. 4(c) shows the time measured in seconds taken by the Greedy Strategy to
generate the model at each refreshing point. The same stream used in the experiment reported in Fig.
4(b) has been considered here. Notice that model-refreshing time (the time to build a new model)
is very small, in the order of milliseconds. Though the Greedy Strategy builds the entire BPN at
every holdout cycle, the sufficient statistics are updated incrementally, i.e., they are always ready to
be used, which makes this process fast. Notice also that the time remains almost constant with the
increasing in the number of training instances processed, mainly due to the efficiency of the memory
management used.

6. CONCLUSION AND FURTHER WORK

In this article we proposed two strategies for extracting a Bayesian Preference Network from a prefer-
ence stream and discussed their advantages and disadvantages. We implemented the Greedy Strategy
and showed that it is fast and produces satisfactory results using real data. We also showed that
the Greedy Strategy outperforms the accuracy and comparability rate of two baselines well known in
the literature. As a promising future work, we plan to implement the Heuristic Strategy since the
complexity analysis showed that it is feasible and tends to be more efficient than the Greedy Strategy
in streams with larger numbers of attributes. We also plan to implement a synthetic preference stream
generator, which will enable testing a data set as large as desired.

REFERENCES

Amo, S. d., Bueno, M. L. P., Alves, G., and Silva, N. F. CPrefMiner: an algorithm for mining user contextual
preferences based on bayesian networks. In Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence. Washington, DC, USA, pp. 114–121, 2012.

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. MOA: Massive Online Analysis. The Journal of Machine
Learning Research vol. 11, pp. 1601–1604, 2010.

Bifet, A. and Kirkby, R. Data Stream Mining: a practical approach. Tech. rep., The University of Waikato, 2009.
Crammer, K. and Singer, Y. Pranking with Ranking. In Proceedings of the Neural Information Processing Systems
Conference (NIPS). Vancouver, Canada, pp. 641–647, 2001.

Domingos, P. and Hulten, G. Mining High-Speed Data Streams. In Proceedings of the sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Boston, Massachusetts, United States, pp.
71–80, 2000.

Jembere, E., Adigun, M. O., and Xulu, S. S. Mining Context-based User Preferences for m-Services Applications.
In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, USA, pp.
757–763, 2007.

Jiang, B., Pei, J., Lin, X., Cheung, D. W., and Han, J. Mining Preferences from Superior and Inferior Examples.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas,
Nevada, USA, pp. 390–398, 2008.

Rajaraman, A. and Ullman, J. D. Mining of Massive Datasets. Cambridge University Press, NY, USA, 2011.
Shivaswamy, P. K. and Joachims, T. Online Learning with Preference Feedback. The Computing Research Reposi-
tory vol. abs/1111.0712, pp. 1–5, 2011.

Somefun, D. J. A. and La Poutré, J. A. A fast method for learning non-linear preferences online using anony-
mous negotiation data. In Proceedings of the AAMAS Workshop and TADA/AMEC Conference on Agent-mediated
Electronic Commerce. Springer, Berlin, Heidelberg, pp. 118–131, 2007.

Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data Mining, (First Edition). Addison-Wesley Longman
Publishing Co., Inc., USA, 2005.

Vivekanandan, P. and Nedunchezhian, R. Mining Data Streams with Concept Drifts using Genetic Algorithm.
Artificial Intelligence Review 36 (3): 163–178, 2011.

Wilson, N. Extending cp-nets with stronger conditional preference statements. In Proceedings of the National
Conference on Artificial Intelligence.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

