
Clustering Multivariate Data Streams by Correlating
Attributes using Fractal Dimension

Christian C. Bones1, Luciana A. S. Romani2, Elaine P. M. de Sousa1

1 University of São Paulo, Brazil
chris,parros@icmc.usp.br

2 Embrapa Agriculture Informatics – Campinas – SP – Brazil
luciana.romani@embrapa.br

Abstract. A data stream is a flow of data produced continuously along the time. Storing and analyzing such
information become challenging due to exponential growth of the data volume collected. Recently, some algorithms
have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even
so, these algorithms merely aggregate the attributes without touching upon the correlation among them. Aiming to
overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior
over time, exploring the correlations among their attributes by computing the fractal dimension. In order to evaluate
our framework we used real multisource and multidimensional climate data streams. Our results show that the clusters’
quality and compactness can be improved compared to the competing methods, leading to the thoughtfulness that
attributes correlations cannot be put aside. In fact, the clusters’ compactness are 14 to 25 times better using our
method. Also our framework was 3 to 20 times faster than our competitors. Our framework also proves to be an useful
tool to assist meteorologists in understanding the climate behavior along a period of time.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.2.8 [Database Applications]:
Data mining; H.3.3 [Information Search and Retrieval]: Clustering

Keywords: Data Mining, Data Streams, Clustering, Fractal Dimension

1. INTRODUCTION

The increasing number of devices and sensors that continuously generate a huge amount of data leads
to new challenges and applications. For instance, sensors have been used to monitor the pollution in
cities, the level of rivers (to prevent flooding) and the meteorological conditions. These flows of data,
generated ad infinitum, usually at a high speed rate, are called data streams.

In this scenario, extracting knowledge from data streams becomes an active research topic [Aroche-
Villarruel et al. 2015; Fanaee-T and Gama 2015; Faria et al. 2016; Lughofer and Sayed-Mouchaweh
2015; Bifet and De Francisci Morales 2014; Zhang et al. 2014; Pereira and de Mello 2014; Chairukwat-
tana et al. 2014; Widiputra et al. 2011] with applications in several contexts. There are some main
challenges to be overcome to extract valuable knowledge from data streams, such as: (i) read data
only once; (ii) capture and represent data evolution along the time; (iii) provide answers as soon as
the user demands them. It is also desirable to deal with multidimensional data, considering all the
variables composing each stream, i.e., multivariate data streams.

In data stream mining, a useful approach to extract valid information from data streams is to group
in the same cluster data streams that have similar properties and behavior over time, whereas data
streams of different clusters must present dissimilar characteristics. For instance, clustering techniques

The authors are grateful to CAPES, CNPq and FAPESP for their financial support.
Copyright c©2016 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016, Pages 249–264.

250 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

Fig. 1. Difference between clustering by examples and clustering by variables.

could be applied to cluster data streams from climate sensors to try to identify those with similar
behavior along a period of time.

In this work we focus on clustering tasks, specially considering multivariate data stream. Some
methods have been developed to work with multiple data streams [Rodrigues et al. 2008; Chaovalit
and Gangopadhyay 2009; Widiputra et al. 2011; Pereira and de Mello 2014]. Their approaches in
data streams clustering fall into two main categories that are: Clustering by example, in which all
data points are clustered independently according to the similarity among them, regardless of the
data sources these data points are from; Clustering by variable or Clustering the entire data stream, in
which a data stream is compared with other data streams and those similar will be clustered into the
same cluster. Fig. 1 shows the difference between these two approaches: Fig. 1(a) illustrates clustering
by examples at different times ti such that clusters C1 and C2 are created considering the properties
of individual data points at time t1 and, therefore, points from different streams can be at the same
cluster. On the other hand, the clustering by variable approach in Fig. 1(b) shows that each cluster
is built considering the general properties of the entire flow of data from each sensor.

Although several online clustering methods have been proposed to process and analyze flows of data
in real time [Rehman et al. 2014; Pereira and de Mello 2014; Zhang et al. 2014; Ackermann et al.
2012; Widiputra et al. 2011; Chaovalit and Gangopadhyay 2009; Rodrigues et al. 2008; Aggarwal et al.
2007], only few of them try to extract valuable information and group the entire data streams based
on their similar behavior over the time [Pereira and de Mello 2014; Widiputra et al. 2011; Chaovalit
and Gangopadhyay 2009; Rodrigues et al. 2008]. Furthermore, these methods have failed on clustering
data streams that have more than one attribute, i.e., multivariate flows, because they only consider
the similarity of attributes independently. And besides these methods claimed to deal with real time
sources of data, they take a considerable time to process each datum.

In this work, we are interested in clustering the entire data stream, as we focus on clustering climate
sensors that behave similarly along the time. Moreover, we are especially interested in clustering sen-
sors that generate multivariate data streams, taking into account the correlation among the attributes.
As climate data streams usually have more than one attribute (e.g. temperature and precipitation)
and, in such way, those attributes may have some correlation, considering each attribute as an in-
dependent flow is not the best approach for clustering climate sensors. We are also interested in
validating our method to process new data from many sources as soon as they arrive in an affordable
time, meeting the expectations of real time computing.

In this context, this article proposes a new framework called Evolving Fractal-based Clustering of
Data Streams (eFCDS), which is an extension of the work presented in [Bones et al. 2015]. The main
module is a novel method for clustering multivariate data streams, based on the calculation of fractal
dimension. Our method utilizes the fractal dimension, calculated for data streams that have more
than one attribute, to cluster data streams that behave similarly along the time. Also, our method
keeps the evolution of the data stream by checking cluster membership whenever a new value of fractal

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 251

dimension is obtained. In other words, our method checks if the data stream is still belonging to the
same cluster or if it should be allocated in another one that better describes its behavior in that
period of time. Moreover, our method takes in consideration the time processing of each datum to
potentially be used with real time application.

In order to evaluate our method, we used a dataset provided by EMBRAPA Agriculture Informatics
- Empresa Brasileira de Pesquisa Agropecuária - Campinas. The dataset includes multivariate data
streams from climate sensors of different Brazilian regions. Our results not only indicated that our
approach can be a useful method to assist specialists in analyzing large amounts of climate data, but
also helps to identify regions with the same climate behavior along the time.

The rest of this article is organized as following. Section 2 presents background concepts and related
work. Section 3 describes our approach to cluster data streams. Experimental results are discussed
in Section 4 and Section 5 presents final remarks and future work.

2. BACKGROUND AND RELATED WORK

Data stream is an ordered collection of data s1, s2, ..., generated continuously by one or more sources,
that usually can be read only once due to high speed generation rate [Guha et al. 2003]. In addition,
a data stream could have more than one attribute per datum, defining a multivariate data stream.
Formalizing these concept, let S = {S1, . . . , Sn} be a set of data streams sources where each Si ={
~d1, . . . , ~d∞

}
is a multivariate data stream. Also, each Si is assumed to contain f attributes such

that ~di = [a1, . . . , af] is the set of attributes values.

Data stream clustering is a data mining technique to perform the grouping of flows of data, so that
objects within the same group must have very similar characteristics and properties [Aggarwal et al.
2006]. These characteristics should differ as much as possible from group to group. One of the most
common ways to cluster objects is to measure the distance between them [Gama 2010]. However,
clustering similar characteristics can be very costly [Guha et al. 2003]. Also, clustering data streams
can be used to overview the data distribution and as a preprocess for other algorithms [Gama 2010].
In order to achieve these goals, some basic requirements must be presented in data stream clustering
algorithms [Barbará 2002]: (i) Representation of compact size; (ii) Quickly and incremental processing
of new data items; (iii) Traceability of changes in groups; (iv) Quick and clear identification of outliers.

Therefore, any new data stream clustering method must be adapted to perform clustering in a
continuous, concise and evolving online way entry of the observed sequence. Furthermore, the temporal
characteristic of the data stream must also be considered using a small amount of storage space [Guha
et al. 2003] and processing time. Such requirements are imposed to contemplate the continuous manner
in which the data arrives and the need for analyzing them in real time [Gama 2010].

As previously mentioned, data stream clustering algorithms follow one of the two main approaches:
clustering by example, and clustering by variable. We are interested in the latter approach, discussed
in Section 2.1.

2.1 Clustering by Variable

Most of the methods proposed in the literature to cluster the entire data streams deal with flows
that have only one attribute [Widiputra et al. 2011]. Those methods that support more than one
attribute do not consider the correlation among attributes to cluster the data streams [Chaovalit and
Gangopadhyay 2009; Rodrigues et al. 2008; Rehman et al. 2014; Miller et al. 2014]. They only consider
to cluster if all the attributes are similar to all the attributes of other data stream, possibly leading
to results that do not accurately correspond to the behavior of the data streams along the time.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

252 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

Beyond that, the number of methods that cluster data streams that behave similarly over the time
is even more restricted, including the ECM method [Widiputra et al. 2011] and POD-Clus method
[Chaovalit and Gangopadhyay 2009]. These two methods, detailed as follows, will be used to compare
the achievements of our approach.

ECM

The Evolving Clustering Method (ECM) performs predictions using univariate data streams [Widipu-
tra et al. 2011]. ECM builds local models in two main steps: 1) the extraction of relationships between
data streams profiles; and 2) the detection and clustering of recurrent trends when a particular profile
emerges. ECM calculates the relationship among data streams profiles using Pearson’s correlation
[Rodrigues et al. 2008], extracting only the most significant coefficients obtained through tests of
statistical significance. Given two data streams a and b the Pearson’s correlation is:

corr(a, b) =
P − AB

n√
A2 − A2

n

√
B2 − B2

n

(1)

where A =
∑
ai, B =

∑
bi, A2 =

∑
ai

2, B2 =
∑
bi

2, P =
∑
aibi. The Pearson’s correlation can

be easily updated as soon as each new datum arrives. Then, the ECM calculates the dissimilarity
between the data streams a and b by RNOMC (Rooted Normalized One-Minus-Correlation) equation.
A drawback is that ECM requires that the whole time series is previously available to perform the
calculations offline. Based on a set of decision rules, the algorithm decides how to group the series
opting to create, remove, or join groups.

rnomc(a, b) =

√
1− corr(a, b)

2
(2)

Due to its measure of dissimilarity, ECM only detects linear relationships. Another point that limits
the application of ECM is how the algorithm decides the union, creating or adding of a new element to
the cluster, for example, as an element dj will only be added to the group of di if dj is correlated with
all existing elements in di, so if di has thousand elements and dj has only one element not correlated
with di, then dj will not be added to di’s cluster. Another disadvantage is that ECM clusters data
streams with only one attribute.

POD-Clus

The POD-Clus algorithm (Probability and Distribution-based Clustering) [Chaovalit and Gangopad-
hyay 2009] has four approaches: clustering by examples and clustering the entire data streams without
catching the evolution of the clusters; clustering by examples and clustering the entire data streams
monitoring the evolution of the clusters. Only the latter one is of interest in the context of this work.

The POD-Clus seeks to maintain summaries and discard detailed information of the data points,
using normal distributions for this purpose. Each POD-Clus’ cluster k receives n data points and
stores some average statistics: such as the average µ, standard deviation σ and the updated covariance
matrix, whenever new data arrives. These statistics are used to measure the similarity between data
streams considering each attribute according to the Equation 3. The distance of a multivariate data
stream S to a cluster center C is defined as [Kumar and Patel 2007]:

DSC =

F∑
f=1

(µSf − µCf)
2

σ2
Sf

, (3)

where S denotes a data stream, C denotes a cluster, f denotes a data feature, µSf is the mean of f
in the data stream S, σSf is the standard deviation of f in data streams S, and µCf is the mean of
f in the cluster C.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 253

POD-Clus also monitors the progress of each cluster, identifying the emergence, the disappearance,
the union and the division of the clusters. To detect the appearance of a new group, it maintains a
cluster of outliers and when one of these clusters reaches the minimum amount of data streams defined,
this cluster becomes a new effective cluster. A cluster disappears when it stops receiving new data by
a certain amount of time and old data receives less importance according to a fading factor. To join
a cluster to another, it is checked the amount of data which may be in both clusters, generating an
overlap between them. If the amount of overlapping data is greater than a predetermined threshold,
then the two clusters are merged. To split a group POD-Clus monitors its density and compares it
with the normal distribution. If there is significant difference, the group is divided.

The POD-Clus assumes that the whole data stream is derived from a normal distribution, otherwise
it does not guarantee a good representation of the clusters. Another POD-Clus’ drawback is the fact
that to join a data stream to a cluster all its attributes f have to be similar to the C’s features f ,
disregarding the correlation between the attributes.

2.2 Fractal Dimension

In this work we propose a clustering data stream method based on the calculus of the fractal dimension,
which is used to identify the correlation among the attributes of a data stream in order to capture the
data streams’ behavior over the time. Then, this behavior is used to measure the similarity among
data streams aiming to achieve better clusters results.

A fractal is characterized by the self-similarity property, i.e., it is an object that presents roughly
the same characteristics when analyzed over a large range of scales. From the Fractal Theory, the
Correlation Fractal Dimension D2 is particularly useful for data analysis, since it can be applied
to estimate the intrinsic dimension of real datasets that exhibit fractal behavior, i.e., exactly or
statistically self-similar datasets [Belussi and Faloutsos 1995]. The Correlation Fractal Dimension
D2 measures the non-uniform behavior of real data considering both linear and nonlinear attribute
correlations [Sousa et al. 2007]. Therefore, D2 represents the dimensionality of the dataset regardless
of the dimension E of the space defined by its attributes. For instance, a set of points defining a line
z = ax + by + c embedded in a three-dimensional space with dimensions [X;Y ;Z] (and thus E = 3)
has D2 = 1, as there is a linear correlation between its attributes [Sousa et al. 2007].

A method to measure the fractal dimension of datasets embedded in E-dimensional spaces is the
Box-Counting method, which defines D2 as [Schroeder 1991]:

D2 =
∂log(

∑
i C

2
r,i)

∂log(r)
r ∈ [r1, r2] (4)

where r is the side of the cells in a (hyper) cubic grid that divides the address space of the dataset
and Cr,i is the count of points in the ith cell. Based on Equation 4, the log-log graph of the sum of
squared occupancy

∑
i C

2
r,i for distinct values of r is called Box-Counting plot.

The work presented in [de Sousa et al. 2007] proposes a technique to detect changes in multidimen-
sional evolving data streams, based on the information of intrinsic behavior provided by the fractal
dimension D2. The authors also present the algorithm SID-meter to continuously measure D2 over
time aimed at monitoring the evolving behavior of the data, such that significant variations in suc-
cessive measures of D2 can indicate changes in the intrinsic characteristics, as well as in attribute
correlations in the data.

The SID-meter uses a sliding window to determine the amount of data to be used to compute D2.
Its sliding window is divided in counting periods nc and each nc is composed of a delimited number
of data, called events. Firstly, the SID-meter creates an initial bounding hyper-cube by using the
events that are in the first nc. The lowest rLi and the highest rHi values for each attribute ai of the
received events are computed. The range r0 = maxEi=1 (rHi − rLi) determines the size of the side in

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

254 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

Fig. 2. Representation of a 2-dimensional Hyper-Cube with 3-level Grid Structure and its respective Counting Tree.

the initial hyper-cube. Figure 2 exemplifies the initial hyper-cube created to bound six events of a
2-dimensional data stream. The side r0 of the bounding hyper-cube is determined by the range [rLx;
rHx] of the attribute represented in the x-axes.

The hyper-grid structure is created by generating up to R successive E-dimensional grids of cell
side rj = rj−1/2, where R determines the number of points in the Box-Counting plot. Thus, for each
cell at level j, 2E cells are generated in level j + 1. Figure 2 illustrates the grid structure for the six
2-dimensional events. The counting tree is a memory based data structure. Each level j in the tree
corresponds to the grid of the cell side rj and each node corresponds to a cell. Every cell is part of one
cell in the immediate upper level and is identified by identifier [b1b2 · · · bE], such that bi = 0 for cells
in the lower half of dimension i and bi = 1 otherwise. Figure 2 also illustrates the 3-level counting tree
generated for the grid structure created with six 2-dimensional events. The array C [] at each node of
the counting tree represents the nc, each one storing the event counter in the corresponding period.

Crj ,i =

k<nc∑
k=0

Ci [k] (5)

Thus, D2 can be computed through Equation 4. The value of Crj ,i at each node i is calculated
through Equation 5, for each counting tree level j (recall that a level j corresponds to a grid of cell
side rj). The Box-Counting plot is created by performing a full navigation through the counting tree
and plotting < log

(∑i<2E

i=0 C2
rj ,i

)
, log (rj) > for each value rj . Then, the slope of the line that best

fits the curve gives an estimate of D for the events inside the sliding window.

3. EVOLVING FRACTAL-BASED CLUSTERING OF DATA STREAMS FRAMEWORK

In this article we propose the framework Evolving Fractal-Based Clustering of Data Streams, eFCDS
for short. A preliminary naïve version of the framework, with no support for overlapping identification
or outlier discovery, was introduced in [Bones et al. 2015]. We now present the improved eFCDS, which
deals with both of these issues: 1) it reduces overlap between clusters by merging or splitting them;
and 2) it detects outliers by searching for potential outlier clusters (i.e. clusters with a single data
stream) that could not be merged with their closest (non-outlier) clusters. Moreover, we evaluate the
performance of the eFCDS with a larger real dataset, containing 50 years of climate data.

The eFCDS aims at partitioning the set S, defined in Section 2, in a collection P = {C1, . . . , Cm} of
m disjoint clusters regarding to the fractal dimension analysis of each Si. Each cluster C is composed

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 255

Fig. 3. General idea of clustering data streams, where each SXFD represent a sensor, that is clustered using the Fractal
Dimension measure D2 in the time Ti.

of the data stream sources considered similar to each other if they do not exceed an user-defined
maximum standard deviation parameter. Our framework clusters data streams with a similar behavior
in an interval of time Ti and also takes into account the correlation among the attributes measured
by the fractal dimension D2, calculated by Equation 4. Our method also follows the evolution of the
data streams, where clusters can disappear or be created.

Fig. 3 shows the idea of data stream sources (e.g. sensors) generating new data continuously and
sending them to the proposed Evolving Fractal-based Clustering of Data Streams framework (eFCDS),
which produces evolutive clusters. Notice that for each interval of time Ti, the gathered data are
clustered following the fractal dimension of the available data. As new information are received,
the clusters are created or rearranged so as to ensure the similarity among their elements and the
correlation among the attributes along the time. For instance, from period T1 to T2 it is possible to
notice a cluster disappearance and from period T2 to T3 two new clusters were created.

Let us now illustrate the main components of our proposed framework. The process initiates when
a defined number of data stream sources are chosen to be analyzed. As the sources are producing
data, they can be directly forwarded to the eFCDS framework in order to be processed, as shown in
Fig. 4.

The input component of the eFCDS is the Sliding Window Module. This module receives the data
streams and bounds their information by a sliding window. The sliding window specifies the amount
of data buffered for the fractal dimensional calculation. The window is divided into counting periods
(t), and each period has a defined number (e) of events such that each event represents ~d data points.
Therefore, t× e defines the window size l and e also represents its movement step. The window takes
a default size l, which usually considers either domain experts or the seasonality of the data. Fig. 5
shows sliding windows wi of size l = 12, that means four counting periods t (t = 4) where each period
has three events (e = 3).

Fig. 4. An overview of our approach to cluster data streams.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

256 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

Fig. 5. Sliding Window (W) of a sensor, counting periods t = 4, events e = 3. In the instant T1 the window starts at
the period 1 and ends at period 4; after shifting the window in T2, (W) starts at period 2 and ends at period 5.

As soon as there are enough information fulfilling the amount of events e, those data can be now
unbuffered for their unique reading, e.g., instant T1 in Fig 5. In such case, the sliding window is
shifted forward in e units and the region storing the already processed piece of information is released
in order to store the continuous incoming data, e.g., instant T2 in Fig 5. Additionally, the previously
windowed information is dispatched to the module responsible for performing the Fractal Dimension
analysis.

The Fractal Dimension Analyzer considers an analog approach applied by SID-Meter [de Sousa
et al. 2007] to perform the incremental calculus of D2. Unlike the methods already proposed in the
literature, this kind of technique enables to iterate over data containing more than one attribute.
Thus, by applying techniques such as the box-counting (Section 2.2), this module transforms a piece
of multivariate data stream of size l, which represents the measures, to exactly one point of fractal
correlation, summarizing that amount of data and the correlation among their attributes. Our intu-
ition is that using a technique which correlates the involved attributes along the time leads to a better
recognition of similar data stream sources than using the raw values of the attributes.

Therefore, at each instant Ti it is generated a fractal dimension measure D2 for each sensor, repre-
senting the sensor’s behavior at the corresponding period.

Subsequently, the reduced amount of fractal points is sent to the data mining step. The Mining
Module is the main component of the eFCDS framework and aims at clustering the correlated points
according to their similarity, obtained by the Manhattan distance (L1) [Sokal 1985], and a user-defined
maximum standard deviation (σMAX). In order to perform the clustering step, let us introduce the
Algorithm 1.

The Algorithm 1 iterates over the set X comprising the points of fractal correlation (fd) such that
each point x is labeled with its respective data stream Si. Initially, it is verified whether or not the
data stream source Si already belongs to some existing cluster Cj composing the partition P (line 2).
Supposing Si was not clustered yet, it is necessary to search for a cluster to insert Si into. So, for
each cluster C ∈ P , the boolean procedure findCluster (line 8) looks for the cluster Cj with the
lowest difference between the centroid of Cj and the analyzed point x. This process follows the model
introduced in Equation 6, where C = {c1, . . . , ck, . . . , cn}.

∆(C, x) =

(
1

n

n∑
k=1

ck.fd

)
− x.fd (6)

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 257

Algorithm 1: Evolving Fractal-based Clustering of Data Streams (eFCDS)
Input: The set X containing pairs (Si,fd) of streams and its fractal dimension, respectively;
The partition P of clusters, such that in the first iteration P = {};
The maximum standard deviation σMAX .
Output: The partition P of clusters with similar data streams.

1 foreach x ∈ X do
2 if x.Si is in a cluster Cj ∈ P then
3 if updateCluster(Cj , x, σMAX) = false then
4 if findCluster(x, σMAX) = false then
5 Cnew ← createNewCluster (x);
6 rearrangeToClosest(Cj , Cnew);

7 else
8 if findCluster(x, σMAX) = false then
9 Cnew ← createNewCluster (x);

10 return P ;

Once the cluster C which minimizes the Equation 6 regarding to the element x is obtained, x
is assigned to C iff the condition expressed in Equation 7 holds. Otherwise, the new cluster Cnew

containing the element x is created (line 9) and included in the partition P .√√√√√ 1

n+ 1

(x.fd−(1

n

n∑
p=1

cp.fd

))2

+

n∑
k=1

(
ck.fd−

(
1

n

n∑
p=1

cp.fd

))2
 ≤ σMAX (7)

Considering now the data stream Si is already member of some cluster, it is necessary to check whether
or not the data stream source Si remains in the previously assigned cluster. In order to employ such
verification (line 3), the Mining module re-execute the calculus of Equation 7 regarding to the new
value of the fractal dimension x.fd. If so, the statistic (function ∆) of the considered cluster Cj

is updated. In the case where the left-hand side of Equation 7 exceeds the user-defined maximum
standard deviation σMAX , the algorithm tries to reallocate the element x in an existing cluster Ck

so as to minimize the value computed in Equation 6 (line 4) and also hold the condition defined in
Equation 7. If there is not such cluster Ck satisfying both conditions, a new one (Cnew) is created
to include the element x (line 5). Now, when creating a new cluster to x, the elements already in Cj

are checked if they are better included in Cnew (minimizing Equation 6) and inserted in it if they do
(line 6). Notice that the rearrangeCluster procedure is able to suppress existing clusters if all of
their elements are moved and they become empty. After that, the algorithm iterates over the clusters
to identify those with single data streams, i.e., potential outliers. If anyone is found the algorithm
tries to rearrange the data stream into the closest non outlier cluster following the aforementioned
criteria. It is important to notice that if the closest cluster does not admit the addition of the outlier
cluster no other will bear.

The last step of Algorithm 1 is to check if there is overlapping between clusters (line 6) and merge
them according to the Merge Cluster algorithm (Alg. 2). Initially the Merge algorithm checks whether
or not there are clusters that could be merged. It checks these possibility by calculating the diameter
of each cluster, i.e., the difference of the two farthest data streams into the cluster, and then test
the diameter against the other ones to identify if there are overlapping between them, as depicted
in Fig. 6(a). If the overlapping is detected, those clusters that are in overlapping are cataloged
(Alg. 2:line 1). Consequently the respective clusters will be merged if their union does not exceed
the maximum standard deviation (Alg. 2:line 3), as presented in Fig. 6(b). Otherwise, it is found the
bounds of both clusters i and j (Alg. 2:line 4) by getting the Si that is closest to the Cj centroid and

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

258 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

C1
C2

DC1

C1NEW C1

C2

DC2

C3

(a) (b) (c)

Fig. 6. (a) Overlapping between clusters; (b) Attempt to merge clusters if the standard deviation does not extrapolate
the σMAX ; (c) If failed to merge the clusters then a new cluster is created and the streams will remain in their originally
cluster or will migrate to the new one.

Algorithm 2: Merge Cluster
Input: The partition P of clusters;
The maximum standard deviation σMAX .
Output: The partition P of clusters with similar data streams.

1 ov[]← findOverlap(P);
2 foreach pair(i, j) ∈ ov do
3 if merge(i, j) > σMAX then
4 findMargin(i, j);
5 Cnew ← createNewCluster (ij);
6 checkReAlloc(Ci, Cj , Cij) ;

7 return P ;

the Sj that is closest to Ci centroid. Both Si and Sj will be attached to a new cluster ij (Alg. 2:line 5)
and all the remaining data streams in Ci and Cj will be checked if they stay in their own clusters or
if they will be associated to the new cluster Cij (Alg. 2:line 6), as depicted in Fig. 6(c).

Thus, at the end of one iteration over the set X, the partition P is composed of clusters containing
the similar data streams sources considering the fractal dimension (line 10). As the sources are
continuously generating measures, the sliding window shifts forward and, as soon as there are enough
data to fulfill the window, a new fractal dimension D2 is generated and the Mining module is re-
invoked. Therefore, the obtained clusters evolves to reflect the changes in the gathered data along the
time.

4. EXPERIMENTAL EVALUATION AND RESULTS

As detailed in the Section 3, the eFCDS is a framework to cluster data streams that behave similarly
over the time, based on the correlation of their attributes by the calculus of fractal dimension. Thus,
in this Section we will dispose the results obtained by our approach.

For the purpose of evaluating our proposal, we applied the following methodology:

—Test of our approach using a real dataset, obtained from climate sensors.
—Analysis of the time consuming to check whether the method is suitable to deal with real-time data
streams or not.

—Evaluation of the quality of the resulting clusters by the use of the Silhouette measure.
—Comparison of the eFCDS with baseline methods, previously described in Section 2.1.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 259

By the appliance of the aforementioned methodology, we aim to analyze the following key points:

—Capacity to process and cluster new data in real-time.
—Capacity to stand the evolution of data streams without thereby degrade the quality and cohesion
of the obtained clusters.

—Clusters’ cohesion in order to check the aptitude of the method to build clusters where the streams
are adjoining the cluster centroid.

—Ability of the eFCDS framework to capture similar data streams behavior along the time.
—Quality of the generated clusters against the baseline methods.

Therefore, in order to evaluate the eFCDS capacity to cluster sensors and cluster new data at a
reasonable time the eFCDS was tested with a real dataset composed of 288 climate sensors (sources of
data streams) located in different Brazilian regions. Each sensor collects four distinct daily measures
(minimum|maximum temperature, precipitation and solar radiation). The considered measures belong
to almost all Brazilian’s regions, in a period beginning on January 1960 to December 2010. That
means 21024000 measures generated by the sensors. This dataset was obtained in cooperation with
the Embrapa Agriculture Informatics (Campinas, SP, Brazil) and it was chosen due to the absence of
missing data in the evaluated period.

The proposed evaluation was performed in a personal computer running the Ubuntu 14.04 LTS of 64
bits operating systems with 4GB memory, hard drive of 250GB and a processor Intel R© Core TMi7-3770
CPU @ 3.40GHz.

In order to measure clusters’ quality, we applied the Silhouette measure. This is a measure commonly
employed to evaluated how the elements are disposed in their respective clusters and how many of
them could be associated to other clusters. If many streams should be associated to other clusters that
means an ill formed clustering. The values of Silhouette ranges from -1 to 1, such that clusters that
obtain values above 0.5 are considered of good quality. If the value range from 0 to 0.5 the element is
in the right cluster but it is also close to other clusters. Otherwise, if the Silhouette value is below 0,
that element should be associated to another cluster. So, the higher is the quantity of elements in the
cluster that the Silhouette measure are above 0.5, the better is the cohesion of the respective cluster.

Finally, we compare our results against POD-Clus and ECM methods (both in Section 2.1) once
they are techniques presented in the literature aiming at solving the mainly common issues that
eFCDS aims, such as: fast data processing; compact representation; traceability of changes; outliers
identification. As mentioned in Section 2.1, only POD-Clus supports multivariate data streams, but
it measures the dissimilarity of the attributes during the clustering process without considering the
correlation among them. Therefore, in order to deal with the correlation among multiple attributes,
usually presented in real data, we calculate the fractal dimension for each sensor, thus creating an uni-
dimensional flow to be used as input to ECM. The ECM’s and the POD-Clus’ as well as the eFCDS’s
parameters were empirically determined, as follows. For POD-Clus, the sliding windows size equal to
1825 with shift of 365 days; three streams are needed to turn an outlier group into a cluster; the cluster
merge threshold was 0.5; and all the others parameters were set with default values. For eFCDS, the
maximum standard deviation (σmax) was set to 0.05; the sliding windows size (l) was equal to 1825
days that contain five counting periods t (t = 5) and each period has 365 events (e = 365), so that,
each sliding windows generates one fractal dimension. The ECM’s correlation threshold was set to
0.6 and the fractal dimension was obtained in the same way as eFCDS obtained it.

The main results are depicted in Fig. 7. Fig. 7(a) shows the average percentage of the standard devi-
ations for POD-Clus’ features, excluding precipitation, ECM and eFCDS fractal dimension. Fig. 7(b)
shows the comparative results between eFCDS and POD-Clus precipitation, these result was seg-
regated to better understand the results achieved by eFCDS. Recall that eFCDS deals with fractal
dimension values and, as ECM deals with single data flows, the fractal dimension was also its input.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

260 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 %

Iteraction

eFCDS

ECM

POD-Clus Srad

POD-Clus TMax

POD-Clus Tmin

(a) Standard deviation percentage average on each itera-
tion, except POD-Clus precipitation result

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 %

Iteraction

eFCDS POD-Clus Prec

(b) Comparative of eFCDs Standard deviation percentage
average against POD-Clus precipitation standard devia-
tion percentage.

Fig. 7. Comparative results

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(a) Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(b) Silhouette at last iteration

Fig. 8. eFCDS’ Silhouette results

On the other hand, POD-Clus deals with the original measures of temperature (min & max), pre-
cipitation (Prec) and solar radiation (Srad), then to determine the cohesion of the resulting clusters
we calculated the percent of standard deviation over the mean of the clusters for each attribute on
each iteration. Thus, it is possible to notice that the percentage of standard deviation obtained by
eFCDS was near zero, the black line, on both Figs. 7(a) and 7(b), over the zero value on Y axis, indi-
cating high clusters cohesion. The clusters cohesion obtained by ECMs range from ≈ 7.7% to ≈ 12%
and POD-Clus ranges from ≈ 13.4% to ≈ 18.7% on minimum temperature, ≈ 16.9% to ≈ 27.1%
on maximum temperature, ≈ 34.7% to ≈ 45.9% on solar radiation and ≈ 247.6% to ≈ 268.4% on
precipitation. Also notice that the POD-Clus precipitation standard deviation was almost 2.5 times
higher than the mean of the data points. This higher standard deviation result is due to the particular
characteristics of the rainfall in Brazil, where the rain vary from 1200 to 1500 millimeters a year. As
POD-Clus considers the attributes individually (see Equation 3), the higher the standard deviation
of the attribute the smaller its influence on the distance measure, affecting the quality of the final
clusters.

Quality measures are presented in Figures 8(a) to Fig. 10(h). Fig. 8(a) and Fig. 8(b) show the
Silhouette results obtained by the eFCDS technique on first and last iteration, respectively. The
eFCDS built clusters with 68% of the data streams Silhouette measures upper to 0.5, indicating that
most of the streams are appropriately placed and only 7.6% should be in a different cluster in the last
iteration.

Fig. 9(a) and Fig. 9(b) present the Silhouette measures to the clusters computed by the ECMmethod
on first and last iteration, respectively. In this analysis, only three streams in the last iteration are

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 261

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(a) Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300

Si
lh

ou
et

te

Streams

(b) Silhouette at last iteration

Fig. 9. ECM’ Silhouette results

confirmed to be included in the correct cluster (Silhouette value above 0.5), indicating that the ECM
method produced bad quality clusters when compared to eFCDS.

Figures 10(a) to 10(h) depict the Silhouette values of the clusters generated using the POD-Clus
method on first and last iteration, to the measures of solar radiation, minimum and maximum tem-
perature, and precipitation. As stated before, POD-Clus deals with each dimension independently
and these approach contributed to the bad clusters’ formation quality indicated by the analysis of the
Silhouette measures of each dimension. The best POD-Clus results was obtained in the maximum
temperature dimension in the last iteration, with over 5% upper to 0.5. Although, if we consider all
the results over 0 then the best result has obtained in the minimum temperature dimension in the
last iteration, with over 20% upper to 0.

By calculating the results depicted in Fig. 7(a) we concluded that the average standard deviation
obtained by the eFCDS was nearly 93.5% less than the result of the ECM method and 99.9% regarding
to the POD-Clus, i.e., the clusters generated by eFCDS are, approximately, 14 times more compact
than the clusters generated by ECM and almost 20 times more compact than the ones generated by
POD-Clus. It means that by clustering using eFCDS, a data streams is belonging to a cluster that it
probably should be in and there are much more cohesion on each eFCDS’ cluster than there are on
ECM’s and POD-Clus’ clusters.

Fig. 11 shows that the processing time spent by eFCDS to process all data was 29.1% of the time
spent by the ECM. But as the ECM do not calculate the fractal dimension, the fractal flow was
generated apart and, unlike eFCDS, the corresponding cost was not includes in the ECM’s processing
time. Also the eFCDS’ processing time was approximately 5.4% of the time obtained by POD-Clus,
as it has to deal with four dimensions independently. Therefore, the eFCDS’ consuming time by each
datum was nearly 10−6 seconds, i.e., it can process approximately 100000 data per second, indeed
allowing real time processing.

The experimental studies on climate data have been conducted in collaboration with domain special-
ists from Embrapa-Campinas (Agriculture Informatics). Empirical evaluations on clustering results
have indicated that clustering those streams (sensors) in a dynamic fashion helps to find homogeneous
climate regions and also identify changes that are occurring along the time. This information can be
useful for: 1) climate change studies; studies of climatic phenomena, such as el niño and la niña, that
usually change the regional and global weather patterns and may have negative impact on weather
and climate; and 2) It can helps in agricultural planning.

Thus, considering the obtained results, the eFCDS framework better represented the behavior of
different data streams along the time. The approach based on fractals showed promising results to
deal with multivariate data streams, helping to capture the behavior of climate streams over time
with good quality.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

262 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(a) Solar Radiation Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(b) Solar Radiation Silhouette at last iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(c) Minimum Temperature Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(d) Minimum Temperature Silhouette at last iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(e) Maximum Temperature Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(f) Maximum Temperature Silhouette at last iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(g) Precipitation Silhouette at first iteration

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350

Si
lh

ou
et

te

Streams

(h) Precipitation Silhouette at last iteration

Fig. 10. POD-Clus’ Silhouette results

 0

 10

 20

 30

 40

 50

 60

eFCDS ECM POD-Clus

T
im

e
pr

oc
es

si
ng

 in
 m

in
ut

es

Fig. 11. Time in minutes spent by each method to process all data (21024000 measures).

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

Clustering Multivariate Data Streams by Correlating Attributes using Fractal Dimension · 263

5. CONCLUSION

Clustering of data streams is one of the most employed approach to analyze data which are potentially
endless and evolve over the time. Nevertheless, the literature provides few methods for clustering the
entire data streams and most of them often deal with data streams composed of a single attribute or
do not apply appropriate strategies for multivariate flows.

In this article we introduced a framework to cluster a set of multivariate data streams considering
the fractal correlation among their attributes, also complying the basic requirements to cluster data
streams. It also takes into account the behavior of distinct streams along the time. The proposed
Evolving Fractal-based Clustering of Data Streams framework is composed of minor modules, each
one responsible for a specific processing of the data. The core of the eFCDS framework lies in the
computation of the fractal dimension of a piece of the data stream and its subsequent clustering. The
use of the fractal dimension allowed to better identify the correlation among the attributes of the
data streams. Also, our method performs the clustering of multivariate data streams supporting their
evolution in an incremental way, thereby helping to improve the quality of the clusters.

We performed a set of experimental evaluation of the eFCDS framework applied to real climate
data and compared it against two recent related methods, ECM and POD-Clus, in order to verify the
capacity of representing similar data streams behaviors along the time and keeping the quality of the
produced clusters. As a measure of quality, the clusters obtained by eFCDS are much more compact
than the clusters generated by ECM and POD-Clus in all the iterations.

Our framework proved to be faster than the two related methods, processing the same amount of
data 3 times faster than the ECM and 20 times faster than POD-Clus. It also proves to be an useful
tool to assist meteorologists in understanding the climate behavior along a period of time without the
necessity to analyze the entire data set manually.

REFERENCES

Ackermann, M. R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., and Sohler, C. StreamKM++:
A Clustering Algorithm for Data Streams. ACM Journal of Experimental Algorithmics 17 (1): 1–30, 2012.

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. A Framework for On-demand Classification of Evolving Data
Streams. IEEE Transactions on Knowledge and Data Engineering 18 (5): 577–589, 2006.

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. On Clustering Massive Data Streams: summarization paradigm.
In C. C. Aggarwal (Ed.), Data Streams - Models and Algorithms. Advances in Database Systems, vol. 31. Springer,
pp. 9–38, 2007.

Aroche-Villarruel, A. A., Martínez-Trinidad, J. F., Carrasco-Ochoa, J. A., and Pérez-Suárez, A. A
Different Approach for Pruning Micro-clusters in Data Stream Clustering. In J. A. Carrasco-Ochoa, J. F. Martínez-
Trinidad, J. H. Sossa-Azuela, J. A. O. López, and F. Famili (Eds.), Pattern Recognition. Lecture Notes in Computer
Science, vol. 9116. Springer, pp. 33–43, 2015.

Barbará, D. Requirements for Clustering Data Streams. ACM SIGKDD Explorations Newsletter 3 (2): 23–27, 2002.
Belussi, A. and Faloutsos, C. Estimating the Selectivity of Spatial Queries Using the ‘Correlation’ Fractal Dimen-
sion. In Proceedings of the International Conference on Very Large Data Bases. Zurich, Switzerland., pp. 299–310,
1995.

Bifet, A. and De Francisci Morales, G. Big Data Stream Learning with SAMOA. In Proceedings of the IEEE
International Conference on Data Mining Workshops. Shenzhen, China, pp. 1199–1202, 2014.

Bones, C. C., Romani, L. A. S., and de Sousa, E. P. M. Clustering Multivariate Climate Data Streams using
Fractal Dimension. In Proceedings of the Brazilian Symposium on Databases. Petrópolis, Brazil, pp. 41–52, 2015.

Chairukwattana, R., Kangkachit, T., Rakthanmanon, T., and Waiyamai, K. SE-Stream: Dimension Projection
for Evolution-based Clustering of High Dimensional Data Streams. In V. N. Huynh, T. Denoeux, D. H. Tran, A. C.
Le, and S. B. Pham (Eds.), Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing,
vol. 245. Springer, pp. 365–376, 2014.

Chaovalit, P. and Gangopadhyay, A. A Method for Clustering Transient Data Streams. In Proceedings of the
ACM Symposium on Applied Computing. Honolulu, USA, pp. 1518–1519, 2009.

de Sousa, E. P., Traina, A. J., Traina Jr., C., and Faloutsos, C. Measuring Evolving Data Streams Behavior
through their Intrinsic Dimension. New Generation Computing 25 (1): 33–60, 2007.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

264 · C. C. Bones, L. A. S. Romani and E. P. M. de Sousa

Fanaee-T, H. and Gama, J. EigenEvent: An Algorithm for Event Detection from Complex Data Streams in Syndromic
Surveillance. Intelligent Data Analysis 19 (3): 597–616, 2015.

Faria, E. R., Gonçalves, I. J., de Carvalho, A. C., and Gama, J. Novelty Detection in Data Streams. Artificial
Intelligence Review 45 (2): 235–269, 2016.

Gama, J. Knowledge Discovery from Data Streams. Chapman and Hall, Boca Raton, USA, 2010.
Guha, S., Meyerson, A., Mishra, N., Motwani, R., and O’Callaghan, L. Clustering Data Streams: theory and
practice. IEEE Transactions on Knowledge and Data Engineering 15 (3): 515–528, 2003.

Kumar, M. and Patel, N. R. Clustering Data with Measurement Errors. Computational Statistics & Data Analy-
sis 51 (12): 6084–6101, 2007.

Lughofer, E. and Sayed-Mouchaweh, M. Autonomous Data Stream Clustering Implementing Split-and-merge
concepts – towards a plug-and-play approach. Information Sciences 304 (1): 54–79, 2015.

Miller, Z., Dickinson, B., Deitrick, W., Hu, W., and Wang, A. H. Twitter Spammer Detection using Data
Stream Clustering. Information Sciences 260 (1): 64–73, 2014.

Pereira, C. M. M. and de Mello, R. F. TS-stream: Clustering Time Series on Data Streams. Journal of Intelligent
Information Systems 42 (3): 531–566, 2014.

Rehman, M. Z., Li, T., Yang, Y., and Wang, H. Hyper-ellipsoidal Clustering Technique for Evolving Data Stream.
Knowledge-Based Systems 70 (1): 3–14, 2014.

Rodrigues, P. P., Gama, J., and Pedroso, J. P. Hierarchical Clustering of Time-series Data Streams. IEEE
Transactions on Knowledge and Data Engineering 20 (5): 615–627, 2008.

Schroeder, M. R. Fractals, Chaos, Power Laws: minutes from an infinite paradise. WH Freeman and Company,
New York, USA, 1991.

Sokal, R. R. The Principles of Numerical Taxonomy: twenty-five years later. In M. Goodfellow, D. Jones, and F. G.
Priest (Eds.), Computer-assisted Bacterial Systematics. Elsevier, Orlando, USA, pp. 1–20, 1985.

Sousa, E. P. M., Traina Jr., C., Traina, A. J. M., Wu, L., and Faloutsos, C. A Fast and Effective Method
to Find Correlations among Attributes in Databases. Data Mining and Knowledge Discovery 14 (3): 367–407, 2007.

Widiputra, H., Pears, R., and Kasabov, N. Multiple Time-series Prediction through Multiple Time-series Re-
lationships Profiling and Clustered Recurring Trends. In J. Huang, L. Cao, and J. Srivastava (Eds.), Advances in
Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, vol. 6635. Springer, pp. 161–172, 2011.

Zhang, X., Furtlehner, C., Germain-Renaud, C., and Sebag, M. Data Stream Clustering with Affinity Propa-
gation. IEEE Transactions on Knowledge and Data Engineering 26 (7): 1644–1656, 2014.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.

