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Abstract. Recent years have seen an increasing use of large ontologies in various areas of knowledge, e.g. health and
agriculture. In this scenario, ontology matching is an important way of establishing interoperability between applications
that use different but related ontologies. Matching large ontologies is challenging since it involves a great number of
comparisons between concepts which leads to high execution time and requires a large amount of computing resources.
This work proposes a MapReduce-based approach that distributes the computation of comparisons between concepts
among the nodes of a cloud computing infrastructure. Experimental results indicate that the proposed approach can
reduce execution time without necessarily compromising the effectiveness of ontology alignments.
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1. INTRODUCTION

Ontology matching is a process that takes as input two different ontologies (O1 and O2) and identifies
pairs of similar concepts (correspondences) in the two ontologies [Rahm 2011; Euzenat and Shvaiko
2013]. The process may accept parameters (e.g. weights, metrics and/or thresholds) and resources (e.g.
dictionaries and other ontologies) to assist in the comparison of concepts. The set of correspondences
forms the alignment (A’) between ontologies O1 and O2. The similarity between the concepts is
determined by employing matching algorithms (matchers). In each comparison involving a pair of
concepts, multiple matchers can be applied to explore the various features of the concepts. Each
matcher produces a similarity value that varies between 0 (no similarity) and 1 (complete similarity).
The similarity values are combined using aggregation measures (e.g. average and weighted average).
A similarity threshold is applied to identify potential matches (correspondences).

In traditional ontology matching, the comparison of concepts is guided by the Cartesian product,
i.e., all concepts from ontology O1 are compared with all concepts of ontology O2. However, when
dealing with the large ontology matching problem [Babalou et al. 2014], optimization techniques
become necessary mainly to provide a reduction of the match search space [Rahm 2011] and/or parallel
matching [Gross et al. 2010]. Partition-based matching [Hu et al. 2006] is used to limit the number
of comparisons between concepts by partitioning the input ontologies into subontologies (partitions)
and comparing only those concepts contained in similar pairs of subontologies. Parallel matching
[Mestre and Pires 2014] consists in distributing the concept comparisons among various resources (e.g.
computers or virtual machines). In this context, MapReduce [Dean and Ghemawat 2008] emerges as
a major alternative for the efficient distributed data-intensive tasks due to its capability for being a
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scalable parallel shared-nothing data-processing. This programming model hides the details of data
distribution and allows users to focus on the data processing aspects.

In this paper, we investigate the parallelization for the complex problem of matching large ontologies.
A MapReduce-based approach is proposed to coordinate the distributed computation of comparisons
between concepts. We assume that the input ontologies are partitioned and the pairs of subontologies
to be compared are defined. Then, our distributed approach is used to parallel the computation of
concept comparisons aiming to reduce execution time. This paper is organized as follows. Section 2
provides a background on optimization techniques for large ontology matching. Section 3 discusses
related work. Section 4 presents a formalization of partition-parallel-based ontology matching. Sec-
tion 5 presents the MapReduce-based approach for large ontology matching. Section 6 presents the
experiments and results. Section 7 presents our conclusions and suggestions for future work.

2. BACKGROUND

This section presents an overview of techniques commonly used to optimize large ontology matching:
partitioning-based and parallel-based ontology matching.

2.1 Partition-based Ontology Matching

Partition-based ontology matching aims at partitioning the input ontologies O1 and O2 in such a way
that the concepts inside a subontology (partition) of O1 are matched against the concepts contained
in another subontology of O2 [Rahm 2011]. In general, such technique includes the following steps: i)
read files: ontology files (e.g. in OWL format) are read and the content (e.g. concepts, relationships
and ontology information) is loaded into the main memory; ii) partition of ontologies: concepts of an
input ontology that are similar according to specific aspects (e.g. linguistic or structural) are grouped
in subontologies. For each input ontology, a set of subontologies is produced; iii) identify similar
subontologies: avoids comparing all subontologies of ontology O1 with all subontologies of O2. To

Fig. 1. Steps to match large ontologies.
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this end, it identifies which pairs of subontologies have concepts with a certain degree of similarity in
such a manner that comparisons are performed only between concepts of such pairs. Depending on
the partitioning algorithm, this step can be performed along with the previous one; iv) match subon-
tologies: performs comparisons between concepts (Cartesian product) of subontology pairs identified
as similar in the previous step. The similarity between concepts is calculated by matchers. For each
pair of subontologies compared, a partial alignment is generated; v) combine and/or refine partial
alignments: combines the partial alignments (e.g. by the union of correspondences) to produce the
final alignment. Optionally, the partial alignments can also be refined. Refinement (post-processing
step) aims to remove inconsistencies and duplication of correspondences of partial alignments.

To better understand the process of matching large ontologies an illustration is depicted in Figure 1
(adapted from [Algergawy et al. 2011]). The example uses an excerpt from two large ontologies avail-
able at the BioPortal repository: FMA (Foundational Model of Anatomy) and NCI (National Cancer
Institute Thesaurus). In step 1, the OWL files FMA.owl and NCI.owl are read and their information
is loaded into memory, resulting in the representation of ontologies O1 and O2, respectively. The
ontologies contain the concepts: O1 = {Bone Organ, Short, Flat Bone, Nasal Bone, Scapula} and O2

= {Bone, Skull, Flat Bone, Phalanx, Nasal Bone, Rib}. In step 2, each ontology is partitioned into
subontologies: O1.S1 = {Bone Organ, Short} and O1.S2 = {Flat Bone, Nasal Bone, Scapula}; O2.S1

= {Bone, Skull, Phalanx} and O2.S2 = {Flat Bone, Nasal Bone, Rib}. In step 3, similar pairs of
subontologies are identified. The concepts belonging to these pairs of subontologies will be compared.
In the example, the pairs of subontologies O1.S1 ./ O2.S1 and O1.S2 ./ O2.S2 are compared.
In step 4, the concepts belonging to each pair of subontologies are matched resulting in two partial
alignments AP1 and AP2, where AP1 = {[Bone Organ, Bone]} and AP2 = {[Flat Bone, Flat Bone],
[Nasal Bone, Nasal Bone]}. In step 5, the partial alignments are combined by means of an union
operator to form the final alignment A’ = {[Bone Organ, Bone], [Flat Bone, Flat Bone], [Nasal Bone,
Nasal Bone]}.

2.2 Parallel-based Ontology Matching

Effective ontology matching, i.e., the identification of high effectiveness correspondences, normally
requires the combined execution of multiple matchers to determine the similarity between ontology
concepts. Typical matchers, such as semantic and structural ones, are time-consuming and memory-
intensive. In addition, matching is typically performed on memory representations (graph structures)
of the ontologies and requires the maintenance of several similarity values for every pair of concepts.
Such requirements are even more increased when dealing with large ontologies.

Fig. 2. Inter-matcher (a) and intra-matcher (b) parallelization.
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The reduction of the search space (Section 2.1) does not guarantee that problems related to execution
time and memory consumption will be solved [Dragisic et al. 2014]. As a result, techniques to parallel
the process of ontology matching emerge as a complementary solution. According to Gross et al.
[2010], there are essentially two ways to parallel the process of ontology matching which mainly differ
in how matchers are run: inter-matcher and intra-matcher. In inter-matcher parallelization (Figure
2(a) – adapted from [Gross et al. 2010]), each matcher runs on a different node (computer, virtual
machine or computer core) of a distributed computing infrastructure (e.g. a cloud or a cluster of
machines). The pairs of concepts to be compared are sent to each matcher which performs comparisons
in parallel. In intra-matcher parallelization (Figure 2(b) – adapted from [Gross et al. 2010]), the
matching workflow runs in parallel. Each pair of concepts to be compared is sent to an available node
where all matchers perform comparisons sequentially. In parallel, comparisons between other pairs of
concepts are operated on different nodes.

A natural way of composing the matchers consists of improving the matching through the use of
sequential composition [Euzenat and Shvaiko 2013]. For instance, a matcher based on labels can
be used before running a matcher based on the structure of concepts. The previous matcher must
send a partial alignment to the following matcher. The intra-matcher parallelization facilitates the
communication between matchers since they are located at the same resource. For this reason, in this
work we use intra-matcher to parallel the comparisons between concepts.

3. RELATED WORK

Challenges involving different aspects of ontology matching motivated the creation of competitions
such as the one organized by the Ontology Alignment Evaluation Initiative (OAEI1). This competition
brings together companies and universities around the world, in order to get faster and effectiveness
solutions for the process of ontology matching. Concerning the OAEI track of large ontologies (Large
Bio), in 2014, only six (LogMapLite, XMap, LogMap, AML, LogMap-C, and LogMap-Bio) of the
fifteen algorithms submitted have completed all test cases. The majority burst memory ("out of
memory") or exceeded the competition time threshold [Dragisic et al. 2014].

Parallel-based ontology matching has been treated in [Gross et al. 2010; Thayasivam and Doshi 2013;
Amin et al. 2015; Zhang et al. 2012; 2011; Torre-Bastida et al. 2014], mainly to minimize the execution
time of ontology matching by distributing concept comparisons among the resources (e.g. computers
or virtual machines) of a distributed system. Some authors [Gross et al. 2010; Amin et al. 2014; Amin
et al. 2015] propose their own architecture. The architecture proposed in [Gross et al. 2010] is divided
into three services: data (extracts the information from ontologies), workflow (forwards the compar-
isons to available resources), and match (compares concepts and determines the correspondences). In
[Amin et al. 2014; Amin et al. 2015], the strategy used to parallel ontology matching is similar to
inter-matcher except that a node can execute any matcher. The work presents two dedicated services
to distribute the comparisons among nodes and cores. Other authors [Thayasivam and Doshi 2013;
Zhang et al. 2012; 2011; Torre-Bastida et al. 2014] use MapReduce to parallel the process of matching
ontology. In [Thayasivam and Doshi 2013], MapReduce is used to minimize the execution time of four
large ontology matching systems: Falcon-AO, Logmap, Optima+, and YAM++. Each node runs a
specific ontology matching system. In [Zhang et al. 2012; 2011], the authors propose an approach that
converts the input ontologies into virtual documents and analyzes cyclically the similarities between
documents to define the correspondences. The work of Torre-Bastida et al. [2014] employs ontology
matching techniques in the context of Linked Open Data (LOD). The techniques are used to extract
information from entities while similarity metrics define the links between them.

Unlike all works discussed earlier, our approach considers as input pairs of subontologies (produced
by a partitioning algorithm) in order to minimize the amount of comparisons between concepts.

1http://oaei.ontologymatching.org/
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Regarding data transmission and fault tolerance, two relevant issues in distributed systems [Dean and
Ghemawat 2008], the works of Gross et al. [2010], Amin et al. [2014] and Amin et al. [2015] do not
describe how these issues are treated. The works that use MapReduce framework are benefited from
its architecture features in order to tackle these problems. Unlike the works proposed by Zhang et al.
[2012], Zhang et al. [2011] and Torre-Bastida et al. [2014], which uses five and four MapReduce jobs to
generate the ontology alignment, respectively, our approach uses only one job. The higher the number
of jobs, the higher tends to be the execution time of the matching process. Although it is not the main
focus of our work, another difference between the aforementioned works and our approach is that we
employ a (basic) load balancing strategy. We analyze the amount of comparisons to be performed in
each pair of subontologies, based on the information provided by a partitioning algorithm, to distribute
evenly the comparison blocks between the reduce tasks without executing another MapReduce job as
in the previously mentioned works. Works related to LOD use the resulting correspondences of the
ontology matching process to select potential entities to be linked, which are analyzed at the instance
level (instance matching) [Nentwig et al. 2015]. Thus, solutions like ours can be combined with the
work [Torre-Bastida et al. 2014] in order to improve the efficiency of the process.

In the literature, there are several algorithms to partition large ontologies: PBM (Partition-based
block matching) [Hu et al. 2008], SCAN (Structural Clustering Algorithm for Networks) [Xu et al.
2007], DenGraph-HO [Schlitter et al. 2014], APP (Anchor, Partition, Partition) and PAP (Partition,
Anchor, Partition) [Hamdi et al. 2010]. Among them, only PAP and APP partition one ontology
based on the partitioning result of the other ontology. In addition, both algorithms produce a set of
pairs of similar subontologies to be compared, where each subontology in a pair belongs to a different
ontology. These are helpful characteristics for ontology matching since they avoid the comparison
of concepts that have few chance of resulting in correspondences. In this work, we employ PAP to
generate the input of our MapReduce-based approach, i.e., the pairs of subontologies to be compared.
The PAP algorithm work as follows: one ontology is partitioned and before partitioning the other
input ontology, anchor concepts (concepts considered similar in both ontologies) are determined using
a linguistic similarity function. The anchor concepts, selected between two ontologies, are used to
guide the partitioning of the other ontology and define which subontologies should be compared.

4. PROBLEM STATEMENT

In this section, we formalize the problem of partition-parallel-based Ontology Matching (OM). Let
O1 and O2 be the input ontologies to be matched. The ontologies are composed by a set of concepts
denoted by O1 = {c1, c2, . . . , cj} and O2 = {c1, c2, . . . , ck}. Let sim(c, c′) be the similarity value
between the concepts c and c′ according to the aggregation (e.g., average) of similarity scores computed
by matchers. The OM goal is to generate the partial alignments PA(O1, O2) as a set of tuples in the
form 〈c, c′, sim(c, c′)〉, s.t. c ∈ O1, c′ ∈ O2 and sim(c, c′) is above a predefined input threshold φ.

To avoid computing sim(c, c′) for each c ∈ O1 and c′ ∈ O2 (which leads to both high execution time
and computational costs), the input ontologies are first submitted to a partitioning algorithm denoted
by Clalg. By doing so, for each input ontology Oi, it is generated a set of subontologies denoted by
Oi.S = {S1, S2, . . . , Sm}, such that

⋂
S∈Oi.S

= ∅ and
⋃

S∈Oi.S
= Oi. Moreover, Clalg also generates

a list of subontology pairs denoted by Pairs(O1.S,O2.S) = {〈S, S′〉1, 〈S, S′〉2, ..., 〈S, S′〉p}, such that
S ∈ O1.S and S′ ∈ O2.S, in order to indicate the pairs of subontologies that should be matched. After
that, for each 〈S, S′〉 ∈ Pairs(O1.S,O2.S): S ./ S′ is computed (i.e., sim(c, c′) is evaluated for each
c ∈ S and c′ ∈ S′). For each 〈S, S′〉 ∈ Pairs(O1.S,O2.S), a partial alignment PA is generated. Thus,
the output of this task is a set of partial alignments denoted by PA(O1, O2) = {PA1, PA2, . . . , PAp},
such that each PA ∈ PA(O1, O2) is a set of tuples in the form 〈c, c′, sim(c, c′)〉.

In order to optimize even more the OM process, the computation of Pairs(O1, O2) can be executed
in distributed computational resources. Let E = {n1, n2, . . . , nN} be the set of nodes (e.g. virtual
or physical machines) with homogeneous configuration in a cloud computing environment that are
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Table I. Summary of the partition-parallel-based OM steps and goals.
Input O1, O2, Clalg , φ

task 1 Generate O1.S,O2.S, Pairs(O1.S,O2.S)

task 2 Compute S ./ S′, s.t. 〈S, S′〉 ∈ Pairs(O1.S,O2.S) using E = {n1, n2, . . . , nN}
goal 1 Maximize Recall(PA(O1, O2)), Precision(PA(O1, O2))

goal 2 Maximize Texec(O1 ./ O2)− Texec(Pairs(O1, O2))

goal 3 Minimize N −
(

Texec(Pairs(O1,O2))

TE
exec(Pairs(O1,O2))

)
Output PA(O1, O2)

available to compute PA(O1, O2). We denote by Texec(Pairs(O1, O2)) the execution time of com-
puting PA(O1, O2) by using a single node n ∈ E. In turn, we denote by TE

exec(Pairs(O1, O2)) the
execution time of computing PA(O1, O2) by employing a cloud computing environment represented
as E. Basically, we can summarize the problem as stated in Table I.

5. MATCHING LARGE ONTOLOGIES WITH MAPREDUCE

In this section, we describe our approach to match large ontologies in parallel. Parallelization is
achieved using MapReduce [Dean and Ghemawat 2008], a programming model designed for parallel
data-intensive computing in shared-nothing clusters. The approach is based on intra-matcher paral-
lelization and focus on the step 4 of Figure 1. Thus, we assume that the set of subontology pairs
has been previously generated by a partitioning algorithm (Clalg) (step 3) which also provides useful
information (e.g. number of concepts in each subontology) that are used to evenly distribute the com-
parisons over the available computational resources. Analogously, since our approach produces a set
of partial alignments, different strategies can be used to produce and refine the final alignment (step
5), such as trimming correspondences under a particular threshold or simply combining the partial
alignments using an union operator [Euzenat and Shvaiko 2013].

Briefly, the MapReduce-based approach works as follows: for each pair of subontologies, the concepts
of the smaller subontology (in terms of number of concepts) are replicated2 w times in the map phase,
where w is the number of reduce tasks. The concepts of the larger subontology are sent together
with the replicated concepts of the smaller subontology to be compared in the same reduce task
(reduce phase). Matchers compute the degree of similarity between each pair of concepts. The pairs
of concepts that present a similarity value above a threshold (φ) are considered correspondences. The
approach is divided into four phases: reading, map, shuffle, and reduce. Next, we describe each phase
in more details. For the ease of understanding, we use the motivating example illustrated in Figure 3
throughout the section.

Reading Phase. Firstly, the concepts contained in each subontology are read and receive an
identification key. Then, it is performed a statistical analysis of the amount of concept comparisons
to be executed for each pair of subontologies. This analysis will help guiding the distribution of
comparisons evenly among reduce tasks.

Each pair of subontologies is associated to an identifier (pair_id). The concepts are read and the
information of each concept (e.g. label of concept, annotations, and label of children) are extracted to
form a tuple. Each concept (tuple) receives a key composed as follows: 〈pair_id.concept_id.replicated〉,
where concept_id is the concept identifier in the corresponding subontology and replicated indicates
whether the concept will be replicated (replicated = 1) or not (replicated = 0). In Figure 3, there are
two pairs of subontologies: Pair 0 = 〈O1.S1, O2.S1〉 and Pair 1 = 〈O1.S2, O2.S2〉. In Pair 1, O2.S2

is the smaller subontology since it has fewer concepts (2) than subontology O1.S2 (3). The key of

2If both subontologies have an identical size, the concepts of the second subontology are replicated.
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Fig. 3. Matching subontology pairs using MapReduce.

concept FlatBone is "1.0.1", where character "1" represents the Pair 1, "0" is the concept identifier
in subontology O2.S2 and "1" indicates that the concept will be replicated.

After reading the concepts, for each pair of subontologies 〈S, S′〉 ∈ Pairs(O1, O2) the amount of
comparisons is computed as |S| ∗ |S′|. Also, the smaller and bigger subontologies (Ss and Sb, re-
spectively) are determined, regarding the amount of concepts. Considering that R = {r1, r2, ..., rw}
is the set of reduce tasks, since the comparisons in each pair of subontologies are guided by the
Cartesian product (Ss ./ Sb), we divide the amount of concepts in the bigger subontology |Sb| by
the number of reduces tasks w. As a result, each subset of the bigger subontology forms a com-
parison block (CB). A CB contains |Sb|/w concepts of Sb and all concepts of Ss. The number
of comparisons in a CB is computed as #comparisons = (|Sb|/w) ∗ |Ss|. Each CB of a subontol-
ogy pair receives a key in the format: 〈pair_id.comparison_block_id〉, where pair_id identifies the
subontology pair and comparison_block_id is the comparison block identifier based on the number
of reduce tasks (ranging from 0 to the w − 1). T = {CB1, CB2, ..., CBg} is the list of compar-
ison blocks of all pairs in Pairs(O1.S,O2.S). In Figure 3, the comparison blocks are formed as
follows: T = {〈〈1.0〉, 2〉, 〈〈1.1〉, 2〉, 〈〈1.2〉, 2〉}. T is then ordered in descending order by the amount
of comparisons (#comparisons) in each comparison block. We denote the resulting list by Tsort.
The function emptiestReduceTask(R) = r returns the index of the reduce task (r) with fewest com-
parisons to be allocated. Tsort is iterated and each comparison block is guided to a reduce task
to form the set of tuples CBAllocated = {a1, a2, ..., ah}, s.t. each a ∈ CBAllocated is represented as
a = 〈〈pair_id.comparison_block_id〉, emptiestReduceTask(R)〉. The set CBAllocated is saved to
guide the allocation of comparisons between the reduce tasks in the next phases. In Figure 3, the
allocation of CBs is done as follows: CBAllocated = {〈〈1.0〉, 2〉, 〈〈1.1〉, 1〉, 〈〈1.2〉, 0〉}. Thus, the three
comparison blocks will be evenly distributed among the available reduce tasks (shuffle phase).

Map Phase. This phase modifies the concept keys and replicates the concepts in such a manner
that the keys can guide the formation of comparison blocks. The map tasks receive the key-values
〈key, concept〉 and replicate the concepts in which the replicated key character is equal to 1. For each
replicated concept, the concept_id of the key is replaced by the concept_id of the concept belonging
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to the larger subontology. The map tasks also append a reduce_id character, returned by the set
CBAllocated (generated in the previous phase) that determines to which reduce task the concept will be
forwarded. In the motivating example, the concept Flat Bone (subontology O2.S2) is replicated three
times, where three is the size of the larger subontology (O1.S2). For each replication, the concept_id
of Flat Bone is replaced by the concept_id of the concepts Flat Bone, Nasal Bone, and Scapula.
Thus, Flat Bone (subontology O1.S2) and Flat Bone (subontology O2.S2) have the same two first
characters of key that identifies a comparison block. Also, note that the map task appends the value
1 to the character reduce_id of concept Nasal Bone key.

On the other hand, if the concept must not be replicated (replicated = 0), only the reduce number
is appended to the concept key. In the example, the key of Scapula is "1.2.0", where "0" indicates
that the concept will not be replicated. Thus, the value "0" (reduce_id) is appended to the key
resulting in "1.2.0.0". Finally, the key-values 〈key, concept〉 are emitted to the next phase (shuffle).
The map algorithm is detailed in Appendix A.

Shuffle Phase. In this phase, the set of key-values 〈key, concept〉 is partitioned, sorted, and
grouped. To form the comparison blocks, the key-values 〈key, concept〉 are grouped and sorted by the
key. The concepts are grouped by the first two characters of their keys (pair_id and concept_id).
Figure 3 illustrates the formation of a comparison block. The concepts FlatBone, FlatBone and
NasalBone (red comparison block) are grouped because they have the same first two characters of
their keys ("1.0") and form Comparison Block 0. To sort the concepts in a comparison block, all
key characters are considered. Finally, the set of 〈key, concepts〉 are sent to the reduce phase. To
this end, in the partition task, the last key character (reduce_id) of the concepts determines to
which reduce task the concepts that compose a comparison block must be allocated. In Figure 3, the
concepts Scapula, Flat Bone and Nasal Bone of Comparison Block 0 are allocated to the reduce
task reduce 0, since the character reduce_id of each concept’s key is equal to 0.

Reduce Phase. Each reduce task receives several comparison blocks. In a comparison block, the
subset of concepts of the larger subontology are compared with all concepts of the smaller subontology.
The first concepts of a comparison block belong to the larger subontology, since the third character
of its key is "0". The other concepts belong to the smaller ontology (third character is equal to "1").
The comparisons are executed by the matchers that return a similarity value for each comparison.
The pair of concepts with similarity above a threshold (φ) is considered a correspondence. The output
of each reduce task is the set of correspondences that forms a partial alignment.

In Figure 3, due to space restrictions only the comparisons of Pair 1 are shown. The comparison
block formed by the concepts Scapula, Flat Bone andNasal Bone is allocated to reduce 0 (reduce_id
is equal to 0), where Scapula (the first concept) belongs to O1.S2 (larger subontology) and the other
concepts belong to O2.S2 (smaller subontology). Thus, the concept Scapula is compared with the
concepts Flat Bone and Nasal Bone. Each comparison produces a similarity value: Scapula ×
Flat Bone = 0.1 and Scapula × Nasal Bone = 0.12. Since the similarity values are below the
threshold (φ = 0.7), reduce 0 produces an empty partial alignment while reduce 1 and reduce 2
identify the correspondences NasalBone ≡ NasalBone and FlatBone ≡ FlatBone, respectively.
The reduce algorithm is detailed in Appendix A.

6. EXPERIMENTS

In this section, we evaluate the proposed MapReduce-based approach on a cloud computing infras-
tructure. The focus of the experiments3 addresses the following research questions: i) Is the proposed
MapReduce-based approach comparable to existing state-of-the-art approaches in terms of performance?
(Goal 3 of Table I); ii) Do partitioning algorithms improve the performance of the MapReduce-based

3Available at https://sites.google.com/site/dqgroupufcg/mapreduce-approach-for-matching-large-scale-ontologies
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Fig. 4. Execution time and speedup of the Gross and MapReduce approaches.

approach without compromising its effectiveness? (Goals 1 and 2); and iii) Is the MapReduce-based
approach scalable in a context of multiple matchers? (Goals 1 and 3). To answer these questions, the
following experiments were proposed.

6.1 Performance Analysis

In this experiment, we perform a comparative performance analysis of our approach and the one
proposed by Gross et al. [2010] (not based on MapReduce). As input ontologies, we use Molecular
Functions (MF) and Biological Processes (BP), consisting of 9,395 and 17,104 concepts, respectively
(versions of June 2009). Both ontologies were extracted from the GO4 ontology. For a fair comparison,
both approaches need to execute the same amount of comparisons. Thus, since the Gross’ approach
follows the Cartesian product to perform the comparisons between concepts, we ignored the partition-
ing step in this experiment. The similarity values are computed by applying three linguistic matchers
[Gross et al. 2010] namely: Label (compares the labels of concepts), Children (compares the labels of
children concepts), and Name Path (compares the labels of ancestor concepts). Trigram similarity is
used by the matchers to determine the similarity between the labels. The experiments were performed
on a cloud infrastructure with four nodes, each one with 4 cores (we use up to 16 cores). Each node
has an Intel(R) Xeon(R) 4x1.0GHz CPU, 4GB memory and runs the 64-bit Debian GNU/Linux OS
with a 64-bit JVM. Regarding MapReduce, we used the implementation Hadoop 2.6.0 configured with
two map tasks and four reduce tasks per node (following Hadoop’s documentation).

The results of the comparative performance analysis are shown in Figure 4. Regarding execution
time, our MapReduce-based approach outperformed the Gross’ approach for all variations of the
number of cores, enabling a reduction time of 38,650 seconds (with 1 core) and 2,910 seconds (16
cores). For the range between 8 and 16 cores, our approach obtained, on average, a performance of
803 seconds faster than the Gross’ approach. Concerning speedup which measures how much faster
a process runs in parallel (i.e., the ratio of time it takes to run a process on 1 core (or node) and the
time it takes to run the same process on C cores, where C is the amount of cores), our approach also
obtained better results than the Gross’ approach, for all variations of cores. In the range between 8 and
16 cores, we achieved the greatest differences of speedup. The MapReduce-based approach obtained,
on average, a speedup of 1.63 greater than Gross’ approach. Thus, based on the experimental results,
we conclude that our approach achieved a higher performance than the Gross’ approach.

4http://geneontology.org/
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6.2 Performance and Effectiveness Analysis with(out) Partitioning

The purpose of this experiment is to evaluate if the partitioning step can improve execution time
whilst maintaining the effectiveness of alignments. To this end, we executed our approach with and
without (in this case, following the Cartesian product) partitioning. We use F-measure to measure
the effectiveness of alignments, that compares the final alignment to a reference one (gold standard).
The final alignment contains 1:1 correspondences (i.e., a concept of an ontology is related to only
one concept of the other ontology). This was obtained by trimming correspondences below the sim-
ilarity threshold. Particularly, for the approach with partitioning, the execution time includes both
partitioning and matching times.

In this experiment, we used the pair of ontologies Adult Mouse Anatomy (2,744 concepts) and
NCI Thesaurus (3,304 concepts), provided by OAEI5. To determine the similarity between concepts,
we used three linguistic matchers [Euzenat and Shvaiko 2013]: Label, Children, and Annotation
(compares the labels of concepts’ annotations). The label similarity was determined by averaging the
results of Levenshtein distance and Trigram. To partition the ontologies we used the PAP clustering
algorithm described in related work. Two pairs of subontologies were generated by PAP. The resulting
subontologies contain 1,256 and 1,379 concepts from NCI Thesaurus. In turn, the subontologies from
the Adult Mouse Anatomy have 1,440 and 1,228 concepts. Following the PAP algorithm, the concepts
that were not included in subontologies to be compared were not considered in the matching process.
The experiments were performed on a cloud infrastructure with 32 nodes, each one with 1 core. The
configuration of each node is the same as described in the previous experiment. We used the same
implementation of MapReduce of the previous experiment, however, configured with one map task for
each two nodes and one reduce task per node, since each node had one core.

According to the results shown in Figure 5(a), it is possible to identify a considerable reduction in
execution time and a small decrease in effectiveness (F-measure) when using the partitioning algorithm.
The time required to partition the ontologies sequentially (1 node) is around 2 seconds. Up to 12
nodes, the execution time decreased on average 100 seconds. When we used 4 nodes, the execution
time was reduced by more than half. Regarding the effectiveness of the generated alignment (with
threshold φ = 0.8), while the approach without partitioning (Cartesian product) obtained a F-measure
of 80%, the one with partitioning reported a F-measure of 78%. Even with the small decrease of F-
measure, the usage of partitioning algorithms appears promising taking into account the gains obtained
regarding execution time. Thus, we can infer that the use of a partitioning algorithm can reduce
considerably the execution time, without necessarily compromising significantly the effectiveness of
generated alignments.

6.3 Performance and Effectiveness Analysis using Multiple Matchers

In this experiment, we evaluated the impact of combining matchers in the effectiveness and perfor-
mance in the MapReduce-based ontology matching. We use the same refinement strategy of partial
alignment used in the previous experiment to generate the final alignment. To prevent that parti-
tioning algorithm interfere in the analysis of the effectiveness, in this experiment the comparison of
concepts is guided by the Cartesian product of the following pair of ontologies: Foundational Model of
Anatomy (FMA - 78,989 concepts) and National Cancer Institute Thesaurus (NCI - 66,724 concepts),
provided by OAEI. We evaluated the execution time and effectiveness of MapReduce-based approach
using the Label matcher and the combination of the matchers Label and Annotation. To determine
the linguistic similarity in the Label and Annotation matchers, it was used the Levenshtein distance
algorithm. The combination is performed executing firstly the Label matcher. If the similarity value
is greater than the similarity threshold (φ = 0.8), the concepts are considered similar and the Anno-
tation matcher is not executed. Otherwise, the Annotation matcher executes and checks if any of the

5http://oaei.ontologymatching.org/2013/
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Fig. 5. (a) Reported execution time and F-Measure of our approach with and without partitioning; (b) Performance
and effectiveness of our approach using Label (single) and Label/Annotation (aggregated) matchers.

annotations (in the concept) have a similarity value greater or equal than the similarity threshold. In
this experiment, we employed the same cloud settings of the previous experiment.

According to Figure 5(b), we can observe that with the increase the number of nodes, the difference
of execution time between the Label (single) and Label/Annotation (aggregated) matchers tend to
decrease. Initially (1 node), the difference of execution time is 3,960 seconds; with 32 nodes this dif-
ference is reduced to 259 seconds. Regarding the effectiveness of the alignments, we realize an increase
in F-measure from 65% to 71% by using of the combination of the Label and Annotation matchers.
Clearly, the combination of multiple matchers tends to improve the effectiveness of alignments gener-
ated by the ontology matching process. However, its usage increases significantly the execution time
of the process. Thus, our MapReduce-based approach emerges as a scalable solution which benefits
the use of multiple matchers to maintain reasonable execution times.

7. CONCLUSIONS AND FUTURE WORK

Areas such as health have several large ontologies, for example, Open Biomedical Ontologies Foundry
(OBO), Gene Ontology (GO) and OpenGalen. In the area of astronomy stands out the Interna-
tional Virtual Observatory ontology repository Alliance (IVOA). In agriculture, the large ontology
AGROVOC created by the Food and Agriculture Organization (FAO) is considered one of the most
important of the area. With the growing number of large ontologies, there is also a need to match
related ontologies and still maintain reasonable execution time. In this context, this work proposes
an approach, based on MapReduce, in order to reduce the execution time of the matching process
involving large ontologies. Based on the experimental results, we observed that the MapReduce-based
ontology matching approach (with partitioning) can provide reasonable execution times and effective
alignments. In addition, the MapReduce-based approach benefits the usage of multiple matchers
without greatly increasing the execution time.

In future work, we will investigate better strategies to distribute the comparisons between concepts
evenly in order to improve even more the efficiency of the proposed matching approach. We also
intend to investigate how large ontologies can be partitioned in parallel using the PAP algorithm.
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APPENDIX A. MAP AND REDUCE ALGORITHMS

As illustrated in Algorithm 1, the key concept is initially subdivided into the variables: pair_id,
concept_id and replicated (lines 2 to 4). Considering the number that identifies the subontology pair
to which the concept belongs to (line 5), the number of replications is recovered in the global variable
(configuration). If the concept must not be replicated (line 6), the reduce task identifier is recovered
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from the list (matchTasks) that stores the pairs: comparison block identifier (pair_id.concept_id)
and reduce task identifier (line 7). The variable reduce is appended to the key (line 8) and the pair
〈key, concept〉 is emitted to the next phase (line 9). Otherwise, the concept is replicated (line 11) and
the concept_id (line 12) is changed. The reduce task identifier is recovered (line 13) and appended to
the key (line 14). Finally, the pair 〈key, concept〉 is emitted (line 15).

Algorithm 1 Map algorithm
1: function map(key, concept)
2: pair_id← key[0]
3: concept_id← key[1]
4: replicated← key[2]
5: numberReplications← configuration.get(pair_id)
6: if replicate = 0 then
7: reduce← matchTasks.get(pair_id.concept_id)
8: key← key.append(reduce)
9: emit(key, concept)

10: else
11: for i = 0→ numberReplications do
12: key← pair_id.i.replicated
13: reduce← matchTasks.get(pair_id.i)
14: key← key.append(reduce)
15: emit(key, concept)

Algorithm 2 Reduce algorithm
1: function reduce(key, list(concepts))
2: threshold← configuration.get(Threshold_Value)
3: conceptsLargerOntology← {}
4: result← null
5: for each concept in list(concepts) do
6: if concept.isNoReplicated() then
7: conceptsLargerOntology.add(concept)
8: else
9: conceptSmallerOntology← concept

10: maxSimilarity← 0
11: for each conceptLarge in conceptsLargerOntology do
12: similarity← computeMatchers(conceptLarge, conceptSmallerOntology)
13: if similarity > threshold and similarity > maxSimilarity then
14: maxSimilarity← similarity
15: result← conceptLarger× conceptSmallerOntology : maxSimilarity
16: if result 6= null then
17: emit(key, result)

As detailed in Algorithm 2, with the parameter Threshold_V alue (line 2), the value of threshold
is recovered from the global variable (configuration) and the variables are initialized (lines 3 and 4).
The list of concepts is iterated (line 5), the concepts belongs to the larger ontology are separated of
the concepts belongs to the smaller ontology (lines 6 to 9). The variable maxSimilarity (line 10)
indicates the highest value of similarity between the concepts which were already compared. For each
concept of the smaller ontology, it is computed the value of similarity with the concepts of the larger
ontology (lines 11 and 12). If the similarity is larger than threshold and maxSimilarity, the variable
maxSimilarity receives the new value of similarity and result assumes the new pair of concepts with
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the value of similarity between them (lines 13 to 15). If there is a pair of concepts with the value of
similarity above threshold (line 16), the result is emitted to the output of the reduce task (line 17).
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