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Abstract. In the domain of many classification problems, classes have relations of dependency that are represented in
hierarchical structures. These problems are known as hierarchical classification problems. Methods based on different
approaches, considering hierarchical relations in different ways, have been proposed to solve them, in the attempt
to achieve better predictive performance. In this work, we explore attribute selection techniques in conjunction with
hierarchical classifiers from different categories, with the goal of improving their respective performances. Computational
experiments, made with 18 hierarchical datasets, have indicated that the adopted classifiers attain better predictive
accuracy when the most relevant attributes are considered in their construction.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining
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1. INTRODUCTION

The task of classification aims at estimating the class of a new element from its characteristics. In
most classification problems, known as flat classification problems, classes have no descendent relation
among themselves. However, there are several problems in which classes have relations of dependency,
that are represented in hierarchical structures, known as hierarchical classification problems. The
methods for hierarchical classification should be able to consider the hierarchical organization of the
classes, with the goal of obtaining a higher predictive capacity.

Examples of problems that have their classes structured in a hierarchical manner can be found
in different areas of application. The domain of Bioinformatics has important works aimed at the
classification of proteins and enzymes into functional classes, which are found hierarchically organized
[Costa et al. 2008; Holden and Freitas 2007; 2009]. In the area of document classification, there are
texts that can be characterized considering a hierarchical structure of subjects [Dumais and Chen
2000; Sun and Lim 2001]. In image recognition applications, objects can be categorized in geometrical
forms that hold descendent relations [Barutcuoglu and DeCoro 2006].

Attribute selection is a technique widely used in data mining, especially in the classification task
[Guyon and Elisseeff 2006]. In this context, its goal is to identify relevant attributes, aiming at gaining
one or more of the following benefits: time reduction in the classification process, improvement of the
predictive capacity, and achievement of a more compact representation of the concept to be learned.

In this work, we explore the use of attribute selection techniques, aiming at boosting the performance
of hierarchical classifiers. Two different techniques for hierarchical classification will be considered:
the first one, a traditional hierarchical strategy named Per Parent Top Down (PPTD), based on the
paradigm of hierarchical classification “local per parent node”, and the second one, named Sum of
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Weighted Votes (SWV), and characterized as a “local per level” strategy, recently proposed by Paes
et al. [2012], whose performance has been shown to be competitive when compared to that of other
strategies from different paradigms of hierarchical classification.

Traditionally, attribute selection techniques are applied in a pre-processing stage. Attributes not
selected are not taken in the training of the classifier nor in the classification of a new instance. In the
work of Pereira et al. [2011], a new attribute selection method was proposed, named lazy, whose main
goal is to postpone the selection of the attributes to the moment of classification of a new instance.
The basic idea is to consider the values of the attributes in the instance to be classified and then
choose the attributes that will be part of the classification. This way, the attributes selected will be
specific for each instance, which may increase, as a result, the predictive capability of the classifier.
In this work, apart from the traditional techniques, the lazy methods for attribute selection will also
be explored.

The remainder of this work is organized as follows. Section 2 describes the hierarchical classifiers
that are explored. Section 3 provides the concepts related to attribute selection and the definition of
the attribute selection technique incorporated into the hierarchical classifiers. Section 4 describes the
computational experiments undertaken, and Section 5 evaluates the results. Section 6 explores a lazy
technique for attribute selection. Section 7 offers the conclusions of the work.

2. HIERARCHICAL CLASSIFICATION

The algorithms for hierarchical classification are organized in different categories [Silla and Freitas
2011]. Each one is different as regards the manner in which the hierarchical structure is explored,
whether in the simplification of the hierarchy (flat classification approach), in the use of a set of
traditional flat classifiers (local classification approach), or in the construction of a single classifier
that takes all the class hierarchy into account (global classification approach).

The local classification approach is the most commonly explored, and considers the class hierarchy
through a local perspective, with the combination of classifiers that consider, in an isolated manner,
different parts of the hierarchy. In [Silla and Freitas 2011], the local classifiers are categorized according
to the manner in which this local information is explored: local classifier per node, local classifier per
parent node and the local classifier per level approaches.

In this work, two classifiers will be explored: Per Parent Top Down (PPTD) and Sum of Weighted
Votes (SWV). The PPTD hierarchical classifier is based on the concepts of the “local per parent
node” approach. In this approach the training of a flat classifier is carried out for each non-leaf class
(internal node), as shown in Figure 1(a). In each flat classifier, represented by a dotted rectangle,
only the child classes of the parent class are considered (only instances labeled with child classes are
considered). This way, it is possible to obtain a hierarchy of flat classifiers. The classification of a new
instance is done in a top-down fashion. At first, the instance is evaluated by the root node classifier,
which chooses one amongst its child classes (e.g., class 2 in Figure 1(a)). The process goes on to the
first level and the node classifier associated with the resulting class picks one amongst its child classes
(e.g., class 2.1) and, this way, successively, until getting to a leaf class (e.g., class 2.1.2).

The SWV hierarchical classifier is considered as a “local per level” strategy. In this approach, a flat
classifier per hierarchy level is trained, as shown in Figure 1(b). For each flat classifier, only the classes
of the level at hand are taken into account (only instances labeled with theses classes are considered).
To run the classification of a new instance, each classifier generated is executed to produce a class
for each level (e.g., classes: 2, 2.1, and 2.1.2). However, one issue that has to be solved in local per
level classifiers is the inconsistent set of classes obtained by the different classifiers associated with the
different levels (e.g., classes: 2, 3.2, and 2.1.2). The SWV strategy, proposed by Paes et al. [2012],
deals with this question, privileging the branch of the hierarchy that presents the largest number of
classes estimated, named votes. In this strategy, the sum of the number of votes is weighted with the
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(a) PPTD (local per parent node approach) (b) SWV (local per level approach)
Fig. 1. Hierarchical Classifiers

probabilities estimated by the flat classifiers when obtaining the classes for the different levels.

3. ATTRIBUTE SELECTION

This section presents concepts related to the process of attribute selection and defines how the incor-
poration of the attribute selection process will be done in the PPTD and SWV hierarchical classifiers,
with the goal of improving the respective predictive accuracies.

Attribute selection is a technique widely used in data mining, especially in the task of classification
[Guyon and Elisseeff 2006]. In this realm, its goal is to identify relevant attributes, aiming at obtaining
one or more of the following benefits: (a) reduction in the execution time for the classification process
as, with less attributes assessed, the classification process tends to be run in a shorter processing
time; (b) increase of the predictive capability of the classifier as the selection of the attributes seeks
to remove redundant or irrelevant attributes from the dataset, allowing the generation of a classifier
that is less prone to error; and (c) the generation of a more compact representation of the concept to
be learned, as the knowledge will lie concentrated only in the attributes that are really important for
the classification.

In general terms, the methods for attribute selection can be categorized into three large types.
Wrapper methods evaluate the quality of the subsets of attributes using their own adopted classification
algorithm. They usually have good predictive capability as they evaluate each subset of attributes
using the same classification algorithm that will be used in the classification process. They require,
however, several executions of the classification algorithm, which raises the computational cost in
comparison with other methods.

Filter methods are independent from the classification algorithm that will be applied. They use
specific measures to evaluate the quality of the attributes available. These methods can evaluate each
attribute independently from the others, determining the degree of correlation that exists between
each attribute and the class [Yang and Pedersen 1997] or can assess subsets of attributes, seeking
through heuristic strategies the set that best identify the classes [Hall 2000; Liu and Setiono 1996].
In this work, Filter type methods will be used in conjunction with the hierarchical classifiers.

Embedded methods are incorporated into the classification algorithm. They are applied internally
and in an integrated manner to the classification method. Algorithms to induce decision trees are
typical examples as they internally select the attributes that will label the nodes of the tree generated.

Some examples of the use of attribute selection can be found in the area of hierarchical classification
in specific datasets and domains. In [Koller and Sahami 1997], a top-down hierarchical document
classifier is implemented in which the attributes are selected prior to the training of the classifier
for each node of the hierarchy. Secker et al. [2010] proposed a hierarchical top-down classifier with
attribute selection for a problem in the Bioinformatics domain. In that work the nodes of the hierarchy
can be associated with different types of flat classifiers. The hierarchy of classifiers is defined by a
selective method that identifies the most adequate classification algorithm for each node. The attribute
selection is used to reduce the dimensional aspect of the data and improve predictive accuracy.
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(a) In the PPTD strategy (b) In the SWV strategy

Fig. 2. Attribute Selection

The main contribution of this work is the application of attribute selection strategies integrated
with general purpose hierarchical classifiers, i.e., not restricted to specific datasets or domains, with
the goal of improving the predictive performance of the classifiers. Two hierarchical classifiers will
be explored: the traditional Per Parent Top-Down (PPTD) and the hierarchical strategy that was
recently proposed by Paes et al. [2012], named Sum of Weighted Votes (SWV).

The method applied for attribute selection produces a ranking of the attributes, considering the
information gain [Han and Kamber 2011] measure, based on the concept of entropy and, after that,
returns the n% best attributes, where n is an entry parameter. It is a well-known method of the Filter
type with large applicability in the domain of flat classification.

In this first approach explored, the attribute selection is carried out in a pre-processing stage, prior
to the training of the flat classifiers which form the hierarchical classifiers. Section 6 explores the lazy
selection approach which is executed only at the time of classifying a new instance.

Figure 2 shows the application of the attribute selection method in the PPTD and SWV hierarchical
classifiers. In order to illustrate, we consider the original set of attributes A1, A2, A3, A4, and A5, and
that 60% of the attributes should be selected via the attribute selection method.

Figure 2(a) shows the application of attribute selection in the PPTD hierarchical classifier. For
each parent node of the hierarchy, a set of attributes is selected prior to carrying out the training of
the classifier. This way, different subsets of attributes are selected in each node. All the attributes
are available in each node for the execution of attribute selection, i.e., the attributes are not lost by
the child nodes when not selected by the parent node. The figure shows the result of the attribute
selection applied to each parent node. From these different attribute subsets, the classifiers C1, C2, C3,
C4, and C5 are trained and associated with each parent node. For example, classifier C4, associated
with the node represented by class 2.1, is trained with attributes A1, A4, and A5.

Figure 2(b) shows the application of attribute selection in the SWV hierarchical classifier. For each
level of the hierarchy, a subset of attributes is selected, prior to the training of the respective flat
classifier. The figure shows the attributes selected on each level of the hierarchy and, from them, the
training of the classifiers C1, C2, and C3, for the different levels, is done. For example, classifier C2,
associated with level 2 of the hierarchy, is trained with attributes A2, A3, and A5

4. DESCRIPTION OF THE EXPERIMENTS

To evaluate the performance of the hierarchical classifiers with the application of attribute selection,
18 datasets were used, described below in two large groups. Group A consists of eight datasets,
containing information on protein functions. These datasets are split into two subgroups: GPCR
(G-Protein-Coupled Receptor) and EC (Enzyme Commission). The GPCR group consists of four
datasets (GPCRpfam, GPCRprints, GPCRprosite, and GPCRinterpro). GPCRs are proteins that
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Table I. Characteristics of the datasets
Group Dataset #Classes #Instances Group Dataset #Classes #Instances

GPCRpfam 12/52/79/49 6524 Church 4/18/36/27 1677
GPCRprints 8/46/76/49 4880 CellCycle 4/17/34/23 1711
GPCRprosite 9/50/79/49 5728 Derisi 4/18/35/25 1661
GPCRinterpro 12/54/82/50 6935 Eisen 4/15/29/17 1163A ECpfam 6/41/96/190 11057 B Expr 4/17/34/25 1688
ECprints 6/45/92/208 11048 Gasch1 4/17/34/25 1660
ECprosite 6/42/89/187 11328 Gasch2 4/17/33/25 1678
ECinterpro 6/41/96/187 11101 Phenotype 4/12/21/13 621

Sequence 4/17/32/24 1680
SPO 4/17/34/25 1649

relay signals from the external environment to inside the cell. The EC group consists of four datasets
(ECpfam, ECprints, ECprosite, and ECinterpro), that represent enzyme functions. The datasets of
the GPCR and EC groups have been used in several works that deal with hierarchical classification
problems [Costa et al. 2008; Silla and Freitas 2011]. For the experiments carried out in this work a
pre-processing procedure was carried out to remove all the instances (from each dataset), whose more
specific class was not associated with a leaf node.

Group B consists of ten datasets that hold genic information. The datasets of this group come from
the field of functional genomics and are related to the Saccharomyces cerevisiae fungus or to the Yeast
fungus and are presented by Clare and King [2003]. They are originally multi-label and, for their use
in this work (where it is considered that the instances are single-label), they were converted through
the random choice of one of the classes associated with each instance.

All data sets have the class hierarchy represented by a non-complete tree structure with four levels.
Apart from that, the more specific classes of the instances are associated only with leaf nodes of the
class hierarchy. The characteristics of the datasets, shown in Table I, are: the group to which the
dataset belongs (Group), the name of the dataset (Dataset), the number of classes for each hierarchy
level (#Classes), and the total of instances for each dataset (#Instances).

All the hierarchical classifiers were implemented using the JAVA programming language, incor-
porating algorithms and functions of the data mining tool WEKA 3.7.0 (Waikato Environment for
Knowledge Analysis) [Witten and Frank 2011]. Two traditional flat classifiers were used: one of the
eager type, C4.5, and another of the lazy kind, k-NN. In order to represent these flat classifiers in the
experiments, the versions provided in the WEKA tool, named, respectively, J48 e Ibk, were adopted.
The Filter attribute selection method, provided in the WEKA tool with the name InfoGainAttribu-
teEval was applied in the implemented hierarchical classifiers. The choice was based on its simplicity
and on the fact that it is a widely known method. It should be pointed that this method has the
number of attributes to be selected as its entry parameter.

The evaluation of the hierarchical classifiers was performed using 10-fold cross-validation. The
hierarchical f-measure (hF) measure was adopted – as presented by Kiritchenko et al. [2005]. The hF
measure is calculated as the harmonic mean of measures hierarchical precision (hP ) and hierarchical
recall (hR): hF = 2 ∗ hP ∗ hR/(hP + hR). Where hP is the result of the division between the sum
(for all instances) of the number of common classes between the sets of predicted and true classes of
each instance and the sum (for all instances) of the number of predicted classes for each instance, and
hR is the result of the division between the sum (for all instances) of the number of common classes
between the sets of predicted and true classes of each instance, and the sum (for all instances) of the
number of true classes of each instance.

In order to evaluate the statistical significance in the comparison between two averages, obtained
by two distinct classifiers using 10-fold cross-validation, we used the two-tailed and paired version of
the Student’s t-test [Jain 1991], with a 95% level of confidence, that is, a p-value equal to 5%.
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Table II. hF values obtained by PPTD classifier with and without attribute selection
1-NN 7-NN 9-NN C4.5Datasets Sel. w/o Sel. Sel. w/o Sel. Sel. w/o Sel. Sel. w/o Sel.

GPCRpfam 70.32 (90) - 70.32 69.09 (70) - 69.04 68.55 (70) - 68.47 68.85 (70) - 68.84
GPCRprints 82,97 (80) - 82.97 80.95 (70) - 80.89 80.41 (80) - 80.41 79.22 (50) - 79.19
GPCRprosite 69.26 (70) - 69.25 67.38 (70) • 67.31 66,57 (90) - 66.57 67.67 (70) - 67.63
GPCRinterpro 83,09 (90) - 83.09 81.96 (80) - 81.95 81.29 (80) - 81.29 81.52 (80) - 81.54
ECpfam 98.77 (70) - 98.77 98.16 (70) - 98.16 97.88 (70) - 97.88 98.40 (60) - 98.39
ECprints 98.19 (80) - 98.19 97.37 (80) - 97.37 97.05 (80) - 97.05 97.34 (80) - 97.35
ECprosite 98.81 (70) - 98.80 98.29 (70) - 98.29 98.03 (80) - 98.03 98.46 (70) - 98.46
ECinterpro 99.07 (30) - 99.07 98.62 (70) - 98.62 98.32 (70) - 98.32 98.68 (70) • 98.73
Total A 8 6 8 4 8 7 5 4
Church 21.64 (10) • 19.38 23.06 (10) • 19.66 23.07 (10) • 19.82 25.29 (10) • 21.53
CellCycle 24.75 (40) - 24.56 29.29 (50) - 28.38 29.91 (40) - 29.40 22.93 (80) - 22.19
Derise 20.09 (70) - 18.89 22.07 (70) - 20.21 22.71 (30) - 20.89 22.82 (10) - 20.47
Eisen 25.66 (50) - 24.70 29.53 (70) - 29.25 30.39 (50) - 29.16 26.77 (50) - 24.24
Expr 26.05 (10) - 25.35 29.33 (70) - 27.21 29.78 (70) - 28.29 26.26 (30) - 24.74
Gash1 27.81 (70) - 28.29 31.37 (80) - 30.97 27.92 (70) - 30.08 24.34 (90) • 22.90
Gash2 24.96 (80) - 25.23 27.89 (80) - 26.12 27.92 (70) • 26.00 23.39 (40) - 22.52
Phenotype 21.34 (20) - 20.27 23.23 (20) - 22.52 22.95 (90) - 22.95 21.57 (60) - 21.39
Sequence 25.01 (90) - 24.02 24.88 (80) - 23.73 25.63 (30) • 23.90 25.26 (10) - 22.86
SPO 21.70 (20) - 18.86 24.55 (30) • 21.10 26.05 (30) • 22.29 23.83 (10) • 19.36
Total B 8 2 10 0 9 2 10 0

5. COMPUTATIONAL RESULTS

This section provides the results and analyses of the computational experiments. The goal is to
evaluate the impact of attribute selection when applied to the Per Parent Top-Down (PPTD) and
Sum of Weighted Votes (SWV) hierarchical classifiers.

Tables II and III present, respectively, the evaluations of the PPTD and SWV hierarchical classifiers
when executed with and without the application of attribute selection. We used each one of the four
flat classifiers that obtained the best performance in the experiments carried out by Paes et al. [2012]:
1-NN, 7-NN, 9-NN and C4.5. For each combination of dataset and flat classifier adopted, the hF
values obtained by the hierarchical classifier, with attribute selection (Sel.) and without attribute
selection (w/o Sel.), are presented. Next to the hF value for the classifiers with attribute selection, it
is presented the percentage of the attributes (10%, 20%, ..., 80% or 90%) that led the classifier to reach
the best result. If two or more percentage values have generated the best result, the smaller percentage
value will be reported. The best results for each flat classifier applied are provided in bold whereas
the best results per dataset are underlined. The (•) symbol between the two hF values indicates that
the difference between these averages holds statistical significance. The (-) symbol indicates that no
statistical significance was observed. Finally, under each dataset group a line of totals is provided that
presents the number of times one of the hierarchical classifiers presented an hF value higher than or
equal to the hF value of the other, for each flat classifier adopted.

Table II shows the results for the PPTD classifier with and without attribute selection. It is possible
to see, on the line of totals that, for the datasets of both groups and for all the flat classifiers used,
that the PPTD hierarchical classifier had a higher number of better hF values when the attribute
selection was applied. Out of the 12 results obtained that had statistical significance, the PPTD
classifier with attribute selection had 11 and the PPTD classifier with no attribute selection got only
one. Considering the best results found per dataset (underlined), the PPTD classifier with attribute
selection found 18, whereas the PPTD classifier with no attribute selection got six of these results.

Table III shows the results for the SWV classifier, with and without attribute selection. It is possible
to observe that in the lines of totals, for the datasets of the two groups and for all flat classifiers, the
superior performance of the SWV strategy with attribute selection. All the 20 results with statistical
significance were obtained by the SWV strategy with attribute selection. Considering the best results
found, per dataset (underlined), the SWV strategy with attribute selection found 18, whereas the
SWV strategy with no attribute selection got six of these results.
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Table III. hF values obtained by SWV classifier with and without attribute selection
1-NN 7-NN 9-NN C4.5Datasets Sel. w/o Sel. Sel. w/o Sel. Sel. w/o Sel. Sel. w/o Sel.

GPCRpfam 70.31 (90) - 70.31 68.78 (50) - 68.68 68.25 (40) • 68.07 68.76 (50) - 68.70
GPCRprints 83.00 (80) - 83.00 80.97 (70) - 80.86 80.29 (70) - 80.28 79.53 (50) - 79.33
GPCRprosite 69.36 (40) - 69.26 67.13 (40) • 66.83 66.14 (30) - 66.00 67.13 (20) - 67.08
GPCRinterpro 83.09 (90) - 83.09 81.69 (80) - 81.68 81.31 (80) - 81.31 81.98 (90) - 81.80
ECpfam 98.77 (70) - 98.77 98.30 (70) - 98.30 98.19 (70) - 98.19 98.43 (60) - 98.43
ECprints 98.19 (80) - 98.19 97.45 (80) - 97.45 97.22 (70) - 97.22 97.54 (80) • 97.51
ECprosite 98.81 (70) - 98.80 98.35 (60) - 98.33 98.10 (70) - 98.08 98.57 (70) - 98.57
ECinterpro 99.08 (70) - 99.08 98.82 (70) - 98.82 98.70 (70) - 98.70 98.78 (70) - 98.79
Total A 8 6 8 3 8 4 7 3
Church 21.88 (10) • 19.70 22.96 (10) • 20.19 23.22 (10) • 20.66 25.58 (10) • 21.29
CellCycle 25.12 (40) - 24.82 30.16 (40) - 28.60 30.96 (40) - 29.87 24.86 (40) - 24.83
Derise 20.26 (60) • 18.73 23.22 (10) - 21.16 23.52 (40) • 21.20 22.44 (10) - 21.78
Eisen 27.26 (50) • 24.54 32.43 (50) • 29.56 32.51 (50) - 30.77 28.20 (70) • 25.79
Expr 26.18 (30) - 25.62 29.85 (50) • 28.12 30.42 (40) - 29.26 28.92 (60) - 26.61
Gash1 29.60 (90) - 28.98 31.67 (80) - 31.24 28.93 (40) - 30.80 27.30 (90) - 25.86
Gash2 26.46 (50) - 25.03 28.39 (50) • 25.55 28.93 (40) • 26.21 24.62 (30) - 23.39
Phenotype 26.25 (10) • 22.46 26.69 (10) - 24.42 26.46 (10) - 25.45 27.94 (10) - 26.37
Sequence 23.99 (70) - 23.08 24.19 (40) - 22.76 25.48 (40) - 23.75 26.18 (70) - 25.71
SPO 21.95 (20) • 18.50 24.98 (30) • 21.59 25.64 (20) • 22.31 23.38 (40) • 21.50
Total B 10 0 10 0 9 1 10 0

Table IV. Best results found per dataset

Group Datasets hF Strategy(ies) Group Datasets hF Strategy(ies)

GPCRpfam 70.32 PPTD/1-NN(90) Church 25.58 SWV/C4.5(10)
GPCRprints 83.00 SWV/1-NN(80) CellCycle 30.96 SWV/9-NN(40)
GPCRprosite 69.36 SWV/1-NN(40) Derisi 23.52 SWV/9-NN(40)
GPCRinterpro 83.09 PPTD/1-NN(90) e SWV/1-NN(90) Eisen 32.51 SWV/9-NN(50)A ECpfam 98.77 PPTD/1-NN(70) e SWV/1-NN(70) B Expr 30.42 SWV/9-NN(40)
ECprints 98.19 PPTD/1-NN(80) e SWV/1-NN(80) Gasch1 31.67 SWV/7-NN(80)
ECprosite 98.81 PPTD/1-NN(70) e SWV/1-NN(70) Gasch2 28.93 SWV/9-NN(40)
ECinterpro 99.08 SWV/1-NN(70) Phenotype 27.94 SWV/C4.5(10)

Sequence 26.18 SWV/C4.5(70)
SPO 26.05 PPTD/9-NN(30)

Table IV shows, for each dataset, the best result obtained and the strategies that reached them. The
strategy is represented by the hierarchical classifier applied, flat classifier used, and the percentage of
attributes that were selected. It is possible to see that, for all the 18 datasets, the best result was
obtained by a hierarchical strategy with attribute selection. In no case all the attributes (100%) were
used. This behaviour points to the importance, also in the hierarchical context, of the use of attribute
selection techniques.

When comparing both PPTD and SWV strategies, it is possible to see a better performance in the
SWV strategy. In the analysis made by Paes et al. [2012], with no attribute selection, this strategy
also produced a performance superior than that of the PPTD strategy. Considering the eight Group
A datasets, there was just a slight performance superiority in the SWV strategy, which attained seven
best results, while the PPTD strategy got five times the best value for hF. However, for the Group B
datasets, there is a clear performance superiority in the SWV strategy that produced nine best results
against only one of the PPTD strategy.

6. LAZY ATTRIBUTE SELECTION

This section presents another important contribution of this work: the use, in the context of hierar-
chical classification, of a paradigm – recently proposed by Pereira et al. [2011] – to carry out attribute
selection, named lazy attribute selection. This method executes attribute selection at the classification
time of each instance. It is based on the hypothesis that the selection of the attributes can be more
efficient if it considers the values of the attributes in the instance to be classified. This way, different
subsets of attributes are selected for different instances, considering their specifics. The traditional
attribute selection method, used in the previous sections will be named in this section as being of the
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(a) Instance 1 - PPTD Strategy (b) Instance 2 - PPTD Strategy

(c) Instance 1 - SWV Strategy (d) Instance 2 - SWV Strategy

Fig. 3. Lazy attribute selection in hierarchical classifiers

eager type, as the selection of the attributes is done only one time, prior to the classification stage.

The lazy method uses an adaptation of the concept of entropy to individually assess each attribute
value in the instance to be classified, regarding the quality to differentiate the classes. This strategy
is also of the Filter type and receives as an entry parameter the number of attributes to be selected.

The lazy attribute selection method will be applied in conjunction with the Per Parent Top-Down
(PPTD) and Sum of Weighted Votes (SWV) hierarchical classifiers, both using the k-NN as the flat
classifier. Figures 3 illustrate the application of the lazy attribute selection in the PPTD and SWV
hierarchical classifiers. We considered the original set of attributes A1, A2, A3, A4, and A5, and that
60% of the attributes have to be selected via the attribute selection method.

Figure 3 (a) shows that, for each parent node of the hierarchy, a set of attributes is selected at the
time of classification of Instance 1, considering the values of their attributes. At first, attributes A1, A2,
and A4 are selected for classifier C1. After that, classifier C1 predicts class 2. Again, considering the
values of attributes of Instance 1, attributes A2, A3, and A5 are selected for classifier C2, associated
with class 2. Then the classifier associated with the class 2 node is executed, producing class 2.1. Thus,
attributes A1, A4, and A5 are selected and used in classifier C3, associated with class 2.1. Finally,
classifier C3 predicts class 2.1.1. Similarly, Figure 3 (b) presents the result of the lazy attribute
selection, considering the values of the attributes in Instance 2, for each parent node in the hierarchy.
In Figure 3 (c), for each level of the hierarchy, the attribute selection is performed at the time Instance
1 is submitted to the classification, selecting different attribute subsets for each level of the hierarchy.
Figure 3 (d) shows that other attribute subsets can be selected on each level of the hierarchy, now
considering the values of the attributes of another instance.

Next, we present the results and analyses of the computational experiments that were carried out to
evaluate the impact of the lazy attribute selection, when applied to the PPTD and SWV hierarchical
classifiers. The computational experiments followed the same conditions presented in Section 4, albeit
with the application of the lazy attribute selection method.

Table V shows, for each dataset and hierarchical classifiers (PPTD and SWV), the best results
obtained. For each dataset (row) and each hierarchical classifier analysed (column), the best obtained
hF value is shown and, on the side, the configuration that obtained the best value, represented by: the
flat classifier (1-NN, 7-NN, or 9-NN), the selection method used, (eager or lazy), and the percentage

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.



132 · B. C. Paes, A. Plastino and A. A. Freitas

Table V. Best results for PPTD and SWV hierarchical classifiers
Group A PPTD SWV Group B PPTD SWV
Datasets hF Strategy hF Strategy Datasets hF Strategy hF Strategy

GPCRpfam 70.32 1-NN-EAGER(90) 70.31 1-NN-LAZY(50) Church 23.43 9-NN-LAZY(10) 24.16 9-NN-LAZY(10)

GPCRprints 82.97 1-NN-EAGER(80) 83.00 1-NN-EAGER(80) CellCycle 29.91 9-NN-EAGER(40) 30.96 9-NN-EAGER(40)1-NN-LAZY(80)

GPCRprosit 69.26 1-NN-EAGER(70) 69.41 1-NN-LAZY(30) Derisi 22.71 9-NN-EAGER(10) 23.52 9-NN-EAGER(40)

GPCRinterp 83.09 1-NN-EAGER(90) 83.09 1-NN-EAGER(90) Eisen 30.88 7-NN-LAZY(80) 32.74 9-NN-LAZY(30)1-NN-LAZY(90)

ECpfam 98.77 1-NN-EAGER(70) 98.79 1-NN-LAZY(20) Expr 30.49 9-NN-LAZY(30) 31.74 7-NN-LAZY(40)

ECprints 98.19 1-NN-EAGER(80) 98.21 1-NN-LAZY(30) Gasch1 31.37 7-NN-EAGER(80) 31.95 9-NN-LAZY(70)

ECprosite 98.81 1-NN-EAGER(70) 98.81 1-NN-EAGER(70) Gasch2 27.92 9-NN-EAGER(70) 28.93 9-NN-EAGER(40)

ECinterpro 99.07 1-NN-EAGER(30) 99.15 1-NN-LAZY(20) Phenotyp 23.23 7-NN-EAGER(20) 27.08 9-NN-LAZY(10)1-NN-LAZY(10)

Sequence 25.63 9-NN-EAGER(30) 25.48 9-NN-EAGER(40)
SPO 26.05 9-NN-EAGER(30) 25.64 9-NN-EAGER(20)

of attributes that led to the best result. As an example, for the GPCRprosite dataset, the best hF
value attained was of 69.41, obtained by the SWV hierarchical classifier, using the 1-NN flat classifier,
with the lazy attribute selection, and with a selection of 30% of the attributes. With the analysis of
this table, it is possible to conclude that both attribute selection methods succeeded, in all 36 cases,
in increasing the performance of the adopted hierarchical classifier. In no case did the use of all the
attributes lead to the best result. The lazy strategy managed to improve even further some of the
results found with the eager strategy. In three cases it obtained the same result found by the eager
method, whilst in another 13 cases the lazy strategy managed to secure an even better result.

Table VI shows, for each dataset, the best result obtained and the strategies that reached them.
Each strategy is represented by the hierarchical classifier applied, flat classifier used, type of attribute
selection (eager or lazy), and the percentage of attributes that were selected. It is possible to see
the importance of each attribute selection strategy, in an isolated manner, as each one individually
obtained the best result for a different subset of datasets. The eager strategy got the better result,
in an isolated manner, for seven datasets, and the lazy strategy got it for nine datasets, showing the
importance of this new paradigm for attribute selection in the hierarchical classification domain.

Table VI. Best results found per dataset
Datasets hF Strategy(ies)

GPCRpfam 70.32 PPTD/1-NN-EAGER(90)
GPCRprints 83.00 SWV/1-NN-EAGER(80), SWV/1-NN-LAZY(80)
GPCRprosite 69.41 SWV/1-NN-LAZY(30)
GPCRinterpro 83.09 PPTD/1-NN-EAGER(90), SWV/1-NN-EAGER(90), SWV/1-NN-LAZY(90)
ECpfam 98.79 SWV/1-NN-LAZY(20)
ECprints 98.21 SWV/1-NN-LAZY(30)
ECprosite 98.81 PPTD/1-NN-EAGER(70), SWV/1-NN-EAGER(70)
ECinterpro 99.15 SWV/1-NN-LAZY(20)
Church 24.16 SWV/9-NN-LAZY(10)
CellCycle 30.96 SWV/9-NN-EAGER(40)
Derisi 23.52 SWV/9-NN-EAGER(40)
Eisen 32.74 SWV/9-NN-LAZY(30)
Expr 31.74 SWV/7-NN-LAZY(40)
Gasch1 31.95 SWV/9-NN-LAZY(70)
Gasch2 28.93 SWV/9-NN-EAGER(40)
Phenotype 27.08 SWV/9-NN-LAZY(10)
Sequence 25.63 PPTD/9-NN-EAGER(30)
SPO 26.05 PPTD/9-NN-EAGER(30)
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7. CONCLUSION

In this work, we evaluated the introduction of different attribute selection strategies in two hierarchical
classifiers. It was possible to notice that, for the 18 hierarchical datasets used in the computational
experiments, the best result was obtained by the hierarchical classifiers when some attribute selection
strategy was carried out. Therefore, the results showed the importance of adopting attribute selection
techniques, also in the hierarchical classification domain.

We could also observe that, not only flat classification strategies, but also hierarchical classification
methods can benefit from the use of the lazy attribute selection paradigm, recently proposed by Pereira
et al. [2011]. The lazy strategy postpones the attribute selection until the moment of the classification
of new instances. In the conducted experiments, the lazy attribute selection was able to obtain the
best result, in an isolated manner, in nine of the 18 datasets explored.
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