
Combining Semi-supervision and Hubness to Enhance
High-dimensional Data Clustering

Mateus C. de Lima, Maria Camila N. Barioni, Humberto L. Razente

Faculdade de Computação (FACOM)
Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
{mateuscurcino, camila.barioni, humberto.razente}@ufu.br

Abstract. The curse of dimensionality turns the high-dimensional data analysis a challenging task for data clustering
techniques. Recent works have efficiently employed an aspect inherent to high-dimensional data in the proposal of
clustering approaches guided by hubs which provide information about the distribution of the data instances among
the K-nearest neighbors. However, hubs are not enough to reflect the implicit data semantics, allowing to incorporate
other strategies to deal with this issue. In order to cope with both issues, the high dimensionality of the data and the
achievement of meaningful clusters, this article presents a clustering approach that explores the combination of two
strategies: semi-supervision and density estimation based on hubness scores. The experimental results conducted with
23 real datasets show that the proposed approach has a superior performance when compared with the HPKM, the
Kernel k-means, the DBSCAN and the SSDBSCAN algorithms.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data mining; H.3.3 [Information Storage
and Retrieval]: Clustering

Keywords: Data Mining, High-dimensional Data Analysis, Hubness, Semi-Supervised Clustering.

1. INTRODUCTION

There exist various application domains for which the employment of data mining techniques is useful
such where the dimensionality of the data is notably elevated. Among such are databases where each
data instance is described by a collection of features, as in the case of images and gene expressions. The
so-called curse of dimensionality [Samet 2006] makes data analysis in higher dimensions a challenge
for any data mining technique based on distance calculations, since the extent to which the dimension
increases, the sparseness of data also increases, and so does the difficulty to differentiate data instances.
In this context, it is interesting to consider the employment of techniques that allow for the mitigation
of these prejudicial effects on the effectiveness and efficiency of data mining algorithms.

Traditionally, the question of higher dimensions has been dealt with in the scientific literature
through the use of strategies that look to mitigate the effects of the curse of dimensionality by means
of the extraction and the selection of features or through the proposal of methods that work in sub-
spaces. However, information can be lost when the dimensionality is reduced [Samet 2006]. In an
opposing manner, more recent strategies have employed in an efficient manner an aspect inherent to
high-dimensional data in the proposal of techniques that allow for the classification [Tomasev and
Mladenic 2013][Buza 2016], the search for the nearest neighbors [Flexer and Schnitzer 2013][Toma-
sev and Mladenic 2014] and the clustering [Tomasev et al. 2014][Tomasev et al. 2015] in high-
dimensionality databases. This aspect, denominated hubness, consists of the tendency that some data

This work has been supported by CNPq (Brazilian National Council for Supporting Research), by CAPES (Brazilian
Coordination for Improvement of Higher Level Personnel) and by FAPEMIG (Minas Gerais State Research Foundation).
Copyright c©2017 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017, Pages 223–241.

224 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

6 5y 9

x

(a)

K = 5 (5NN)

Hub

y
Medoid

x k = 2

Centroid

(b)
Fig. 1. The use of hubs as cluster prototypes. (a) The Hubs and respective scores. (b) Hubs and traditional cluster
prototypes.

instances, called hubs, occur with greater frequency in the list of K-nearest neighbors than other
instances, for a given K.

Considering the clustering task, previous works employed hubness information to determine the
prototypes of each data partition leading to better clustering solutions for high-dimensional data. For
example, Figure 1(a) illustrates a 2D dataset where the white circles indicate the data instances that
occur in the list of the 5-nearest neighbors of the other data instances. The number placed inside
the circles represent the number of times that the data instance occurs in the list of the 5-nearest
neighbors of other data instances. Figure 1(b) illustrates the existing correlation between hubness and
the proximity to traditional cluster prototypes for partitional clustering approaches.

Although clustering techniques directed by the hubness score have presented good results when
dealing with high-dimensional data, it is of importance to highlight that as the hubs are centers of
influence, possible inaccuracies associated with them can be easily propagated [Tomasev and Mladenic
2013]. A particular strategy that can be used in order to minimize the risk of inducing an unsuitable
partitioning in the data, since the hubs may not reflect the implicit data semantics (the semantic gap
between the metric and the data), is the incorporation of semi-supervision [Basu et al. 2008].

This article presents a new clustering approach that explores the combination of semi-supervision
strategies and the use of hubness score in respect to the instances of data, with the focus being high-
dimensional data. This approach revisited the unsupervised algorithm HPKM [Tomasev et al. 2011],
which gave rise to the method denominated as SSHub Clustering. Although a preliminary version of
the work described herein was presented in a previous short paper [Lima et al. 2016], new aspects
are dealt with in this article. The present article integrates the concepts introduced in the previous
paper and goes beyond these through the presentation of a more detailed description of a new and
improved version of the proposed algorithm and the results obtained through an exhaustive set of
experiments that used 23 sets of real data. In addition to the HPKM, the Kernel K-means [Dhillon
et al. 2004] and the DBSCAN [Sander et al. 1998], the SSDBSCAN [Li et al. 2014] algorithm
was also selected as a baseline for comparison as a representative of the semi-supervised clustering
algorithms. Moreover, additional experiments varying the parameters of the algorithm were included.
By analyzing the obtained experimental results, it is possible to state that the SSHub Clustering
achieved better performance when applied to real datasets of different sizes, which surpassed the
effectiveness of the four selected algorithms used on a comparison basis.

The remainder of the article is organized as detailed in the following. Section 2 presents the fun-
damental concepts and correlated research. The SSHub Clustering is described in Section 3. The
discussion regarding the obtained experimental results is presented in Section 4. Finally, the conclu-
sions and future work are described in Section 5.

2. BACKGROUND AND RELATED WORK

This section presents the fundamental concepts for the presentation of the proposed SSHub Clustering
algorithm. The symbols and definitions described in Table I are used throughout this article.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 225

Table I. Summary of Symbols and Definitions.
Symbols Definitions
k number of clusters
C = {c1; ...; ck} partition set
X = {x1; ...;xn} set of data instances to be clustered
K neighborhood cardinality of each instance (K-nearest neighbors)
hK(x) hubness score of the instance x considering the neighborhood K

N = {hK(x1); ...;hK(xn)} set of data instances hubness scores
pi main representative of cluster ci
ai auxiliary representative of cluster ci
Ai set of auxiliaries representatives of cluster ci
Qi set of representatives (main and auxiliaries) of cluster ci
rml(xi, xj) must-link constraint between xi and xj

rcl(xi, xj) cannot-link constraint between xi and xj

Rm set of rml

Rc set of rcl
R Rml ∪ Rcl

In a general sense, the data-clustering task aims to find clusters according to a similarity measure,
in a manner that the data instances from a related cluster possess high similarity, while the data
instances from different clusters possess low similarity [Aggarwal and Reddy 2013]. To compute this
measure it is necessary to have a description of the data instances and a distance function. Thus,
depending on the data domain, the instances can be described by a set of attributes of traditional
domains (for example, text or numbers) or by a collection of pre-defined feature descriptors inherent to
the data (considering the image domain, for example: color, texture and shape, among other features).
The choice of a distance function to be employed also depends on the deployed data domain, being
that among the most commonly used are the distance functions from the Minkowski family [Taniar
and Iwan 2011].

It is important to highlight here that the expressiveness of this similarity measure is an important
factor for obtaining good results in data clustering processes. When dealing with high-dimensional
data this desirable feature of the similarity measure degrades due to the effects of the curse of di-
mensionality, thereby reducing the capacity of the similarity measure in differentiating pairs of data
elements. In an attempt to mitigate the undesirable effects of this curse in high-dimensional data
clustering processes, two approaches may be employed: 1) apply techniques to reduce the dimension-
ality as a first step before performing data clustering, or 2) use specialized solutions for analyzing
high-dimensional data.

The strategies proposed in the scientific literature from this area for dimensionality reduction arise
from research areas such as Pattern Recognition, Statistics and Information Theory, which aim at
reducing the number of dimensions while excluding irrelevant, low relevance or redundant features
from the description of the data instances. This strategy can be divided into two categories: 1)
feature selection, and 2) feature extraction.

The techniques based on the approach of feature selection have as their objectives to choose a
small subset of features according to a given criterion. Here are some examples of feature selection
techniques: techniques based on the calculation of the Fractal Dimension [Traina-Jr et al. 2010],
Information Gain [Kullback and Leibler 1951] and Relief [Kira and Rendell 1992], among others.
On the other hand, those techniques based on the feature extraction approach map the original data
space in a lower dimensional space. Among the feature extraction techniques proposed one can cite,
Principal Component Analysis (PCA) [Hair Jr. et al. 1995], Multidimensional Scaling (MDS) [Borg
and Groenen 2005] and FastMap [Faloutsos and Lin 1995].

The techniques for dimensionality reduction, in general, provide only a subspace of original data, in
which the data clustering process can be performed. However, for situations where different features

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

226 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

can be relevant to different groups in one singular data clustering, such methods tend to fail. In these
cases, algorithms for subspace clustering appear as a new strategy for analyzing high-dimensional data
[Aggarwal and Yu 2000][Kailing et al. 2003][Kailing and H.P. Kriegel 2004][Muller et al. 2009].

Another example of a specialized solution for the analysis of high-dimensional data are the clustering
algorithms based on hubness [Tomasev et al. 2011]. Differently from the previous approaches, instead
of trying to avoid the effects associated with high-dimensional data analysis, this approach employs
information on hubness to obtain data clustering solutions. This is the focus of the research work
described herein. Thus, the fundamental concepts regarding the hubness aspect are presented in
Section 2.1.

Still further, another aspect that can interfere in the expressivity of similarity measures arises
when it becomes necessary to deal with more complex data domains, such as images. This is due
to the existence of the so-called “semantic gap” between the low-level features that represent the
data instances and the high-level of human perception, which can produce clusters obtained from
information based only on low-level features that do not correspond to the notion of similarity of the
user. Among such proposals for dealing with this question are the techniques for the semi-supervised
clustering. More details concerning these techniques are described in Section 2.2.

2.1 The hubness aspect

Hubness is an aspect inherent to data that presents high dimensionality. As the intrinsic dimensionality
of the data increases, the distribution of the K-occurrences in the list of nearest neighbors of each
data instance becomes distorted and more variable. Hence, some data instances (called hubs) appear
frequently in the list of K-nearest neighbors, and at the same time, other data instances (called anti-
hubs) become infrequent neighbors. According to [Tomasev et al. 2014], the hubness score, the hubs
and the anti-hubs are defined in the following manner:

—Hubness score : Let X = {x1; ...;xn} be a set of data instances, hK(x) represents the number
of K−occurrences of instances x ∈ X, that is, the number of times that x occurs in the list of
K-nearest neighbors of other data instances which belong to X. Values commonly used for K are
in the interval [5, 20] [Tomasev et al. 2011];

—K−occurrences hK(x): Let Y = {y1, y2, ..., yn}, be a set that contains n listings of K-nearest
neighbors of data instances that belong to X, the number of K-occurrences hK(x) is the quantity
of times that x ∈ X occurs in listings of Y ;

—hubs: Correspond to the data instances x ∈ X that appear in many more listings of K-nearest
neighbors than do the remaining data instances, that is, they possess hubness scores hK(x) signifi-
cantly above the average;

—anti-hubs: Correspond to the data instances x ∈ X that appear in very few listings of K-nearest
neighbors of the remaining data instances, that is, they possess very low hubness scores hK(x) or
even hK(x) = 0.

According to [Tomasev et al. 2011], [Tomasev and Mladenic 2013] and [Tomasev et al. 2014],
the hubness aspect can perform an important role in the task of clustering high-dimensional data,
as it is a good reference to the centroids of the clusters. The main hubs can be used effectively as
representatives to guide the process of assigning data instances to clusters, in a similar manner as
occurs in techniques based on centroids.

Among the proposals for the use of the hubness aspect in the task of high-dimensional data cluster-
ing, one of the most promising is the HPKM (Hubness-proportional k-means) algorithm proposed in
[Tomasev et al. 2011]. The HPKM is a variation of the traditional k-means algorithm, which employs
a stochastic hybrid clustering approach, that is, it uses both hubs and centroids as representatives
of clusters. The general idea of the algorithm consists of using the information concerning hubness

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 227

scores from the data instances to guide partitions in the first iterations and choosing a clustering
configuration based on centroids at the end. As the conventional k-means algorithm, HPKM employs
a single representative for each data partition.

Besides the good effectiveness demonstrated for dealing with high-dimensional data, the compu-
tational efficiency of the clustering algorithms based on hubs can be a cause of concern when one
wishes to analyze large data sets. Through, considering the fact that the computational complexity
of these algorithms is directly related to the hubness score calculation of the data instances, it is
important to consider strategies that allow for the optimization of these calculations. Among such
strategies, one can mention the use of an approximate K-NN graph for obtaining the hubness score
with a time complexity of 8(ndt), where n is the number of instances, d the quantity of dimensions
and t represents the construction of the graph [Chen et al. 2009]. Another alternative pointed out in
[Tomasev et al. 2014] consists of using approaches based on locality-sensitive hashing [Satuluri and
Parthasarathy 2012].

It is also important to highlight that, as the hubs are centers of influence, possible inaccuracies
associated with them can be easily propagated causing a negative impact on clustering. One way
of dealing with this issue is to allow the incorporation of semi-supervised techniques into the data
clustering process.

2.2 Semi-supervised data clustering

Different to the traditional approach for data clustering, the semi-supervised clustering approach
counts on some additional information that guides data partitioning into clusters. This additional
information can be obtained by means of labelling a small portion of the dataset [Chapelle et al.
2010] or informed in the form of data constraints [Davidson and Basu 2007][Xiong et al. 2014].

These constraints can be defined in different ways, for example: in instance level [Wagstaff and
Cardie 2000], in feature level [Schmidt et al. 2011], in group level [Dubey et al. 2010], relative
[Kumar and Kummamuru 2008] and ranked [Ahmed et al. 2012]. Among them, the instance level
is the type that are most employed by clustering algorithms based on partitioning, thus significantly
improving the performance of these algorithms [Dubey et al. 2010].

The instance level constraints are divided into two types, must-link and cannot-link constraints. A
must-link constraint defines that a pair of instances must belong to the same cluster. On the other
hand, a cannot-link constraint defines that a pair of instances must not belong to the same cluster
[Wagstaff and Cardie 2000]. Formally, let us consider a set of data instances X = {x1; ...;xn}, a must-
link constraint rml(x1, x2) indicates that the instances x1 and x2 must be in the same cluster, whereas
a cannot-link constraint rcl(x1, x3) indicates that the instances x1 and x3 must not be in the same
cluster. It is important to highlight that the instance level constraints, although apparently simple,
possess interesting properties. The must-link constraints, for example, are symmetric, reflexive and
transitive. Another important question is related to the selection of data instances for obtaining the
must-link and cannot-link constraints. When this selection is random, the resultant clusters may not
reach the desired structure.

In the interest of resolving this limitation, active learning strategies are a viable option. The main
goal of these strategies is to allow the selection of the most significant instances (or instance pairs)
for labelling. This allows obtaining better clustering results while analyzing a small number of data
instances [Li et al. 2014]. An example of a recent method that exploits the use of an active learning
strategy in order to propose a semi-supervised learning approach can be seen in [Saito et al. 2014].
This method is based on the Optimum-Path Forest (OPF) methodology, where cluster assignment
is performed computing an optimum connectivity with respect to a set of prototypes rather than
computing local distance calculations [Amorim et al. 2016]. The active-learning strategy adopted in

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

228 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

[Saito et al. 2014] aims at improving the selection of informative labelled data instances and reducing
the propagated errors on the unlabelled data instances considering a data classification problem.

The available approaches for the incorporation of constraints on the data clustering algorithms can
be divided into two categories: those based on similarity and those based on search. The strategies
that employ the approach based on similarity alter the similarity measure used in the clustering
process, looking to satisfy the labels or constraints in the data in a manner that instances that should
be together in the same cluster are close and instances that should not be together are separated.
The strategies that employ the approach based on search use the labels or constraints supplied by the
users in order to guide the clustering detection process for a data partition closer to the real dataset
structure [Barioni et al. 2014]. The SSHub Clustering algorithm fits into the latter category.

3. SSHUB CLUSTERING

The clustering approach employed by the algorithm described herein combines semi-supervised and
density estimation strategies based on hubness score, which aims at contributing toward the analysis
of high-dimensional data. The main steps of the algorithm are presented in Section 3.1 and the
constraint definition steps are discussed in Section 3.2.

3.1 Main steps

Given a dataset X = {x1; ...;xn}, a set H of hubness scores hK(x) for each instance xi, and a
percentage f of borderline elements that are to be analyzed for the definition of the must-link and
cannot-link constraints. The SSHub Clustering (see Algorithm 1) employs a semi-supervised clustering
approach based on the partitioning of X into a quantity of k clusters. Each cluster is represented by
multiple prototypes, one main pi ∈ P and various auxiliaries ai ∈ A. This representation strategy was
adopted with the intention of allowing the algorithm to deal with clusters with hyperspherical shapes
as well as with clusters that present arbitrary shapes.

In order to create the initial data partition, the SSHub Clustering algorithm starts out by selecting,
in a semi-supervised manner, a main representative for each cluster (line 2 of the Algorithm 1). The
strategy proposed for this initial phase of the algorithm allows guiding the user to select k main
representatives from a ranking of the data instances with the highest hubness score. The remaining
auxiliary representatives are derived from the must-link constraints rm(xi, xj) ∈ Rm, starting from
the second iteration of the algorithm. It is important to highlight that the initial main representatives
are considered permanent cluster representatives, that is, even if they are updated in the following
iterations, they remain as auxiliary representatives (line 5 of the Algorithm 1).

k = 4 (clusters)

y y

5
4 8

(a) (b)

x x

5
6

8

Fig. 2. Selection of k = 4 initial representatives. (a) Hubs (b) k selected hubs and the initial data partitioning.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 229

Algorithm 1: SSHub Clustering
Data: Dataset X, Number of clusters k, Hubness H, Borderline instances f , MaxIterations

maxIt
Result: C {c1, ..., ck}
begin1

P ← Selection of k initial representatives;2

A← {}; R← {}; N ← H; it← 0;3

for each representative pi ∈ P do4

Ai ← Ai ∪ pi;5

repeat6

it++;7

for each instance xi ∈ X do8

Assign xi to the cluster with the smaller aggregated distance regarding both main and9

auxiliary prototypes; if xi do not change cluster then
Ni ← Ni

2;10

else11

Ni ← Hi;12

for each ci do13

Update the representative pi;14

ConstraintDefinition(C,H, f,A,R);15

until convergence or it = maxIt ;16

return C17

end18

Figure 2 illustrates the initial selection phase of the SSHub Clustering algorithm considering K = 5
nearest neighbors for calculating the hubness score (hK(x)) of each data instance. Considering the
existence of various hubs in the dataset (white circles with the hK values in Figure 2(a)), the idea of
the strategy adopted in this phase is to provide the possibility to the user of interfering at the outset
of the clustering process for selecting the initial k representatives from among these hubs (Figure
2(b)). This algorithm feature is especially useful in the analysis of complex data domains that can
be affected by the “semantic gap” problem. Figure 3 presents a practical example of the selection
of initial representatives in image data domains. Considering the existence of an application, which
exhibits thumbnails that correspond to the higher hubness score instances (calculated based on low
level features, such as color, texture or shape) from an image dataset, a user can, based on their data
domain knowledge, select a initial representative for each desired cluster.

After the selection of the initial representatives, the assignment of the instances to the clusters is
performed (line 9 of Algorithm 1) by taking into account main and auxiliary-representatives. Both
types of representatives are obtained through hubness information in order to effectively deal with high-
dimensional data. In this phase, the SSHub Clustering algorithm considers the aggregated distance
calculated as defined in Equation 1, while respecting the previously informed must-link and cannot-
link constraints. In this equation, Qk is the set of representatives (main and auxiliary) of a cluster ck,
and δ() is a distance function. It is important to emphasize that in the first iteration of the algorithm,
there do not exist constraints and auxiliary representatives. This information is considered only from
the second iteration of the algorithm.

δg(Qk, xi) = min
qj∈Qk

(δ(qj , xi)) (1)

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

230 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

hK(img01) = 10 hK(img02) = 9 hK(img03) = 8

1

hK(img04) = 8 hK(img05) = 7 hK(img06) = 6

Fig. 3. Selection of k (k = 2) initial representatives in an image dataset. Adapted from [Wang et al. 2009].

The updating of the main representatives of each cluster is based on the hubness score of the
instances that belong to each cluster (lines 10 to 15 of Algorithm 1). However, this score can be
changed over the iterations of the algorithm. Inspired upon the approach put forward for the algorithm
HPKM [Tomasev et al. 2014], instances that do not change cluster over the iterations are privileged
through the squared elevation of their hubness score (line 11 of Algorithm 1). Should there be noted
changes in the cluster, the hubness score returns to its original value (line 13 of Algorithm 1). In this
manner, the representative of each cluster corresponds to the instance with the highest accumulated
hubness score (line 15 of Algorithm 1).

3.2 Constraint definition steps

The constraint definition phase of the SSHub Clustering (line 16 of Algorithm 1) aims at selecting a
subset of instances in such a way that to find additional knowledge about them allows obtaining a
more adequate data partitioning. Therefore, the f instances farthest from each pi ∈ P with a hubness
score ≥ 1 are evaluated. This restriction to the hubness score is to avoid the possibility of selecting
anti-hubs. The sub-routine responsible for this task is described in Algorithm 2.

The definition of the quantity of instances q that should be analyzed in each cluster, in the constraint
definition phase, is performed in a manner that is proportional to the quantity of instances assigned
to each cluster (line 4 of Algorithm 2). Considering each borderline instance xy of a given cluster ci,
the constraint definition sub-routine selects the nearest instance xw ∈ cj to xy, such that ci 6= cj .
Through such, it is possible to analyze distinct pairs of borderline instances in order to specify whether
or not the elements must belong to the same cluster. This additional information can be obtained
from labels or cluster-guiding constraints fed by users. This analysis strategy allows to create must-
link constraints rml(xy, xw) (line 14 of Algorithm 2) or cannot-link constraints rcl(xy, xw) (line 16 of
Algorithm 2).

Moreover, to obtain auxiliary representatives for the clusters, each xy of a given cluster ci is analyzed
to specify if xy and pi must be in the same cluster or not. If the answer is positive, a must-link
constraint rml(xy, pi) is created (line 9 of Algorithm 2) and xy is attributed to A (line 10 of Algorithm
2). On the other hand, a cannot-link constraint rcl(xy, pi) is created (line 12 of Algorithm 2). Finally,
constraints are created via transitivity (line 17 of Algorithm 2). For example, if there exist the
rml(pi, xy) and the rml(xy, xw) constraints, then the rml(pi, xw) constraint should also exist.

Figure 4 illustrates the four possible scenarios of the analysis process for the borderline elements (see
Algorithm 2). Figure 4(a) presents the scenario in which only the must-link constraints are generated,
that is, pi, xy and xw should be in the same cluster. In this scenario, the rml(xy, xw) constraint

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 231

Algorithm 2: ConstraintDefinition
Data: Clusters C, Hubness H, Borderline instances f , Representatives A, Constraints R
begin1

t← |N | · f ;2

for each ci ∈ C do3

q ← (|ci|/|N |) · t;4

for j ← 1 until j = q do5

xj ← select the farthest instance from the main prototype pi in ci, with hK ≥ 1;6

xw ← select the nearest instance from xj in cw | w 6= i;
if pi and xj must be in the same cluster then7

R← R ∪ rml(pi, xj);8

Ai ← Ai ∪ xj ;9

else10

R← R ∪ rcl(pi, xj);11

if xw and xj must be in the same cluster then12

R← R ∪ rml(xw, xj);13

else14

R← R ∪ rcl(xw, xj);15

Define transitive constraints;16

j++;17

end18

indicates the need of a displacement of xw. Figure 4(b) presents the scenario in which a must-link
constraint is generated between the borderline instance xy with its main respective representative pi,
and a cannot-link constraint between the borderline instance xy and the instance from another cluster
xw, or be it, pi and xy should be in the same cluster and xy and xw should not be in the same cluster.

Figure 4(c) presents the scenario in which a cannot-link constraint is generated between the bor-
derline instance xy and its main respective representative pi and a must-link constraint is generated
between the borderline xy and the instance xw from another cluster. In this case, the two borderline
instances xy and xw should be in the same cluster (rml(xy, xw)) indicating the need of a displacement
of xy. Figure 4(d) presents the last scenario in which only cannot-link constraints are generated. In
this scenario, a cannot-link constraint is generated between the borderline instance xy and its main
respective representative pi and a cannot-link constraint between the borderline instance xy and the
instance xw of another cluster, or be it, pi, xy and xw should not be part of the same cluster.

must-link

cannot-link

y

x

y

x

(a) (b)

pi pipj pj
xy

xw xw

xy

y

x

cannot-link

y

x

(a) (b)

(c) (d)

pi pi

xw

xy

xw

xypj pj

Fig. 4. Possible scenarios for creating must-link and cannot-link constraints.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

232 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

In summary, the steps performed by the SSHub Clustering algorithm are presented below:

(1) Select k instances with the higher hubness scores as the initial representatives P = {pi, ..., pk}
and make A = P ;

(2) Assign each instance xi ∈ X to the cluster with the smaller aggregated distance δg in relation to
Q, respecting the constraints Rm and Rc;

(3) Update the main representatives P of each cluster based on the hubness scores of the instances
assigned to each cluster;

(4) Analyze the f borderline instances to define must-link and cannot-link constraints and other
auxiliary representatives (Algorithm 2);

(5) Return to step (2) until convergence or until reaching the maximum number of iterations.

The stop criterion for the algorithm SSHub Clustering (step 5) checks two possibilities: 1) if the
maximum number of iterations was reached or 2) if the convergence of the algorithm was obtained.
The convergence function considered verifies the sum of the distances for the representatives (main
and auxiliary) for the current iteration in relation to the previous iteration. Equation 2 presents how
this calculation is performed:

k∑
k=1

∑
xi∈Ck

min
qj∈Qk

(δ(qj , xi)) , (2)

where xi is an instance of a cluster Ck, Qk is a set of representatives (main and auxiliary) of the
respective cluster, and δ() is a distance function.

Assuming that the hubness scores are already computed, the time complexity of the constraint
definition phase (Algorithm 2) at each iteration of SSHub Clustering is O(|C| · |R|2), where |C| is the
cardinality of the dataset and |R| is the cardinality of the constraint set. The time complexity of the
remaining steps of the algorithm is O(it · |Q| · |X| · d), where it is the number of iterations, |Q| is the
cardinality of the set of representatives (main and auxiliaries), |X| is the number of data elements
and d is the number of attributes.

4. EXPERIMENTS

We employed 23 real datasets to perform the experiments. The details concerning each one are
presented in Table II. From these datasets, 22 were obtained from UCI Machine Learning [Lichman
2013] and the NBA dataset was obtained from the repository BasketballStats [Databasesports.com
2011]. It is important to highlight that the datasets were selected based on their different number of
classes, densities and dimensions, with the aim of checking the performance of the proposed algorithm
against other four algorithms described in the literature in different scenarios.

All these datasets were preprocessed according to the recommendations indicated in these reposito-
ries. In addition, for the dataset Covertype (5) a sample with 19,229 randomly selected instances from
the original set was considered, maintaining the proportion of instances per class. For the dataset
Hepmass (8) a sample of 45,000 instances from the original set was considered, equally divided be-
tween the two classes. Finally, for the dataset Digits389 (6) only the instances of classes 3, 8 and 9
from the dataset Pendigits were considered, as was performed in [Xiong et al. 2014].

The experiments were run on a computer equipped with a processor of the following specifications:
Intel Core i5-3230M CPU @ 2.60GHz with 6 GB of RAM, hard drive 500 GB SATA (7,200 rpm)

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 233

Table II. Datasets employed in the experiments.
ID Datasets # of data instances # of dimensions # of classes
1 Abalone 4,176 8 3
2 Aloi 1,098 64 10
3 Breast 683 9 2
4 Churn 5,000 14 2
5 Covertype 19,229 54 7
6 Digits389 3,165 16 3
7 Ecoli 336 7 8
8 Hepmass 45,000 27 2
9 Isolet 6,237 617 26
10 Musk2 6,598 166 2
11 NBA 22,064 17 2
12 Page blocks 5,473 10 5
13 Pendigits 10,992 16 10
14 Segment 2,310 19 7
15 Sonar 208 60 2
16 Spambase 4,599 57 2
17 Urbanlandcover 675 147 9
18 Vehicle 846 18 4
19 Vowel 990 13 11
20 Wine 178 13 3
21 WDBC 569 30 2
22 Yeast 1,484 8 10
23 Zoo 101 16 7

running Microsoft Windows 7 64 bits. The algorithms HPKM, Kernel k-means [Dhillon et al. 2004],
DBSCAN [Sander et al. 1998] and SSDBSCAN [Li et al. 2014] were selected as the baselines for
comparison. The hub based HPKM was the clustering algorithm that inspired the proposal of the
SSHub Clustering algorithm. The Kernel k-means is a classic representative of kernel based clustering
algorithms, which are known for dealing well with non-hyperspherical clusters, and the DBSCAN is
a standard representative of clustering algorithms based on density. As a representative of the semi-
supervised clustering algorithms the extension of the DBSCAN, called SSDBSCAN [Li et al. 2014],
was chosen. This algorithm incorporates additional information in the form of labels in the clustering
process based on density. The implementation of this algorithm was made available by the authors of
the work-study and was written in the Java language. The implementation of all the other algorithms
(HPKM, Kernel k-means and DBSCAN) were made available by the authors of the work-study
described in [Tomasev et al. 2014] in repository [Tomasev 2014], all written in Java. With the aim of
allowing for a fair comparison of the algorithms, SSHub Clustering was also implemented using Java.

Considering that the ideal neighborhood size that should be analyzed in the calculation of the hub-
ness score may vary according to the data domain, four distinct neighborhood values were considered
(K = 5, 10, 15 and 20) for the SSHub Clustering and HPKM algorithms. The number of requested
clusters (k) was defined according to the number of classes defined for each dataset and described in
Table II. All the algorithms take into consideration the Euclidean distance function.

In order to automate the execution of the experiments with the SSHub Clustering algorithm, the
user interaction phase for choosing the initial representatives was simulated in the following manner.
Considering the label information of the datasets, the initial representatives were chosen among the five
instances of each cluster with the highest hubness scores. In this manner, it is possible to simulate the
fact that at each run, the user can choose different instances of high hubness scoring as representatives.
In addition, the total quantity of borderline elements (f) analyzed by the SSHub Clustering was defined
at 1% of the total instances. The same value of 1% was considered for the instances labeled from the
SSDBSCAN algorithm. This limit for semi-supervised information was defined at 1% due to the fact
that in real applications, where the user interacts with the semi-supervised clustering process, it is
not expected that the user be required to provide a high quantity of constraints.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

234 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

As shown in [Tomasev et al. 2011], the use of hubs as initial representatives results in a rapid
convergence of the algorithm, i.e. only a few iterations are necessary for the algorithm to converge.
This fact was also observed in trials conducted on the work-study described herein. Therefore, the
maximum number of iterations for the SSHub Clustering algorithm was defined as 15. The values for
the other parameters required by the DBSCAN algorithm, EPS and MinPts, were selected with an
automatic routine tailored to specify appropriate parameter values for each data set. This routine
was made available in [Tomasev 2014]. For the SSDBSCAN algorithm there is no need of specifying
the EPS value. The selection of values for the MinPts parameter varied from 3 up to 30, depending
on the size of the dataset.

The main objective of the experiments was to evaluate and to compare the effectiveness of the
algorithm in different scenarios, especially in those where there exist a higher number of dimensions.
In this context, it was necessary to use an evaluation measure that allowed for measuring to which
extent an algorithm is capable of finding the true structure of a dataset. By considering the existence
of knowledge regarding the desired partitioning for the datasets, the Adjusted Rand Index was used
[Hubert and Arabie 1985] for evaluating the effectiveness of the algorithms. In this index, the quality
of the results is represented in the interval [−1, 1], being that the closer it is to 1, the better will be the
correspondence between the obtained cluster and the desired partitioning for the evaluated dataset.

As the algorithms employed in the experiments present nondeterministic startup features, they
were run 50 times for each evaluation performed. Therefore, each presented measurement considers
an average of 50 algorithm runs, without considering the best or the worst for each of them. Sections
4.1 and 4.2 present the analyzes of the results obtained throughout the experiments.

4.1 Comparison of the algorithms

This section presents the results of the experiments that allow for the comparison of the SSHub
Clustering algorithm effectiveness with regard to HPKM, Kernel k-means, DBSCAN and SSDBSCAN
algorithms. Moreover, the time required by each one of the algorithms during the running of these
experiments are also presented. The results achieved are shown in Table III and Figures 5 and 6.
In this table, the labels KerKM and SSDBS represent the Kernel k-means and the SSDBSCAN
algorithms, respectively.

Analyzing the results shown in Table III, one notes that the semi-supervised algorithms SSHub
Clustering and SSDBSCAN present higher effectiveness in 17 of the 23 tested datasets (and two
more draws in the first place). And of these 17 datasets, the SSHub Clustering presented a superior
effectiveness in 9 of them. These results help to corroborate the claim that semi-supervised approaches
help to obtain a data partitioning closer to the real dataset structure.

It is also possible to notice that the neighborhood defined for the hubness score calculation can
impact on the partitions generated by the SSHub Clustering. This fact can be seen mainly by observing
sets (2), (6), (7), (8), (11), (13), (14), (17), (20), (21) and (23). The same behavior is not evident in the
results presented by the HPKM algorithm. Therefore, it becomes necessary to investigate to which
extent each one of the strategies employed by the SSHub Clustering collaborate toward obtaining
good results. The results of this evaluation are presented in Section 4.2.

Aiming to verify if there exists a significant difference between the effectiveness of the evaluated
algorithms, the Friedman [Demsar 2006] and the post-hoc of Bonferroni-Dunn [Zar 2007] statistics
tests were used. Both tests were applied in order to discover if with a 95% of certainty one can conclude
that the SSHub Clustering surpasses the HPKM, Kernel k-means, DBSCAN and SSDBSCAN.

The Friedman and the Bonferroni-Dunn tests are based on the comparison of performance ranks
(see Table III). To apply the Friedman test, we consider the sum of the ranks (R) of each algorithm
for the calculation of FF such that:FF = ((N − 1)χ2

F)/(N(A − 1) − χ2
F), where χ

2
F = (12/(NA(A +

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 235

Table III. Experimental results. The values in bold highlight the best performances. The numbers between () show
the position in the ranking.

SSHub Clustering HPKM
Dataset K = 5 K = 10 K = 15 K = 20 K = 5 K = 10 K = 15 K = 20 KerKM DBSCAN SSDBS

1 0.08 0.17 (1) 0.10 0.11 0.14 (2.5) 0.14 0.14 0.13 0.00 (4.5) 0.00 (4.5) 0.14 (2.5)
2 0.65 0.61 0.62 0.72 (1) 0.53 0.52 0.53 0.54 (3) 0.00 (5) 0.28 (4) 0.68 (2)
3 0.90 (1) 0.88 0.86 0.85 0.85 (2) 0.85 0.85 0.85 0.78 (4) 0.01 (5) 0.84 (3)
4 -0.02 0.15 (1) 0.03 0.02 -0.09 -0.09 -0.09 -0.05 (5) 0.00 (3.5) 0.00 (3.5) 0.10 (2)
5 0.20 0.23 0.24 (2) 0.19 0.18 0.19 0.19 0.20 (3) 0.00 (5) 0.11 (4) 0.37 (1)
6 0.10 0.74 0.79 (2) 0.47 0.33 0.54 (4) 0.33 0.35 0.00 (5) 0.66 (3) 0.95 (1)
7 0.70 0.73 0.63 0.74 (1) 0.44 0.42 0.43 0.49 (2) 0.00 (5) 0.06 (4) 0.31 (3)
8 0.32 (2) 0.22 0.30 0.19 0.33 0.32 0.34 (1) 0.32 0.00 (4.5) 0.00 (4.5) 0.05 (3)
9 0.52 (1) 0.49 0.49 0.50 0.43 0.40 0.44 (2) 0.43 0.00 (5) 0.02 (4) 0.39 (3)
10 0.07 (2) -0.01 -0.01 -0.02 -0.06 -0.03 (5) -0.04 -0.03 0.02 (3) 0.00 (4) 0.27 (1)
11 -0.01 0.74 (1) -0.03 0.63 0.00 (5) -0.01 0.00 0.00 0.07 (4) 0.13 (3) 0.14 (2)
12 -0.04 0.11 0.10 0.17 (3) 0.10 0.11 (4) 0.08 0.10 0.00 (5) 0.36 (2) 0.55 (1)
13 0.67 (2) 0.49 0.56 0.54 0.54 0.55 0.56 (3) 0.53 0.00 (5) 0.37 (4) 0.87 (1)
14 0.37 0.50 (3) 0.46 0.50 0.48 0.48 0.51 (2) 0.48 0.00 (5) 0.28 (4) 0.65 (1)
15 0.02 0.00 0.02 0.03 (1) 0.00 0.00 0.00 0.01 (2) 0.00 (4) 0.00 (4) 0.00 (4)
16 -0.03 -0.01 -0.01 0.00 (4) -0.01 (5) -0.01 -0.03 -0.02 0.10 (2) 0.03 (3) 0.22 (1)
17 0.08 0.42 (2) 0.42 0.42 0.44 0.44 0.51 (1) 0.42 0.00 (5) 0.06 (4) 0.23 (3)
18 0.13 (2) 0.07 0.08 0.09 0.08 (3) 0.08 0.08 0.07 0.00 (4.5) 0.00 (4.5) 0.17 (1)
19 0.05 0.07 0.09 (1.5) 0.06 0.07 0.07 0.08 (3) 0.08 0.00 (5) 0.09 (1.5) 0.04 (4)
20 0.37 0.83 0.86 (2) 0.77 0.91 (1) 0.85 0.86 0.85 0.00 (4) -0.01 (5) 0.45 (3)
21 0.60 0.73 (2) 0.19 0.26 0.74 (1) 0.74 0.74 0.71 0.00 (5) 0.01 (4) 0.30 (3)
22 0.16 (1.5) 0.15 0.15 0.15 0.14 0.15 0.16 (1.5) 0.15 0.00 (5) 0.02 (4) 0.08 (3)
23 0.80 0.96 (1) 0.91 0.91 0.68 0.61 0.67 0.77 (2) 0.73 (3) 0.40 (4) 0.10 (5)

Sum ranks 40 63 101 87.5 53.5
AVG ranks 1.74 2.74 4.39 3.8 2.32

1)).
∑A
i=1R

2
i − (3N(A+ 1))), N is the number of datasets and A is the number of tested algorithms.

As the FF statistic (19.46) is greater than the critical value FDistribution (2.47), this result shows
that there exists a significant difference among the effectiveness of the algorithms.

In pursuance of indicating which of the algorithms had the best performance, the post-hoc Bonferroni-
Dunn test was used, setting SSHub Clustering as the control algorithm. In this test, the performance of

two algorithms is statistically different, if the difference between the average ranks divided by
√

A(A+1)
6N

is greater or equal to the critical difference (CD), which is calculated as: CD = qα

√
A(A+1)

6N , where
the critical value qα (2.498) is obtained from the table found in [Demsar 2006]. With the CD value
calculated (1.16), one observes that the differences between the rank averages of the algorithms SSHub
Clustering and HPKM (2.14), SSHub Clustering and Kernel k-means (5.68), SSHub Clustering and
DBSCAN (4.42) and SSHub Clustering e SSDBSCAN (1.25) were higher than CD. Therefore, it is
possible to conclude that the effectiveness of the SSHub Clustering algorithm is higher than that of
the algorithms selected as the baseline for the tested datasets.

In addition to the effectiveness, the efficiency of the algorithms was also analyzed. Figures 5 and
6 presents the times (in milliseconds) spent by each algorithm for obtaining the results presented in
Table III. Figure 5 shows the graphs of the datasets (1) to (12) and Figure 6 shows the graphs of the
datasets (13) to (23). The following labels were used in these figures to represent the results obtained
for each algorithm on the x-axis: SSHub Clustering with K = 5 (1), SSHub Clustering with K = 10
(2), SSHub Clustering with K = 15 (3), SSHub Clustering with K = 20 (4), HPKM with K = 5 (5),
HPKM with K = 10 (6), HPKM with K = 15 (7), HPKM with K = 20 (8), Kernel k-means (9),
DBSCAN (10) and SSDBSCAN (11).

The time spent by the HPKM and the SSHub Clustering algorithms considers the time required
for calculating the hubness score of the datasets (see the striped bars) and the execution time of the
algorithms. The time for calculating the hubness score was computed for the different neighborhoods
under consideration, i.e. (5), (10), (15) and (20). This time was considered separately, since it is a
pre-processing stage of the HPKM and SSHub Clustering algorithms.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

236 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(g) Dataset 7 (h) Dataset 8 (i) Dataset 9

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(j) Dataset 10 (k) Dataset 11 (l) Dataset 12 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Hubness Algorithm

Fig. 5. Execution time (milliseconds) of each algorithm for the 1-12 datasets. Bars 1-4: SSHub Clustering; bars 5-8:
HPKM ; bar 9: Kernel k-means; bar 10: DBSCAN ; bar 11: SSDBSCAN. The striped bars represent the time to
compute the hubness score of the datasets.

It is possible to note that the HPKM algorithm presents the lowest run times in 19 of the 23 tested
datasets. It was expected that through the comparison of the HPKM and the SSHub Clustering
algorithms, the HPKM would present a lower run time, since it does not possess the overhead of
the semi-supervised approach. However, it is important to highlight that in spite of this fact, SSHub
Clustering demanded less time than the HPKM in 4 of the evaluated datasets (sets 5, 15, 20 and
23). Moreover, when we consider the trade-off between efficiency and effectiveness it is important to
note that SSHub Clustering presented a better effectiveness than the HPKM in 17 of the evaluated
datasets (see Table III).

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 237

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(a) Dataset 13 (b) Dataset 14 (c) Dataset 15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(d) Dataset 16 (e) Dataset 17 (f) Dataset 18

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(g) Dataset 19 (h) Dataset 20 (i) Dataset 21

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Algorithm

(j) Dataset 22 (k) Dataset 23 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5 6 7 8 9 10 11

T
im

e
in

 m
ill

is
ec

on
ds

Hubness Algorithm

Fig. 6. Execution time (milliseconds) of each algorithm for the 13-23 datasets. Bars 1-4: SSHub Clustering; bars
5-8: HPKM ; bar 9: Kernel k-means; bar 10: DBSCAN ; bar 11: SSDBSCAN. The striped bars represent the time to
compute the hubness score of the datasets.

Analyzing the performance of the SSHub Clustering algorithm regarding the others (that is, not
considering the HPKM algorithm), it is possible to verify that it presents the lowest run times in 18
of the 23 evaluated datasets. Moreover, when only the semi-supervised clustering approaches SSHub
Clustering and SSDBSCAN are considered, the SSHub Clustering algorithm presents the lowest run
times for all datasets. Noteworthy here is that, even when considering the total sum of the time
spent with the hubness score calculation to the processing time of the SSHub Clustering algorithm,
it demanded less time than the SSDBSCAN algorithm in 19 of the 23 datasets. For example, for
the dataset 8, the SSHub Clustering algorithm demanded 74% less time than the SSDBSCAN and
obtained a better effectiveness (see Table III).

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

238 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

4.2 Varying the parameters

The experimental results presented in Section 4.1 show that the SSHub Clustering algorithm has a
higher effectiveness than all the other algorithms considered in the evaluation and an efficiency higher
than three of these algorithms. It loses only to the HPKM that employs an unsupervised clustering
approach. In addition, these results also show a variation in the effectiveness of the SSHub Clustering
algorithm when the neighborhood defined by the hubness score calculation varies. With the aim of
investigating the individual contribution of each strategy employed by the SSHub Clustering algorithm
in the final result of the clustering experiments described herein, two variations of the parameters were
considered: the non-updating of the main representatives (Section 4.2.1) and the different percentages
of borderline elements (Section 4.2.2).

To perform these experiments, 10 of the 23 datasets were selected, which were used in the experi-
ments described in Section 4.1 (see Table III): Churn (4), Covertype (5), Digits389 (6), Hepmass (8),
Isolet (9), Musk2 (10), NBA (11), Pendigits (13), Segment (14) and Urbanlandcover (17). These sets
were selected while taking into consideration that, in general, they present the highest quantity of
instances and greater variability of classes and dimensions.

4.2.1 Non-updating of the main representatives . The original version of the SSHub Clustering
presented in Algorithm 1 (lines 10 to 15) considers the updating of the main representatives at each
iteration. However, as this phase is unsupervised, it is possible for the main representative to be
replaced by a data instance which does not have the same label as the main representative of the
previous iteration.

Therefore, for these experiments, we wanted to verify if the updating of the main representatives
could have a negative impact, in terms of the effectiveness of the algorithm, as it may diverge from the
information obtained through the selection of the initial representatives during the interaction phase
with the user. For this investigation, a new version of the algorithm was implemented that does not
update the main representatives at each iteration. This version only maintained the update for the
auxiliary representatives that are derived from the must-link constraints.

Table IV presents the results of this evaluation. Column (1) represents the original version of the
SSHub Clustering algorithm, and column (2) the modified version that does not consider the updating
of the main representatives.

Observing Table IV it is noted that for values lower than K = 5, the new version without the
updating of the main representatives surpasses the original version in 7 out of the 10 evaluated
datasets. Considering K = 20, the new version presents an effectiveness that is superior for every one
of the 10 evaluated datasets. As the value of K increases, the number of datasets for which the new
version presents superior results increases and the difference in the effectiveness also increases.

Table IV. Comparison of SSHub Clustering algorithm with (1) and without (2) updating the main representatives.
Adjusted Rand Index values.

SSHub Clustering (1) SSHub Clustering (2)
Dataset K = 5 K = 10 K = 15 K = 20 K = 5 K = 10 K = 15 K = 20

4 -0.02 0.15 0.03 0.02 0.03 0.15 0.11 0.10
5 0.20 0.23 0.24 0.19 0.22 0.24 0.25 0.24
6 0.10 0.74 0.79 0.47 0.50 0.95 0.89 0.97
8 0.32 0.22 0.30 0.19 0.23 0.22 0.17 0.25
9 0.52 0.49 0.49 0.50 0.28 0.55 0.56 0.54
10 0.07 -0.01 -0.01 -0.02 0.09 0.20 0.12 0.25
11 -0.01 0.74 -0.03 0.63 0.14 0.60 0.61 0.75
13 0.67 0.49 0.56 0.54 0.55 0.79 0.73 0.76
14 0.37 0.50 0.46 0.50 0.52 0.59 0.59 0.61
17 0.08 0.42 0.42 0.42 0.43 0.48 0.47 0.49

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 239

Table V. Comparison of SSHub Clustering algorithm with different percentages for borderline instances. Adjusted Rand
Index values.

SSHub Clustering
Dataset 0% 1% 5% 10%

4 0.04 0.15 0.20 0.33
5 0.15 0.23 0.20 0.27
6 0.59 0.74 0.92 0.95
8 0.14 0.22 0.20 0.27
9 0.46 0.49 0.54 0.55
10 -0.01 -0.01 -0.06 0.04
11 0.04 0.74 0.75 0.79
13 0.50 0.49 0.53 0.62
14 0.45 0.50 0.50 0.66
17 0.46 0.42 0.45 0.49

This behavior can be explained by the fact that when the algorithm considers a smaller neighborhood
(for example, K = 5) for the identification of hubs, these may not initially be so representative.
Therefore, in this case, the final clustering result can be improved through the approach that allows
for the updating of main representatives at each iteration. On the other hand, when the algorithm
considers a larger neighborhood (for example, K = 20), the hubs become more representative and
the selection of the initial representatives at the interaction phase with the user becomes sufficient for
obtaining good results.

4.2.2 Percentage variation of borderline instances. The clustering approach employed by the SSHub
Clustering algorithm (see Section 3) allows for semi-supervision in two moments: during the selection
of the initial representatives and during the analysis of the borderline elements. The experiments
described in this section aim to allow the evaluation of the contribution made in this phase of the
analysis of borderline elements to the final clustering result. Hence, Table V exhibits the results of the
experiments by considering the parameter f as varying from 0 to 10% of the dataset size. Noteworthy
here is that when f = 0% none of the borderline instances are analyzed, i.e., semi-supervision is only
considered in the definition of the initial representatives at the first iteration of the algorithm. For
the experiments shown herein, K = 10 was adopted for the calculation of the hubness score.

Through the analysis of the results presented in Table V, one notes that, in a general sense, the
rate at which the value of the parameter f increases, the effectiveness of the algorithm also increases
(i.e., the value of the Adjusted Rand Index increases). For example, for dataset 4, the increase in
effectiveness (considering f varying from 0 to 10%) varied from 3.75 to 8.25 times when compared to
the result obtained through running the SSHub Clustering algorithm with f = 0 and for dataset 11,
the increase in effectiveness varied from 18.50 to 19.75 times when compared to the results obtained
with f = 0.

5. CONCLUSIONS

The combination of hubness with semi-supervision strategies to allow clustering results, which match
best with the desired partitioning for high-dimensional data, had still not been explored in the related
works. The proposed SSHub Clustering algorithm employs a semi-supervised clustering approach
based on partitioning, in which each partition is represented by multiple prototypes with its definition
based on hubness score information of the data instances. This information is used by the SSHub Clus-
tering semi-supervision strategies at two moments: during the selection of the initial representatives
and during the analysis of borderline elements.

The experimental results demonstrate that the method developed herein statistically surpasses four
approaches proposed in the literature that present good results in the treatment of high-dimensional
data; those being HPKM, Kernel k-means, DBSCAN and SSDBSCAN. Moreover, it was shown that

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

240 · M. C. de Lima, M. C. N. Barioni, H. L. Razente

the proposed algorithm possesses great potential for dealing with different quantities of instances,
clusters and dimensions. Among the planned future work, the exploration of other strategies for the
selection of borderline elements in the semi-supervision phase is prioritized, as well as work toward
improving the computational efficiency of the method for calculating the hubness scores, taking as a
base the work described in Section 2. Moreover, we intend to expand the scope of the experiments
by comparing the proposed algorithm with other approaches, such as: graph-based clustering and
semi-supervised algorithms based on the optimum-path forest.

REFERENCES

Aggarwal, C. C. and Reddy, C. K. Data Clustering: Algorithms and Applications. Chapman & Hall/CRC, 2013.
Aggarwal, C. C. and Yu, P. S. Finding generalized projected clusters in high dimensional spaces. In ACM SIGMOD
International Conference on Management of Data. Dallas, Texas, pp. 70–81, 2000.

Ahmed, E. B., Nabli, A., and Gargouri, F. Shacun: semi-supervised hierarchical active clustering based on ranking
constraints. In Industrial Conference on Advances in Data Mining. Berlin, Germany, pp. 194–208, 2012.

Amorim, W. P., Falcão, A. X., Papa, J. P., and de Carvalho, M. H. Improving semi-supervised learning through
optimum connectivity. Pattern Recognition vol. 60, pp. 72–85, 2016.

Barioni, M. C. N., Razente, H., Marcelino, A., Traina, A. J. M., and Traina-Jr, C. Open issues for
partitioning clustering methods: An overview. Wiley Int. Rev. Data Mining and Knowledge Discovery 4 (3): 161–
177, 2014.

Basu, S., Davidson, I., and Wagstaff, K. Constrained Clustering: Advances in Algorithms, Theory, and Applica-
tions. Chapman & Hall/CRC, 2008.

Borg, I. and Groenen, P. Modern Multidimensional Scaling: Theory and Applications. Springer, 2005.
Buza, K. Semi-supervised naive hubness bayesian k-nearest neighbor for gene expression data. In International
Conference on Computer Recognition Systems. Wroclaw, Poland, pp. 101–110, 2016.

Chapelle, O., Schlkopf, B., and Zien, A. Semi-Supervised Learning. The MIT Press, 2010.
Chen, J., Saad, Y., and Dasgupta, S. Fast approximate knn graph construction for high dimensional data via

recursive lanczos bisection. Jornal of Machine Learning Research 10 (1): 1989–2012, 2009.
Databasesports.com. Database basketball. www.databasebasketball.com, 2011. Accessed: March, 2016.
Davidson, I. and Basu, S. A survey of clustering instance level. Transactions on Knowledge Discovery from Data 1 (1):

1–41, 2007.
Demsar, J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (1):

1–30, 2006.
Dhillon, I. S., Guan, Y., and Kulis, B. Kernel k-means: Spectral clustering and normalized cuts. In International
Conference on Knowledge Discovery and Data Mining. Seattle, WA, pp. 551–556, 2004.

Dubey, A., Bhattacharya, I., and Godbole, S. A cluster-level semi-supervision model for interactive clustering. In
European Conference on Machine Learning and Knowledge Discovery in Databases. Barcelona, Spain, pp. 409–424,
2010.

Faloutsos, C. and Lin, K.-I. Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional
and multimedia datasets. ACM SIGMOD Record 24 (2): 163–174, 1995.

Flexer, A. and Schnitzer, D. Can shared nearest neighbors reduce hubness in high-dimensional spaces? In Inter-
national Conference on Data Mining Workshops. Dallas, Texas, pp. 460–467, 2013.

Hair Jr., J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. Multivariate Data Analysis. Prentice-Hall,
Inc., 1995.

Hubert, L. and Arabie, P. Comparing partitions. Journal of Classification 2 (1): 193–218, 1985.
Kailing, K. and H.P. Kriegel, P. K. Density-connected subspace clustering for high-dimensional data. In SIAM
International Conference on Data Mining. Lake Buena Vista, Florida, pp. 246–257, 2004.

Kailing, K., H.P. Kriegel, P. K., and Wanka, S. Ranking interesting subspaces for clustering high dimen-
sional data. In European Conference on Principles and Practice of Knowledge Discovery in Databases. Cav-
tat/Dubrovnik,Croatia, pp. 241–252, 2003.

Kira, K. and Rendell, L. A. The feature selection problem: Traditional methods and a new algorithm. In National
Conference on Artificial Intelligence. San Jose, California, pp. 129–134, 1992.

Kullback, S. and Leibler, R. A. On information and sufficiency. Annals of Mathematical Statistics 22 (1): 79–86,
1951.

Kumar, N. and Kummamuru, K. Semisupervised clustering with metric learning using relative comparisons. IEEE
Transactions on Knowledge and Data Engineering 20 (4): 496–503, 2008.

Li, J., Sander, J., Campello, R., and Zimek, A. Active learning strategies for semi-supervised DBSCAN. In
Canadian Conference on Artificial Intelligence. Montreal, Canada, pp. 179–190, 2014.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

Combining Semi-supervision and Hubness to Enhance High-dimensional Data Clustering · 241

Lichman, M. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013. Accessed: September, 2016.
Lima, M., Barioni, M., and Razente, H. Combinando semi-supervisão e hubness para aprimorar o agrupamento de
dados em alta dimensão. In Simpósio Brasileiro de Banco de Dados. Salvador, Brazil, pp. 139–144, 2016.

Muller, E., Gunnemann, S., Assent, I., and Seidl, T. Evaluating clustering in subspace projections of high
dimensional data. Very Large Data Base Endowment 2 (1): 1270–1281, 2009.

Saito, P. T. M., Amorim, W. P., Falcão, A. X., de Rezende, P. J., Suzuki, C. T. N., Gomes, J. F., and
de Carvalho, M. H. Active semi-supervised learning using optimum-path forest. In Int’l Conference on Pattern
Recognition (ICPR). IEEE, Stockholm, Sweden, pp. 3798–3803, 2014.

Samet, H. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, 2006.
Sander, J., Ester, M., Kriegel, H.-P., and Xu, X. Density-based clustering in spatial databases: The algorithm

GDBSCAN and its applications. Data Mining and Knowledge Discovery 2 (2): 169–194, 1998.
Satuluri, V. and Parthasarathy, S. Bayesian locality sensitive hashing for fast similarity search. Very Large Data
Base Endowment 5 (5): 430–441, 2012.

Schmidt, J., Brandle, E. M., and Kramer, S. Clustering with attribute-level constraints. In International Con-
ference on Data Mining. Vancouver, Canada, pp. 1206–1211, 2011.

Taniar, D. and Iwan, L. H. Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends. IGI
Global, 2011.

Tomasev, N. Hub miner. https://github.com/datapoet/hubminer, 2014. Accessed: November, 2014.
Tomasev, N. and Mladenic, D. Hub co-occurrence modeling for robust high-dimensional knn classification. In
European Conference on Machine Learning and Knowledge Discovery in Databases. Prague, Czech Republic, pp.
643–659, 2013.

Tomasev, N. and Mladenic, D. Hubness-aware shared neighbor distances for high-dimensional k-nearest neighbor
classification. Knowledge and Information Systems 39 (1): 89–122, 2014.

Tomasev, N., Radovanovic, M., Mladenic, D., and Ivanovic, M. The role of hubness in clustering high-
dimensional data. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Shenzhen, China, pp.
183–195, 2011.

Tomasev, N., Radovanovic, M., Mladenic, D., and Ivanovic, M. The role of hubness in clustering high-
dimensional data. IEEE Transactions on Knowledge and Data Engineering 26 (3): 739–751, 2014.

Tomasev, N., Radovanovic, M., Mladenic, D., and Ivanovic, M. Hubness-Based Clustering of High-Dimensional
Data. Springer International Publishing, 2015.

Traina-Jr, C., Traina, A. J. M., and Faloutsos, C. Fast feature selection using fractal dimension - ten years
later. Journal of Information and Data Management 1 (1): 17–20, 2010.

Wagstaff, K. and Cardie, C. Clustering with instance-level constraints. In International Conference on Machine
Learning. Williamstown, Massachusetts, pp. 1103–1110, 2000.

Wang, J., Markert, K., and Everingham, M. Learning models for object recognition from natural language
descriptions. In British Machine Vision Conference. London, UK, pp. 1–11, 2009.

Xiong, S., Azimi, J., and Fern, X. Z. Active learning of constraints for semi-supervised clustering. IEEE Transactions
on Knowledge and Data Engineering 26 (1): 43–54, 2014.

Zar, J. H. Biostatistical Analysis. Prentice-Hall, Inc., 2007.

Journal of Information and Data Management, Vol. 8, No. 3, December 2017.

