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Abstract. We present an alternative method to use Principal Component Analysis (PCA) for supervised learning.
The proposed method extract features similarly to PCA but the features are selected by minimizing the Bayes error rate
for classi�cation. Experiments using two real datasets shows that the recognition accuracy of the proposed technique is
improved compared to PCA.
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1. INTRODUCTION

Principal Component Analysis (PCA) is a technique used to reduce data dimensionality. It projects the
points into the directions of maximal variance within data space. These directions are the eigenvectors
of data covariance matrix. In most of the cases, only some few eigenvectors are selected, normally
the ones that have the highest eigenvalues. The eigenvalue is equivalent to the variance of a new
variable, that is obtained by projecting the data into an eigenvector. The new variables not only have
maximal variance, but they are also uncorrelated [Bishop 2006]. PCA is a very well-known technique
that is used in several di�erent applications such as face recognition [Turk and Pentland 1991] and
text classi�cation [Alencar et al. 2014].

From the perspective of machine learning, PCA is an unsupervised feature extraction technique.
Nonetheless, it is also used in supervised tasks such as in classi�cation and regression. Some versions
of supervised PCA have been proposed, for example, Barshan et al. [Barshan et al. 2011] proposed a
version of supervised PCA for classi�cation. The method de�nes class representatives and computes
PCA for these points. Directions with maximal variances for those points are also the directions that
best separate the classes. Another version of supervised PCA was proposed by Bair et al. [Bair et al.
2006] for regression. The technique selects features that have high predictive power and compute PCA
using only those features. Therefore, avoiding the interference of features that have high variance but
low predictive power.

The Bayesian approach for classi�cation is very robust and, similar to PCA it depends on the data
covariance matrix [Duda et al. 2000]. Here, we propose a supervised version of PCA that minimizes
the Bayes error rate for classi�cation. The method projects the same features as PCA but selects
the ones that minimize the Bayes error rate, while PCA select the features with maximal variance.
Therefore, it can be more suitable for classi�cation task than standard PCA. Since projections of
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maximal variance might not be the best way to separate (discriminate) data form di�erent classes
[Bishop 2006].

2. FEATURE EXTRACTION WITH PCA

Suppose a dataset matrix X′n×d with n points and d features. Each row of X′ is a point and each
column is a feature.

X′ =


xT
1

xT
2
...
xT
n

 . (1)

The j-th point is de�ned as a d dimensional column vector xj ,

xj =


xj1
xj2
...
xjd

 , (2)

for j = 1, . . . , n and the data mean vector is

x̄ = n−1
n∑

j=1

xj . (3)

The centered matrix is X having the j-th row equal to (xj − x̄)T :

X =


(x1 − x̄)T

(x2 − x̄)T

...
(xn − x̄)T

 . (4)

The covariance matrix of X is de�ned as

ΣX =
1

n
XTX. (5)

Each column ξi, for i = 1, . . . , k, of the matrix

Ek = [ξ1 . . . ξk], (6)

is an eigenvector of ΣX. Ek have up to d eigenvectors, for k = 1, . . . , d. Each eigenvector ξi have an
associated eigenvalue λi, which is the variance of the extracted feature

fi = Xξi. (7)

The value of the i-th extracted feature for the j-th point is wij , where fi = [w1i . . . wni]
T .

The projection of the point xT
j = [xj1 . . . xjd] for the space of projected features iswT

j = [wj1 . . . wjk],
given by

wT
j = xT

j Ek. (8)

The eigenvectors in Ek are sorted, so that λ1 > . . . > λk. In PCA, the points are projected in the
directions of maximal variances, these directions are the eigenvectors of the covariance matrix that
has the greatest eigenvalues. The new data matrix Wn×k is de�ned as:

W = XEk, (9)
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Each row of this matrix is a point and each column an extracted feature.

The covariance matrix of W is ΣW = n−1WTW, so that ΣW = diag(λ1, . . . , λk). The variables
are uncorrelated since the o�-diagonal elements of ΣW are equal to 0. This property is very relevant
for supervised learning, because it allows the selection of any subset of the projected variables by
ignoring their interaction. However, selecting eigenvectors of highest eigenvalues may not be the best
strategy for classi�cation problems. Therefore, we propose a method of selecting the eigenvectors by
minimizing the Bayes error rate for classi�cation.

3. BAYES ERROR RATE

The Bayes error rate for classi�cation is de�ned as the probability of the classi�cation error, i.e., the
expected error rate. This error estimation can have a simpli�ed form by imposing some restrictions
[Duda et al. 2000]. Here, we consider the following �ve restrictions. (1) The data presents a multi-
variate normal distribution. (2) The problem has only two classes. (3) The prior probabilities of both
classes are equal. (4) Both classes have the same covariance matrix, the same assumption is used for
PCA. Finally, (5) the features are statistically independent, similarly to PCA. Then the Bayes error
rate is given by

P (e) =
1√
2π

∫ ∞
r/2

e−u
2/2du. (10)

The Bayes error rate decreases as r increases. We de�ne r2 as the Mahalanobis distance between
the mean vectors of the classes (µ1 and µ2):

r2 = (µ1 − µ2)Σ−1(µ1 − µ2). (11)

For independent features, the covariance matrix is diagonal. The o�-diagonal elements are the
features covariances, which have values equal to zero. This means that each feature is uncorrelated
so r have a special form:

r =

√√√√ d∑
i=1

(
µ1i − µ2i

σi

)2

, (12)

where i = 1, . . . , d are the indexes for the features. The variables µ1i and µ2i are the mean of the
feature i for classes 1 and 2, respectively. And σi is the variance of the feature i that is the same for
both classes.

We emphasize that the probability of classi�cation error decreases as r increases. From Equation
12, we can conclude that each feature contributes for minimizing the probability of classi�cation error.
In fact, some feature contribute more than others. The larger the di�erence between the means of the
two classes related to the feature variance, the higher is the contribution of this feature to minimize
Bayes error.

4. PROPOSED METHOD

Since PCA generate uncorrelated features and considering that the covariance matrix is the same for
every class in the dataset (because it computes direction of maximal variance for a covariance matrix
estimated for all data), then the Bayes error rate can be minimized, proportionally to r as de�ned
in (12), for features extracted using (9). The proposed method considers these equations to choose
the PCA projected variables. However, instead of selecting the directions of maximal variance for the
classi�cation task, we select the directions that minimizes Bayes error rate.

The problem continues to be restricted to two classes, setting W = XEd, as in (9). However,
now the features are extracted for d eigenvectors. We de�ne wij as the value of the i-th new feature
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(i = 1, . . . , d) for the j-th point (j = 1, . . . , n). The mean of the i-th feature for the c-th class (c = 1, 2)
is

w̄ci =

∑n
j=1 wijδjc∑n

j=1 δjc
, (13)

where δjc is the Dirac delta function δjc = 1 if the j-point belongs to the c-th class, and δjc = 0,
otherwise.

We propose a score of the relevance for the classi�cation of a feature extracted with PCA, si is the
score for the i-th extracted feature:

si =

{
|w̄1i − w̄2i|/λi, if λi 6= 0

0, if λi = 0
, (14)

where λi is the eigenvalue of the eigenvector from which the i-th feature were computed, and w̄ci is
the mean of the i-th feature for the c-th class (c = 1, 2). If λi = 0 the variance of the i-th extracted
feature is zero, which means that the variable has the same value for all points. Therefore it is not
useful for classi�cation and its score is set as si = 0. Otherwise the score is positive and is de�ned
as the absolute value of the di�erence between the mean of each class divided by the variance of
the feature. Features selected according to this score minimize the Bayes error rate. The proposed
method consists in the following steps:

(1) Project the data as W = XEd, similar to Equation (9).

(2) Compute the mean of each feature for each class w̄ci, Equation (13).

(3) Compute the score si of each feature, Equation (14).

(4) Select k features with the highest score.

(5) De�ne the projection matrix as:

Sk = [ξ1 . . . ξk] (15)

with the eigenvectors that have the highest scores si, such that si ≥ sj if ξi ∈ S and ξj /∈ S.
(6) Project the data as:

V = XSk, (16)

where Vn×k is the projected data matrix with n points and k discriminant features.

The di�erence between standard PCA and the proposed method is that the selected features in
PCA are the ones of highest eigenvalues (λi) and the selected features in the proposed method are
the ones with the highest discriminant score (si).

5. EXPERIMENTS

The experiments were performed using two datasets from the UCI Machine Learning Repository
[Lichman 2013]. The Climate Model Simulation Crashes Data Set that has 540 points, 18 features
and the Banknote Authentication Data Set that has 1,372 points, 4 features, both datasets have
two classes. Accuracy, the rate of corrected classi�ed points, is the metric used to evaluated the
methods. Each point in the plot is the average accuracy for 100 holdout experiments. In each holdout
experiment, 50% of the points from each class were randomly chosen for training and the remaining
points were used for testing. The training set were used for both PCA and the proposed method. Both
training and test sets were projected using k selected eigenvector, k = 1, . . . , d. The 1-NN (Nearest
Neighbor) with Euclidean distance, Naive Bayes with normal kernel smoothing density estimate,
pruned Decision Tree with Gini's diversity index and a minimum of 10 nodes per leaf, and Fisher's
Linear Discriminant were used for classi�cation. The experiment were performed using Matlab 2015b
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Statistics and Machine Learning Toolbox1. The result are shown in Figures 1, 2, 3, and 4. The results
are also detailed in Tables I, II, III, and IV.
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Fig. 1. Accuracy per number of extracted features for Climate and Banknote datasets using features extracted with
PCA and the proposed method using 1-NN Classi�er.
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Fig. 2. Accuracy per number of extracted features for Climate and Banknote datasets using features extracted with
PCA and the proposed method using Naive Bayes Classi�er.
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Fig. 3. Accuracy per number of extracted features for Climate and Banknote datasets using features extracted with
PCA and the proposed method using Decision Tree Classi�er.

1http://www.mathworks.com/help/stats/index.html.
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Fig. 4. Accuracy per number of extracted features for Climate and Banknote datasets using features extracted with
PCA and the proposed method using Linear Discriminant Classi�er.

We calculated con�dence intervals assuming that each mean follows a Student's t distribution. For
a 95% con�dence level this interval is [ā−E, ā+E], where ā is the mean accuracy, b is the accuracy
standard deviation, and E = 1.984b/

√
100. If there is no overlap between the con�dence intervals

of PCA and the proposed method the di�erence is considered signi�cant [Schenker and Gentleman
2001]. The error bars shown for the Climate dataset in the Figures, represent the con�dence intervals.
For Banknote dataset, the values are too small to appear in the plots. The results for each classi�er
are discussed in the following subsections.

Analysis for the 1-NN classi�er. The results show that the proposed method present accuracy
signi�cantly higher than PCA from 2 to 16 extracted features, for the Climate dataset; and for 1 and
2 extracted features for the Banknote dataset. For the Climate dataset (Table I), the maximum mean
accuracy obtained using the proposed method was 0.901, for 10 extracted features. PCA presented a
smaller mean accuracy 0.873 for the same number of features. The maximum mean accuracy obtained
using PCA was 0.891 with 18 extracted features. For the Banknote dataset (Table III), for 1 and 2
extracted features the di�erence are quite signi�cant. The obtained values were 0.680 (PCA), 0.852
(proposed) and 0.851 (PCA), 0.959 (proposed) respectively.

Analysis for the Naive Bayes classi�er. The results show that the proposed method present
accuracy signi�cantly higher than PCA from 3 to 11 extracted features, for the Climate dataset;
and for 1 and 2 extracted features for the Banknote dataset. For the Climate dataset (Table I), the
maximum mean accuracy obtained using the proposed method was 0.922, for 10 extracted features.
PCA presented a smaller mean accuracy 0.916 for the same number of features. The maximum mean
accuracy obtained using PCA was 0.920 with 17 extracted features. For the Banknote dataset (Table
III), for 1 and 2 extracted features the di�erence are quite signi�cant. The obtained values were 0.695
(PCA), 0.891 (proposed) and 0.773 (PCA), 0.903 (proposed) respectively.

Analysis for the Decision Tree classi�er. The results show that the proposed method present
accuracy signi�cantly higher than PCA from 2 to 4 extracted features, for the Climate dataset; and
for 1 and 2 extracted features for the Banknote dataset. For the Climate dataset (Table II), the
maximum mean accuracy obtained using the proposed method was 0.887, for 4 extracted features.
PCA presented a smaller mean accuracy 0.877 for the same number of features. The maximum mean
accuracy obtained using PCA was 0.889 with 12 extracted features. for 1 and 2 extracted features the
di�erence are quite signi�cant. The obtained values were 0.696 (PCA), 0.858 (proposed) and 0.820
(PCA), 0.947 (proposed) respectively.

Analysis for the Linear Discriminant classi�er. The results show that the proposed method
present accuracy signi�cantly higher than PCA from 4 to 16 extracted features, for the Climate
dataset; and for 1 and 2 extracted features for the Banknote dataset. For the Climate dataset (Table
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Table I. The results of the Climate database showing the Mean Accuracy (M.A.), Standard Deviation (S.D.) and the
number of Extracted Features (E.F.) for each method using 1-NN and Naive Bayes classi�ers.

1-NN Naive Bayes

PCA Proposed PCA Proposed

E.F. M.A. (S.D.) M.A. (S.D.) M.A. (S.D.) M.A. (S.D.)

1 0.847 ( 0.021 ) 0.854 ( 0.022 ) 0.915 ( 0.000 ) 0.915 ( 0.003 )

2 0.849 ( 0.021 ) 0.865 ( 0.019 ) 0.915 ( 0.001 ) 0.915 ( 0.005 )

3 0.854 ( 0.020 ) 0.873 ( 0.017 ) 0.915 ( 0.001 ) 0.917 ( 0.006 )

4 0.857 ( 0.024 ) 0.883 ( 0.018 ) 0.915 ( 0.002 ) 0.918 ( 0.007 )

5 0.861 ( 0.023 ) 0.888 ( 0.019 ) 0.915 ( 0.003 ) 0.919 ( 0.008 )

6 0.865 ( 0.021 ) 0.892 ( 0.019 ) 0.915 ( 0.003 ) 0.920 ( 0.008 )

7 0.865 ( 0.023 ) 0.898 ( 0.016 ) 0.916 ( 0.004 ) 0.919 ( 0.008 )

8 0.869 ( 0.024 ) 0.899 ( 0.017 ) 0.916 ( 0.004 ) 0.920 ( 0.009 )

9 0.871 ( 0.023 ) 0.900 ( 0.016 ) 0.916 ( 0.005 ) 0.921 ( 0.010 )

10 0.873 ( 0.022 ) 0.901 ( 0.016 ) 0.916 ( 0.006 ) 0.922 ( 0.009 )

11 0.876 ( 0.021 ) 0.901 ( 0.016 ) 0.917 ( 0.006 ) 0.921 ( 0.009 )

12 0.877 ( 0.021 ) 0.901 ( 0.014 ) 0.918 ( 0.008 ) 0.921 ( 0.009 )

13 0.881 ( 0.021 ) 0.897 ( 0.015 ) 0.919 ( 0.008 ) 0.921 ( 0.009 )

14 0.883 ( 0.020 ) 0.897 ( 0.014 ) 0.919 ( 0.008 ) 0.921 ( 0.009 )

15 0.885 ( 0.017 ) 0.895 ( 0.014 ) 0.919 ( 0.009 ) 0.921 ( 0.010 )

16 0.885 ( 0.018 ) 0.892 ( 0.015 ) 0.919 ( 0.010 ) 0.920 ( 0.010 )

17 0.887 ( 0.016 ) 0.891 ( 0.015 ) 0.920 ( 0.010 ) 0.919 ( 0.010 )

18 0.891 ( 0.014 ) 0.891 ( 0.014 ) 0.919 ( 0.011 ) 0.919 ( 0.011 )

II) with 11 extracted features the proposed method have accuracy 0.942, and PCA 0.92. For the
Banknote dataset (Table IV), for 1 and 2 extracted features the di�erence are quite signi�cant. The
obtained values were 0.614 (PCA), 0.886 (proposed) and 0.734 (PCA), 0.913 (proposed) respectively.

Classi�er independent analysis. The proposed method presents greater accuracy for fewer
extracted features if compared to PCA. For the Climate dataset and Decision Tree classi�er, the
maximum accuracy is achieve using only 5 of 18 features, using other classi�ers more than 10 features
are needed. For the Banknote dataset, if the accuracy for 1 extracted feature is about 0.9 the accuracy
is similar for 2 extracted features (Naive Bayes and Linear Discriminant). If the accuracy for 1
extracted feature is about 0.85 the accuracy is about 0.95 for 2 extracted features (1-NN and Decision
Tree).

6. CONCLUSION

We proposed a feature extraction technique that is similar to PCA but selects features that minimizes
the Bayes error rate instead of features that maximizes the variance. The method presented a higher
mean accuracy compared to PCA in two datasets using a small number of features. For future work,
we will evaluate more databases, extend the proposed method to problems with more than two classes
and to test in other PCA-based techniques [de Carvalho et al. 2015], [de Carvalho et al. 2014].
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Table III. The results of the Banknote database showing the Mean Accuracy (M.A.), Standard Deviation (S.D.) and
the number of Extracted Features (E.F.) for each method.

1-NN Naive Bayes

PCA Proposed PCA Proposed
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Table IV. The results of the Banknote database showing the Mean Accuracy (M.A.), Standard Deviation (S.D.) and
the number of Extracted Features (E.F.) for each method.

Decision Tree Linear Discriminant

PCA Proposed PCA Proposed

E.F. M.A. (S.D.) M.A. (S.D.) M.A. (S.D.) M.A. (S.D.)
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