
Indexing Points on Flash-based Solid State Drives
using the xBR+-tree

Anderson Chaves Carniel1, George Roumelis2, Ricardo Rodrigues Ciferri3, Michael Vassilakopoulos2,
Antonio Corral4, Cristina Dutra de Aguiar Ciferri5

1 Federal University of Technology - Paraná, Brazil
accarniel@utfpr.edu.br

2 University of Thessaly, Greece
groumelis@uth.gr, mvasilako@uth.gr
3 Federal University of São Carlos, Brazil

ricardo@dc.ufscar.br
4 University of Almeria, Spain

acorral@ual.es
5 University of São Paulo, Brazil

cdac@icmc.usp.br

Abstract. Spatial database systems and Geographic Information Systems have focused on exploiting the positive
characteristics of flash-based Solid State Drives (SSDs) like fast reads and writes. However, designing spatial indices
for SSDs, termed flash-aware spatial indices, has been a challenging task because of the intrinsic characteristics of
these devices. Among existing works in the literature, FAST and eFIND distinguish themselves by proposing general
approaches that can be employed to design flash-aware spatial indices. In this article, we apply these approaches to
the xBR+-tree, an efficient spatial index for points. The goal is to understand how they should be adapted in order to
deal with the particular properties of the xBR+-tree. As a result, we specify two novel flash-aware spatial indices for
points, the eFIND xBR+-tree and the FAST xBR+-tree. We also conduct a performance evaluation to analyze their
performance. As main conclusion, we point out that eFIND fits very well with the xBR+-tree, allowed the processing
of the index construction to be reduced from 30.8% to 91.4%, and improved the execution of spatial queries from 22.5%
to 46%.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and GIS

Keywords: flash-aware spatial index, flash memory, spatial databases, spatial indexing, xBR+-trees

1. INTRODUCTION

The use of a spatial index is a usual strategy employed by spatial database systems and Geographic
Information Systems (GIS) to speed up the processing of spatial queries. A common objective is to
reduce the search space of the spatial query by avoiding the access of spatial objects that certainly
do not belong to its final answer [Gaede and Günther 1998]. The main assumption of several spatial
indices is that the spatial objects are stored in magnetic disks (i.e., Hard Disk Drives - HDDs). Hence,
they often consider the slow mechanical access and the high cost of search and rotational delay of
disks in their design. We term spatial indices designed for magnetic disks as disk-based spatial indices.

A wide range of disk-based spatial indices has been proposed in the literature [Gaede and Günther
1998]. The R-tree and its variants, such as the R+-tree [Sellis et al. 1987] and the R*-tree [Beckmann
et al. 1990], are well-known spatial indices. The efficient indexing of multidimensional points has
been a main focus of several indices because of the use of points in real spatial database applications.
For instance, spatial database systems and GIS represent specific locations in the Euclidean plane
as point objects that are then retrieved by queries like intersection range queries (IRQs) [Gaede and
Günther 1998; Rigaux et al. 2001; Oosterom 2005]. Other examples include spatial applications
that implement spatial rankings [Hjaltason and Samet 1995] and location-based mobile services [Silva

Journal of Information and Data Management, Vol. 10, No. 1, June 2019, Pages 33–48.



34 · A. C. Carniel et al.

et al. 2018]. Among the existing disk-based spatial indices, we highlight the xBR+-tree [Roumelis et al.
2015], which provides data structures and algorithms for handling points efficiently. In fact, extensive
experimental evaluations [Roumelis et al. 2017] showed that the xBR+-tree has outperformed variants
of the R-tree (i.e., the R*-tree and the R+-tree) when processing different types of spatial queries.

On the other hand, advanced database and spatial applications are interested in using modern
storage devices like flash-based Solid State Drives (SSDs) [Koltsidas and Viglas 2011a; Brayner and
Monteiro Filho 2016; Mittal and Vetter 2016; Fevgas et al. 2019]. This includes spatial database sys-
tems and GIS that employ spatial indices to efficiently retrieve spatial objects stored in SSDs [Emrich
et al. 2010; Koltsidas and Viglas 2011b; Carniel et al. 2016; 2017a; Carniel 2018]. The main reason
for this interest is because SSDs, in contrast to HDDs, have smaller size, lighter weight, lower power
consumption, better shock resistance, and faster reads and writes.

However, SSDs have introduced a new paradigm in data management because of their intrinsic
characteristics [Agrawal et al. 2008; Bouganim et al. 2009; Chen et al. 2009; Jung and Kandemir 2013;
Mittal and Vetter 2016; Carniel et al. 2017b; 2019]. A well-known characteristic is the asymmetric cost
of reads and writes, where a write requires more time and power consumption than a read. Further,
SSDs are able to write data to empty pages only, which means that updating data in previously written
pages requires an erase-before-update operation. Other factors that impact on SSD performance are
the processing of interleaved reads and writes, and the execution of reads on frequent locations. These
factors are related to the internal controls of SSDs, such as the internal buffers and the read disturbance
management [Chen et al. 2009; Jung and Kandemir 2013].

To deal with the intrinsic characteristics of SSDs, spatial indices specifically designed for SSDs
have been proposed in the literature. However, designing spatial indices for SSDs, termed here as
flash-aware spatial indices, has been a challenging task. A common strategy is to mitigate the poor
performance of random writes by storing index modifications in a write buffer. Whenever this buffer
is full, a flushing operation is performed. Among existing flash-aware spatial indices proposed in the
literature (see Section 2), FAST-based indices [Sarwat et al. 2013] and eFIND-based indices [Carniel
et al. 2017b; 2019] distinguish themselves. FAST and eFIND are generic frameworks that transform
disk-based hierarchical indices into flash-aware hierarchical indices. They also provide support for
data durability by using a log-structured approach that allows the framework’s write buffer to be
recovered after a fatal problem (e.g., power failure).

Considering the xBR+-tree as the state-of-the-art when indexing points, an open question is how to
efficiently deploy FAST and eFIND to make the xBR+-tree also efficient in SSDs. In this article, we
answer this question by proposing the FAST xBR+-tree and the eFIND xBR+-tree, two flash-aware
spatial indices for points. For this, we adapt the data structures of FAST and eFIND to deal with the
properties and structural constraints of the xBR+-tree.

We validate the FAST xBR+-tree and the eFIND xBR+-tree by conducting an extensive experimen-
tal evaluation that consisted of constructing indices on real and synthetic datasets and of executing
IRQs. The performance results allowed us to identify what is the best approach to make the xBR+-
tree efficient in SSDs. Our experiments showed that the eFIND xBR+-tree yielded the best results in
almost all cases, with execution time reductions from 30.8% to 91.4% when building indices and from
22.5% to 46% when processing IRQs.

The rest of this article is organized as follows. Section 2 surveys related work and details how this
article extends our previous work [Carniel et al. 2018]. Section 3 summarizes the structure of the
xBR+-tree. Section 4 presents the FAST xBR+-tree. Section 5 introduces the eFIND xBR+-tree.
Section 6 discusses the conducted experiments. Finally, Section 7 concludes the paper and presents
future work.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 35

2. RELATED WORK

There are few flash-aware spatial indices that have been proposed in the literature. In this section,
we summarize the characteristics of the main flash-aware spatial indices as follows. The RFTL [Wu
et al. 2003] ports the R-tree to SSDs using a write buffer to avoid random writes. Its main problem is
the flushing operation that flushes all modifications stored in the write buffer, requiring high elapsed
times. Another problem is related to lack of data durability. This means that the modifications stored
in the write buffer are lost after a system crash or power failure.

MicroHash and Micro Grid File [Lin et al. 2006] are data structures for flash-based sensor devices.
Due to the low processing capabilities of sensor devices, they deploy write buffers only. The F-KDB [Li
et al. 2013] employs a write buffer that stores modified entries of the K-D-B-tree [Robinson 1981],
called logging entries. Its main problem is that retrieving nodes is a complex operation because the
entries of a node might be stored in different flash pages. Finally, theGrid file for flash memory [Fevgas
and Bozanis 2015] employs a buffer strategy based on the Least Recently Used (LRU) replacement
policy [Denning 1980] to maintain modifications of the grid file [Nievergelt et al. 1984]. A flushing
operation writes to the SSD only those index pages that are classified as cold pages. However, the
quantity of modifications is not considered, leading to a possibly high number of flushing operations.

FAST [Sarwat et al. 2011; 2013] distinguishes itself as a generic framework that generalizes the
write buffer to store modifications of any hierarchical index. Hence, it transforms any disk-based
hierarchical index into a flash-aware index. Further, FAST provides a specialized flushing algorithm
that employs a flushing policy for selecting a flushing unit to be written to the SSD instead of writing
all modifications contained in the write buffer. A flushing unit consists of a set of nodes. Further,
FAST defines that a flushing unit has only sequential nodes (based on its relative record number in the
index file). Hence, FAST guarantees that the flushing operation is executed as a batch operation. The
FAST’s flushing policy then picks the flushing unit which has the best balance between the number
of modifications and recency of the modifications. FAST also provides support for data durability by
employing a log-structured approach.

The FOR-tree [Jin et al. 2015] improves the flushing algorithm of FAST by dynamically creating
flushing units containing modified nodes only. It also abolishes splitting operations by allowing over-
flowed nodes. Whenever a specific number of accesses in an overflowed node is reached, a merge-back
operation is invoked. This operation eliminates overflowed nodes by inserting them into the parent
node, growing up the tree if needed. However, the number of accesses of an overflowed root node
is never incremented in an insertion operation. As a consequence, the construction of a FOR-tree,
inserting one spatial object by time, forms an overflowed root node instead of a hierarchical structure.
This critical problem prevented us from creating spatial indices over large and medium spatial datasets
using the FOR-tree.

eFIND [Carniel et al. 2017b; 2019] is another generic framework that efficiently transforms any
disk-based spatial index into a flash-aware spatial index. It is based on distinct design goals that
consider the intrinsic characteristics of SSDs. eFIND leverages a specialized flushing algorithm that
employs a flushing policy to pick the best flushing unit to be written to the SSD. The main flushing
policy of eFIND takes into account the height of the node by prioritizing the nodes in the higher level
of the tree. eFIND also deploys an in-memory read buffer in order to avoid reads on frequent locations.
This read buffer deploys a read buffer replacement policy that manages the nodes to be cached in the
main memory. Further, eFIND specifies a temporal control to mitigate the effects of interleaved reads
and writes. Finally, eFIND applies a log-structure approach to guarantee data durability.

Although FAST and eFIND have the aforementioned advantages, they have been applied to the
R-tree only [Carniel et al. 2019; Sarwat et al. 2013]. This limits the study on the applicability of these
general approaches in other spatial indexing structures, such as the xBR+-tree. In this article, we
extend our previous work [Carniel et al. 2018] by detailing how FAST and eFIND should be adapted

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



36 · A. C. Carniel et al.

to deal with the properties and structural constraints of the xBR+-tree (Section 3). As a result, we
present the FAST xBR+-tree and the eFIND xBR+-tree. We also extend the experiments of our
previous work by considering other spatial datasets with different characteristics and volume. This
allows us to identify the best approach to port the xBR+-tree to SSDs.

This article also advances on studies that aim to apply the xBR+-tree to SSDs, such as algorithms
for executing spatial batch-queries [Roumelis et al. 2018] and bulk-loading strategies [Roumelis et al.
2019]. The first study refers to the proposal of algorithms for processing sets of spatial queries only,
whereas the second study proposes strategies to build xBR+-trees from a set of points as a single and
unique operation. Hence, these studies focus on specific types of algorithms involving the xBR+-tree.
Moreover, these studies do not deal with durability issues. On the other hand, in this article we
focus on providing a general strategy to efficiently implement index operations on SSDs. That is,
our solutions can be employed to process general transactions in spatial database systems, such as
insertions, deletions, and spatial queries.

3. THE XBR+-TREE

The xBR+-tree is a hierarchical index based on the regular decomposition of space of Quadtrees [Samet
1984] able to index multidimensional points. Hence, it is a space-driven access method. For bidi-
mensional points, the xBR+-tree decomposes recursively the space to 4 equal quadrants, called sub-
quadrants. Figure 1a depicts an example of an xBR+-tree that indexes 15 points (i.e., p1 to p15).
Figure 1b shows this xBR+-tree with a set of adjustments, represented by thick lines, after the inser-
tion of two new points, p16 and p17. These points and the resulting adjustments should be handled by
FAST (Section 4) and eFIND (Section 5) and are also highlighted in the hierarchical representation
of Figure 1c. We detail the structure of the xBR+-tree and its structural constraints and properties
as follows.

There are two types of nodes, internal nodes and leaf nodes. Internal nodes consist of entries in
the following format (id ,DBR, qside, shape). Each entry of an internal node refers to a child node
that is pointed by id and represents a sub-quadrant of the original space. DBR refers to the data
bounding rectangle that minimally encompasses the points stored in such a sub-quadrant. qside stores
the side length of the sub-quadrant corresponding to the child node’s entry. Finally, shape is a flag
that indicates if the sub-quadrant is either a complete square or a non-complete square. The entries
of an internal node are also sorted by their addresses. Each address is calculated by using qside and
DBR, and consists of a sequence of directional digits representing a sub-quadrant. The directional
digits 0, 1, 2, and 3 respectively symbolize the northwest (NW), northeast (NE), southwest (SW), and
southeast (SE) sub-quadrants of a relative space. Hence, it follows the Z-order.

Figure 1c depicts a tree with 3 internal nodes, R, I1, and I2, that corresponds to the graphical
representation of Figure 1b. In Figure 1c, the entries and nodes updated by the insertion of p16 and
p17 appear shaded; in fact, N1 is a newly created node resulting from dividing L4 which previously
hosted the points p13, p1, p8, and p14 (Figure 1a). Each internal node has also a header containing
data about its sub-quadrant. For instance, the origin point of the sub-quadrant of R is (0, 0) with a
side length of 200. The address of each entry of an internal node is shown in bold (but, this is not
actually stored). For instance, the right child of R that points to I2 is the NW quadrant of the original
space, denoted as 0* (* is used to mark the end of the address). Further, it represents a complete
square (i.e., SQ). Its DBR consists of a minimum bounding rectangle containing the points p1, p5, p6,
p7, p8, p13, p14, and p17. The left child of R represents a region derived from the spatial difference
between the original space and the region of the NW quadrant, that is, the union of the NE, SW,
and SE quadrants of the original space. Hence, it has the address * (i.e., empty) and represents a
non-complete square (i.e., nSQ). Its DBR consists of a minimum bounding rectangle containing the
points p2, p3, p4, p9, p10, p11, p12, p15, p16. Finally, addresses of entries of internal nodes determine
a sub-quadrant in relation to the region of their node. For instance, the address 3* (in node I2 of

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 37

p1

p2

p3

p4

p5

p6

p7
p8

p9
p10

p11

p12

p14 p15

0* 1*

12*03*

L4 L5

p1p13 p14 p5p6

L1 L3L2

p11p3 p2p15 p12 p7p9p4 p8p10

(0,0)-200 (0,0)-100

(0,0)-200

Stored in the storage device (wthout any modification)

nSQ nSQ SQ

* 1* 12*

nSQ SQ

* 3*

nSQ SQ

* 0*

I1 I2

R

p13

*

nSQ

p1

p2

p3

p4

p5

p6

p7
p8

p9
p10

p11

p12
p13

p14 p15

0* 1*

12*03*

L4 N1

p17p14 p1p13 p8

L1 L3L2

p3p16 p11 p2p15 p12p9p4p10

(0,0)-200 (0,0)-100

(0,0)-200

After insertion of p16 and p17

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

p16

02*

p17

*

(a) The initial xBR+-tree (b) Insertion of p16 and p17 in (a)

nSQ

p1

p2

p3

p4

p5

p6

p7
p8

p9
p10

p11

p12
p13

p14 p15

0* 1*

12*03*

L4 N1

p17p14 p1p13 p8

L1 L3L2

p3p16 p11 p2p15 p12p9p4p10

(0,0)-200 (0,0)-100

(0,0)-200

After insertion of p16 and p17

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

p16

02*

p17

*

(c) Hierarchical representation of (b)

Fig. 1. An example of an xBR+-tree.

Figure 1c) represents the SE sub-quadrant of the NW sub-quadrant of the original space (the region
of I2, denoted by 0* in R of Figure 1c).

Leaf nodes contain entries in the format (id , p), where p is the multidimensional point and id is
a pointer to the register of p. These entries are sorted by X-axis coordinates of the points, allowing
the use of the plane sweep technique in specific spatial query types. For instance, the leaf node L1 in
Figure 1c contains the points p16, p3, and p11, which are sorted by their X-axis coordinates depicted
in Figure 1b. The pointers to the registers of these points are omitted.

Since the entries of internal and leaf nodes have fixed sizes, each type of nodes is characterized
by a specific capacity of its type of entries. Whenever the capacity of a leaf or internal node is
exceeded, the quadrant encompassing the overflowed node is partitioned into two sub-quadrants ac-
cording to a Quadtree-like hierarchical decomposition. Different criteria for this partitioning are
conceivable [Roumelis et al. 2017]. For instance, Figure 1b depicts the creation of a new sub-quadrant
with address 02* (i.e., node N1 in Figure 1c) resulting from a splitting operation after inserting p17.

4. THE FAST XBR+-TREE

FAST provides two main data structures to handle index modifications [Sarwat et al. 2013]; they are:
a write buffer, and a log file. To deal with the xBR+-tree, we extend the FAST’s data structures as
follows: (i) we adapt the write buffer to store specific data related to internal nodes, and (ii) we also
apply similar changes to the log file, making possible the recovery of the write buffer after a system
crash. Further, FAST provides generic algorithms that handle its data structures when executing the
index operations of the underlying index. To deal with the xBR+-tree, we also adapt these algorithms.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



38 · A. C. Carniel et al.

FAST - After insertion of p16 and p17

nSQ

L4 N1
p1

7

p1

4
p1

p1

3
p8

L1 L3L2

p3
p1

6

p1

1
p2

p1

5

p1

2
p9p4p10

(0,0)-
200

(0,0)-
100

(0,0)-
200

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

page_id status list

R MOD

I1 MOD

I2 MOD

L1 MOD

L4 MOD

N1 NEW

(16560, K, 1, MBR(I1)) (18378, K, 2, MBR(I2)) ∅

(16654, K, 1, MBR(L1)) ∅

(18000, K, 1, MBR(L4)) (18002, K, 2, MBR(N1)) ∅

(16545, K, 1, p16) ∅(16542, H, 1, ∅)

(17448, K, 2, ∅)(17446, K, 1, ∅)

(17954, K, 2, p1)(17952, K, 1, p13) (17956, K, 3, p8) ∅

(17452, K, 4, ∅)(17450, K, 3, ∅) (17456, K, 2, p17)(17454, K, 1, p14) ∅

(a) Tree Modifications Table

FAST - After insertion of p16 and p17page_id status list

R MOD

I1 MOD

I2 MOD

L1 MOD

L4 MOD

N1 NEW

(16560, K, 1, MBR(I1)) (18378, K, 2, MBR(I2)) ∅

(16654, K, 1, MBR(L1)) ∅

(18000, K, 1, MBR(L4)) (18002, K, 2, MBR(N1)) ∅

(16545, K, 1, p16) ∅(16542, H, 1, ∅)

(17448, K, 2, ∅)(17446, K, 1, ∅)

(17954, K, 2, p1)(17952, K, 1, p13) (17956, K, 3, p8) ∅

(17452, K, 4, ∅)(17450, K, 3, ∅) (17456, K, 2, p17)(17454, K, 1, p14) ∅

log# operation node_list modification

1 MOD L1 (H, 1, ∅)

2 MOD L1 (K, 1, 16)

3 MOD I1 (K, 1, MBR(L1))

4 MOD R (K, 1, MBR(I1))

5 MOD L4 (K, 1, ∅)

6 MOD L4 (K, 2, ∅)

7 MOD L4 (K, 3, ∅)

8 MOD L4 (K, 4, ∅)

9 MOD L4 (K, 1, p14)

10 MOD L4 (K, 2, p17)

11 NEW N1 -

12 MOD N1 (K, 1, p13)

13 MOD N1 (K, 2, p1)

14 MOD N1 (K, 3, p8)

15 MOD I2 (K, 2, MBR(N1))

16 MOD R (K, 2, MBR(I2))

(b) Log file

Fig. 2. The Tree Modifications Table and the log file of FAST to handle the modifications of the xBR+-tree of Figure 1c.
As a result, the FAST xBR+-tree is created.

We detail the extensions performed to propose the FAST xBR+-tree as follows.

Adapting the write buffer. The write buffer is implemented as a hash table named Tree Modi-
fications Table. The key of this hash table is the identifier of the node (i.e., page_id) and its value
is a pair (status, list). status is a flag indicating the type of the node modification and assumes
the value NEW, DEL, or MOD if the node is newly created, deleted, or modified, respectively. For
status equal to NEW and DEL, list points to the newly created node stored in the main memory
and to null, respectively. For status equal to MOD, list is a modification list storing quadruples
(timestamp, type, index, value), where timestamp stores the moment of the modification, type informs
what is modified (K for a modified entry), index is the position of the modification, and value is the
result of the modification. We have also employed type to indicate if an entry should be inserted in
a specific position of a node to satisfy the sorting property of the xBR+-tree. Before indicating that
a new entry will be inserted in such a position, an element of the modification list should store the
position that will accommodate the new entry. This is indicated in the form of a hole (i.e., type equal
to H ).

Figure 2a depicts the Tree Modifications Table for handling the modifications of the xBR+-tree of
Figure 1b. In this figure, MBR represents the rectangle that encompasses all points of a sub-quadrant
considering the modifications stored in the write buffer in a particular moment (i.e., indicated by
timestamp). Each hash entry has a modification list indicating the final result of the modified entries.
For instance, the first line of the hash table in Figure 2a shows that R has the status MOD, and stores
a modification list with size equal to 2. The first modification refers to the first entry of R in order to
handle the adjustment of its DBR after inserting p16, whereas the second modification indicates that
the DBR is adjusted in order to deal with the insertion of p17.

Another example of using the modification list is when dealing with splits. Let A be an overflowed

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 39

node. First, the splitting operation of the underlying index is executed, distributing the entries of A
between itself and a newly created node, called B. To save these modifications in the write buffer,
all entries of A are deleted, then its new entries are added to its modification list, and finally the
newly created node is stored as a new hash entry in the Tree Modifications Table. In our example, this
procedure is performed to handle the splitting operation after inserting p17 in the node L4, as depicted
in the two last lines of the Tree Modifications Table in Figure 2a. That is, the first four elements of
the modification list of L4 refer to the deletion of the old entries, and the remaining elements are
related to the new entries of L4 after executing the splitting operation. In addition, the new node N1

is created, containing three elements that were previously stored in L4 (Figure 2a).

Adapting the log file. FAST guarantees data durability by storing all modifications contained in the
Tree Modifications Table in a log file. Each log entry is a triple (operation,node_list ,modification),
where operation extends the possible values of status by adding the flag FLUSH for flushing operations,
node_list is the list of affected nodes, and modification is the subset (type, index , value) of the value
used in the Tree Modifications Table. Figure 2b depicts the log file for storing all the modifications of
the Tree Modifications Table of Figure 2a.

Adapting the generic algorithms. FAST provides generic algorithms for executing the following
operations: (i) insert operation, which specifies how the index modifications are stored in the write
buffer and in the log file, (ii) search operation, which is responsible for retrieving nodes, (iii) flushing
operation, which selects a set of modifications stored in the write buffer to be written to the SSD
according to a flushing policy, and (iv) restart operation, which rebuilds the write buffer after a fatal
problem and compacts the log file.

To correctly retrieve a node of the xBR+-tree, we mainly adapt FAST as follows. There are three
possible cases when retrieving a node N : (i) N is read from the SSD if it has no modifications, (ii)
N is directly returned from the Tree Modifications Table if its status is equal to DEL or NEW, and
(iii) the modifications of N are applied to it if its status is equal to MOD. In the third case, which
involves our extensions, the old version of N is read from the SSD and then for each element in the
modification list, we apply the modification to the corresponding position (i.e., index ) of N . Note
that if the modification is a hole, we shift all elements after the position in order to create free space
for the new element that is inserted into the sequence. This guarantees that the elements in N fulfill
the sorting property of the xBR+-tree.

5. THE EFIND XBR+-TREE

eFIND provides specific data structures to handle index modifications and exploit SSD performance
according to its design goals [Carniel et al. 2019]. They are: a write buffer, a read buffer, a log file,
and read and write queues. To deal with the xBR+-tree, we extend the eFIND’s data structures as
follows: (i) we adapt the write and read buffers to store specific data related to internal nodes, (ii)
we generalize the storage of index modifications according to the sorting properties of internal and
leaf nodes, and (iii) we adjust the structure of log entries to recover the write buffer after a system
crash. Further, eFIND provides generic algorithms that handle its data structures. To deal with the
xBR+-tree, we also adapt these algorithms. We detail the extensions performed to propose the eFIND
xBR+-tree as follows.

Adapting the write and read buffers. The write buffer is implemented as a hash table named
Write Buffer Table and stores the modifications of nodes that were not applied to the SSD yet. Its
main goal is to avoid random writes to the SSD. The key of this hash table is the identifier of a node
(page_id) and its value stores modifications in the format (h, mod_count, timestamp, reg, status,
mod_tree). Here, h stores the height of the modified node, mod_count is the quantity of in-memory
modifications, timestamp informs when the last modification was made, reg is the sub-quadrant of a

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



40 · A. C. Carniel et al.

newly created internal node, and status is the type of modification made and can be NEW, MOD, or
DEL for representing newly created nodes in the buffer, nodes stored in the SSD but with modified
entries, and deleted nodes, respectively. If status is equal to DEL, mod_tree is null. Otherwise, it is a
red-black tree containing the most recent version of modified entries. Each element of this red-black
tree has the format (e, mod_result), where e is the key and corresponds to the unique identifier of an
entry and mod_result stores the latest version of an entry, assuming null if e was removed. To deal
with the xBR+-tree, we extend the standard comparison function of eFIND to guarantee the sorting
property of internal and leaf nodes. That is, for internal nodes, the comparison function deploys the
ascending order of the directional digits of the entries by using reg as a basis for the calculation; for
leaf nodes, the comparison function considers the ascending order of the X-axis coordinates.

Figure 3a shows theWrite Buffer Table for handling the modifications of the xBR+-tree of Figure 1b.
In this figure, MBR has the same representation as in Figure 2a, that is, the rectangle that encompasses
all points of a sub-quadrant. The elements of the mod_tree employ the same format as an entry of
the underlying index. For instance, the first line of the hash table in Figure 3a shows that R, located
in the height 2, has the status MOD, and stores 2 in-memory modifications in the mod_tree. Hence,
the most recent version of the two entries of R are now the entries of the red-black tree, that is,
(I1,MBR(I1), 200,nSQ) and (I2,MBR(I2), 100,SQ).

To improve the space utilization of the write buffer, splits are handled as follows. If the overflowed
node, called A, has a hash entry in the Write Buffer Table, it first assumes status equal to DEL,
deleting its previous modifications and thus freeing some space in the write buffer. Otherwise, a new
hash entry with status equal to DEL is created in the Write Buffer Table. Then, after completing
the splitting operation in the main memory, A has a new set of entries and a new node, called B,
is created. Hence, the hash entry of A in the Write Buffer Table becomes NEW and the entries of
A are added to its corresponding mod_tree. A similar procedure for B is employed. An example of
splitting operation is after inserting p17 (Figure 1b). As a result, L4 has 4 modifications (fifth line
in the Write Buffer Table of Figure 3a), where one modification is related to its deletion, another
modification is related to its creation, and then two modifications for inserting its two entries (i.e.,
p14 and p17). Further, N1 is newly created in the write buffer (last line in the Write Buffer Table of
Figure 3a), containing 4 modifications: one for its creation and 3 for inserting p1, p13 and p8.

The read buffer is implemented as another hash table named Read Buffer Table and caches nodes
stored in the SSD that are frequently accessed. The key of this hash table is the unique node identifier
(page_id) and its value stores a list of entries of the node (entries) and its sub-quadrant, if it is
an internal node (reg). A read buffer replacement policy is employed to decide which hash entries
should be replaced if the read buffer is full and another hash entry must be stored in the read buffer.
Experiments conducted in [Carniel et al. 2019] have shown that the Simplified 2Q [Johnson and Shasha
1994] as replacement policy guarantees good performance results for the read buffer. Figure 3b depicts
that R, I2, and L5 are cached in the Read Buffer Table. In this figure, MBRS refers to the stored
data bounding rectangle of a child node. For instance, the entries of the cached version of I2 consist
of two entries, even after the creation of N1.

Adapting the log file. To provide data durability, all modifications are also stored in a log file.
The format of a log entry is very similar to the format of a hash entry in the Write Buffer Table.
More specifically, each log entry consists of a tuple (page_id , h, reg , type_mod , result), where page_id
stores the identifier of the node, h is the height of the node, reg corresponds to the sub-quadrant
of a newly created internal node and assumes null otherwise, type_mod assumes NEW for newly
created nodes, DEL for deleting nodes, FLUSH for flushing operations, and MOD otherwise. Finally,
result is equivalent to an element of the red-black tree of the node in the mod_tree. By storing this
data, we are able to recover the write buffer after a fatal problem. The cost of keeping the log of
the modifications is very low because it requires sequential writes only [Sarwat et al. 2013; Carniel
et al. 2019]. Figure 3d depicts the log file for storing all the modifications of the Write Buffer Table

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 41

After insertion of p16 and p17

nSQ

L4 N1

p17p14 p1p13 p8

L1 L3L2

p3p16 p11 p2p15 p12p9p4p10

(0,0)-200 (0,0)-100

(0,0)-200

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

page_id h mod_count timestamp reg status mod_tree

R 2 2 18378 - MOD

I1 1 1 16654 - MOD

I2 1 2 18002 - MOD

L1 0 1 16545 - MOD

L4 0 4 17456 - NEW

N1 0 4 17956 - NEW

page_id reg entries

R (0,0)-200

I2 (0,0)-100

L5 -

(I1, MBRs(I1), 200, nSQ) (I2, MBRs(I2), 100, SQ) ∅
I1

L1

L3

RQ WQ

(I1, MBR(I1), 200, nSQ)

L3

L2

L5

(I2, MBR(I2), 100, SQ)
(L1, MBR(L1), 200, nSQ)

(L4, MBR(L4), 100, nSQ)

(N1, MBR(N1), 50, SQ)
p16

p8

p1

p13

(14, p14)

(17, p17)

(1, ∅)

(8, ∅)

(13, ∅)

p14

p17

(L4, MBRs(L4), 100, nSQ) (L5, MBRs(L5), 50, SQ) ∅

p6 ∅p5 p7

(a) Write Buffer Table

After insertion of p16 and p17

nSQ

L4 N1

p17p14 p1p13 p8

L1 L3L2

p3p16 p11 p2p15 p12p9p4p10

(0,0)-200 (0,0)-100

(0,0)-200

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

page_id h mod_count timestamp reg status mod_tree

R 2 2 18378 - MOD

I1 1 1 16654 - MOD

I2 1 2 18002 - MOD

L1 0 1 16545 - MOD

L4 0 4 17456 - NEW

N1 0 4 17956 - NEW

page_id reg entries

R (0,0)-200

I2 (0,0)-100

L5 -

(I1, MBRs(I1), 200, nSQ) (I2, MBRs(I2), 100, SQ) ∅
I1

L1

L3

RQ WQ

(I1, MBR(I1), 200, nSQ)

L3

L2

L5

(I2, MBR(I2), 100, SQ)
(L1, MBR(L1), 200, nSQ)

(L4, MBR(L4), 100, nSQ)

(N1, MBR(N1), 50, SQ)
p16

p8

p1

p13

(14, p14)

(17, p17)

(1, ∅)

(8, ∅)

(13, ∅)

p14

p17

(L4, MBRs(L4), 100, nSQ) (L5, MBRs(L5), 50, SQ) ∅

p6 ∅p5 p7

After insertion of p16 and p17

nSQ

L4 N1

p17p14 p1p13 p8

L1 L3L2

p3p16 p11 p2p15 p12p9p4p10

(0,0)-200 (0,0)-100

(0,0)-200

nSQ SQ

* 1* 12*

nSQ SQ

* 2*

nSQ SQ

* 0*

I1 I2

R

L5

p5p6 p7

SQ

3*

page_id h mod_count timestamp reg status mod_tree

R 2 2 18378 - MOD

I1 1 1 16654 - MOD

I2 1 2 18002 - MOD

L1 0 1 16545 - MOD

L4 0 4 17456 - NEW

N1 0 4 17956 - NEW

page_id reg entries

R (0,0)-200

I2 (0,0)-100

L5 -

(I1, MBRs(I1), 200, nSQ) (I2, MBRs(I2), 100, SQ) ∅
I1

L1

L3

RQ WQ

(I1, MBR(I1), 200, nSQ)

L3

L2

L5

(I2, MBR(I2), 100, SQ)
(L1, MBR(L1), 200, nSQ)

(L4, MBR(L4), 100, nSQ)

(N1, MBR(N1), 50, SQ)
p16

p8

p1

p13

(14, p14)

(17, p17)

(1, ∅)

(8, ∅)

(13, ∅)

p14

p17

(L4, MBRs(L4), 100, nSQ) (L5, MBRs(L5), 50, SQ) ∅

p6 ∅p5 p7

(b) Read Buffer Table (c) Temporal Control

page_id h mod_count timestamp reg status mod_tree

R 2 2 18378 - MOD

I1 1 1 16654 - MOD

I2 1 2 18002 - MOD

L1 0 1 16545 - MOD

L4 0 4 17456 - NEW

N1 0 4 17956 - NEW

(I1, MBR(I1), 200, nSQ)

(I2, MBR(I2), 100, SQ)(L1, MBR(L1), 200, 
nSQ)

(L4, MBR(L4), 100, 
nSQ)

(N1, MBR(N1), 50, SQ)
p16

p8

p1

p13

p14

p17

log# page_id h reg type_mod result

1 L1 0 - MOD p16

2 I1 1 - MOD (L1, MBR(L1), 200, nSQ)

3 R 2 - MOD (I1, MBR(I1), 200, nSQ)

4 L4 0 - DEL -

5 L4 0 - NEW -

6 L4 0 - MOD p14

7 L4 0 - MOD p17

8 N1 0 - NEW -

9 N1 0 - MOD p13

10 N1 0 - MOD p1

11 N1 0 - MOD p8

12 I2 1 - MOD (L4, MBR(L4), 100, nSQ)

13 I2 1 - MOD (N1, MBR(N1), 50, SQ)

14 R 2 - MOD (I2, MBR(I2), 100, SQ)

(d) Log file

Fig. 3. Data structures to handle the modifications of the xBR+-tree of Figure 1c. As a result, the eFIND xBR+-tree
is created.

of Figure 3a.

Unchanged structures. The temporal control of eFIND remains unchanged. The read and writes
queues, named RQ and WQ, are employed to provide temporal control of eFIND. Each queue is a
First-In-First-Out data structure. RQ stores identifiers of the nodes read from the SSD, while WQ
keeps the identifiers of the last nodes written to the SSD. Figure 3c shows that the last read nodes
are I1, L1, and L3, and the last flushed nodes are L3, L2, and L5.

Adapting the generic algorithms. The generic algorithms provided by eFIND can be applied
to any eFIND-based spatial index to execute the following operations: (i) maintenance operation,
which is responsible for reorganizing the index whenever modifications are made on the underlying
spatial dataset (i.e., insertions, deletions, and updates), (ii) search operation, which is responsible for
executing spatial queries, (iii) flushing operation, which selects a set of modifications stored in the
write buffer to be written to the SSD according to a flushing policy, and (iv) restart operation, which
rebuilds the write buffer after a fatal problem and compacts the log file.

To deal with the sorting property of the xBR+-tree, we extend eFIND when retrieving nodes in
search operations as follows. To retrieve a node N , the eFIND xBR+-tree returns the modified entries
stored in the Write Buffer Table or the entries stored in the SSD, if one of them is empty. The former

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



42 · A. C. Carniel et al.

is empty if N has no modifications, while the latter is empty if there exists a hash entry of N in the
Write Buffer Table with status equal to NEW. If one list is empty, the other non-empty list is directly
returned. The second list is always sorted because its first flushing happens when its status in the
Write Buffer Table is equal to NEW. If these lists are not empty, a classical merge operation between
two sorted lists is performed [Folk et al. 1997]. That is, the lists are merged into a unique list, which
represents the entries of N , by considering the same comparison function of the write buffer. During
the merging, if two elements correspond to the same entry, the preference is for the element that is
stored in the main memory since it represents the most recent version of the entry.

6. EXPERIMENTAL EVALUATION

This section presents our experiments conducted to measure the efficiency of the FAST xBR+-tree
and the eFIND xBR+-tree. Section 6.1 presents the experimental setup. Performance results are
presented in Sections 6.2 and 6.3.

6.1 Experimental Setup

Datasets. We used four spatial datasets. Two of them are synthetic datasets, called synthetic1 and
synthetic2, containing respectively 500,000 points and 1,000,000 points. Each synthetic dataset stores
points equally distributed in 125 clusters uniformly distributed in the range [0, 1]2. The points in
each cluster (i.e., 4,000 points for synthetic1 and 8,000 points for synthetic2 ) were located around
the center of each cluster, according to Gaussian distribution. The methodology for creating these
synthetic datasets is the same as the experiments conducted in [Roumelis et al. 2017]. The remaining
two spatial datasets contain real data collected from OpenStreetMaps. The first one is a real spatial
dataset, called brazil_points2017, containing 770,842 points inside Brazil. The second one, called
us_midwest_points2017, contains 1,720,357 points inside the Midwest of the USA. These real spatial
datasets were extracted using the methodology in [Carniel et al. 2017c] and represent geographical
locations like public telephones, ATMs, and towers.

Configurations. We compared two configurations: (i) the FAST xBR+-tree (Section 4), and (ii) the
eFIND xBR+-tree (Section 5). They had a buffer of 512KB, log capacity of 10MB, and employed
index page sizes (i.e., node sizes) from 4KB to 32KB. For the FAST xBR+-tree, we used the FAST*
flushing policy, which provided the best results according to [Sarwat et al. 2013]. For the eFIND
xBR+-tree, we employed the best parameter values according to our experiments [Carniel et al. 2019]:
the use of 60% of the oldest modified nodes to create flushing units, a flushing policy using the height
of nodes as weight to choose one flushing unit to be written, and the allocation of 20% of the buffer
for the read buffer. Finally, both configurations employed a flushing unit size equal to 5 since this
value commonly provides good results for FAST and eFIND [Carniel et al. 2017b; 2019].

Workloads. We executed two workloads on each spatial dataset: (i) index construction by inserting
points one-by-one, and (ii) execution of 300 intersection range queries (IRQs). An IRQ retrieves the
points contained in a given rectangular query window, including its borders. Three different sets of
query windows were used, representing respectively 100 rectangles with 0.001%, 0.01%, and 0.1% of
the area of the total extent of the dataset being used by the workload. We generated different query
windows for each dataset using the algorithms described in [Carniel et al. 2017c]. This method allows
us to measure the performance of spatial queries with distinct selectivity levels. We consider the
selectivity of a spatial query as the ratio of the number of returned objects and the total objects;
thus, the three sets of query windows built IRQs with low, medium, and high selectivity, respectively.
We executed the workloads as a sequence, that is, the index construction followed by the execution of
IRQs. For each configuration and dataset, this sequence was executed 5 times. We avoided the page
caching of the system by using direct I/O. For the first workload, we collected the average elapsed

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 43

2 4 8 16 32
0

100

200

300

400

500

(a) synthetic1
Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

250

500

750

1,000

1,250

1,500

(b) synthetic2
Index Page Size (KB)

eFIND xBR+-tree FAST xBR+-tree

Fig. 4. The eFIND xBR+-tree showed the best elapsed times when building spatial indices on the synthetic datasets.

2 4 8 16 32
0

150

300

450

600

750

(a) brazil points2017
Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

400

800

1,200

1,600

2,000

(b) us midwest points2017
Index Page Size (KB)

eFIND xBR+-tree FAST xBR+-tree

Fig. 5. The eFIND xBR+-tree also showed the fastest elapsed times when building spatial indices on the real datasets.
Its reductions were more expressive than those reported in Figure 4.

time. For the second workload, we calculated the average elapsed time to execute each set of query
windows.

Running Environment. We employed a server equipped with an Intel Corer i7-4770 with a fre-
quency of 3.40GHz, 32GB of main memory, and the SSD Kingston V300 of 480GB. The operating
system used was Ubuntu Server 14.04 64 bits.

6.2 Index Construction

Figures 4 and 5 show that the eFIND xBR+-tree always outperformed the FAST xBR+-tree for all
used spatial datasets. The performance gains of the eFIND xBR+-tree against the FAST xBR+-tree
ranged from 30.8% to 62.8% for the synthetic spatial datasets (Figure 4) and from 61.7% to 91.4%
for the real spatial datasets (Figure 5). A performance gain shows how much a configuration reduced
the elapsed time from another configuration.

The eFIND xBR+-tree exploited the benefits of the SSD because it exploits specific data structures
and sophisticated methods that take into account the intrinsic characteristics of SSDs. That is, the
adaptations performed on the eFIND fitted well with the structure of the xBR+-tree. We highlight

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



44 · A. C. Carniel et al.

2 4 8 16 32
0

0.1

0.2

Low selectivity

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

0.1

0.2

0.3

Medium selectivity

Index Page Size (KB)

2 4 8 16 32
0

0.2

0.4

0.6

0.8

High selectivity

Index Page Size (KB)

(a) synthetic1

eFIND xBR+-tree FAST xBR+-tree

2 4 8 16 32
0

0.1

0.2

0.3

Low selectivity

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

0.2

0.4

0.6

Medium selectivity

Index Page Size (KB)

2 4 8 16 32
0

0.5

1

1.5

High selectivity

Index Page Size (KB)

(b) synthetic2

Fig. 6. Performance results when processing IRQs on the synthetic spatial datasets. For the synthetic1, the eFIND
xBR+-tree outperformed the FAST xBR+-tree for all selectivity levels. For the synthetic2, the eFIND xBR+-tree
showed to be the best configuration since it reduced the elapsed time for almost all cases.

two main contributions. First, the use of the read buffer avoided several reads on frequent locations
of the SSD, even using a small portion of the whole buffer size. Recall that such read buffer has been
adapted to correctly manipulate a node of the xBR+-tree. Second, the adapted write buffer of the
eFIND xBR+-tree naturally ensures the order of node entries. This aspect accelerates the retrieval of
the most recent version of modified nodes. Other intrinsic aspects of eFIND also contributed to the
performance results, such as the treatment of reads and writes.

The experiments also showed that FAST faces several problems. First, its flushing algorithm might
pick nodes without modifications, resulting in unnecessary writes to the SSD. This is due to the static
creation of flushing units as soon as nodes are created in the index. Second, its write buffer stores
the modifications in a list possibly containing repeated entries, impacting negatively the performance
of retrieving modified nodes during an index construction. Finally, FAST does not improve the
performance of reads since it does not store nodes that are frequently read.

Building spatial indices on the voluminous datasets (i.e., synthetic2 and us_midwest_points2017 )
required more time because they are larger than the other datasets (i.e., synthetic1 and
brazil_points2017 ). In several cases, the eFIND xBR+-tree provided the best elapsed time by us-
ing the page size equal to 8KB. The use of larger page sizes brought the problem of writing big
flushing units [Sarwat et al. 2013; Carniel et al. 2019], while the use of smaller page sizes introduced
the management of a high number of nodes.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 45

2 4 8 16 32
0

0.6

1.2

1.8

2.4

Low selectivity

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

1.5

3

4.5

6

Medium selectivity

Index Page Size (KB)

2 4 8 16 32
0

3

6

9

12

High selectivity

Index Page Size (KB)

(a) brazil points2017

eFIND xBR+-tree FAST xBR+-tree

2 4 8 16 32
0

0.3

0.5

0.8

1

Low selectivity

Index Page Size (KB)

E
la
p
se
d
T
im

e
(s
)

2 4 8 16 32
0

0.8

1.5

2.3

3

Medium selectivity

Index Page Size (KB)

2 4 8 16 32
0

2.5

5

7.5

10

High selectivity

Index Page Size (KB)

(b) us midwest points2017

Fig. 7. Performance results when processing IRQs on the real spatial datasets. For the brazil_points2017, the eFIND
xBR+-tree reduced the elapsed time in almost all cases. For the us_midwest_points2017, the eFIND xBR+-tree
outperformed the FAST xBR+-tree for all selectivity levels.

6.3 Spatial Query Processing

Figures 6 and 7 show that the eFIND xBR+-tree was the best configuration for executing IRQs
since it provided the best performance results in almost all cases. For the synthetic spatial datasets
(Figure 6), it showed performance gains of up to 46%, 40.2%, and 22.5% for the low, medium, and
high selectivity levels, respectively. For the real spatial datasets (Figure 7), the eFIND xBR+-tree
showed performance gains of up to 27.7%, 27.5%, and 24.2% for the low, medium, and high selectivity
levels, respectively. Similar to our previous discussions (Section 6.2), these performance gains were
obtained thanks to the effective use of the merge operation and read buffer.

Processing IRQs on the synthetic datasets required much less time than processing IRQs on the
real datasets because of their specific spatial distribution. Another observation is related to the real
datasets, where the execution of the IRQs on brazil_points2017 was slower than the execution of the
IRQs on us_midwest_points2017, although the latter dataset is more voluminous than the former.
We believe that the main reason for this behavior is also the spatial distribution. That is, the spatial
distribution of us_midwest_points2017 is quite similar to the spatial distribution of the synthetic
datasets, allowing a better internal organization of the xBR+-tree.

In most of the cases, better elapsed times were obtained by using large page sizes (i.e., 16KB and
32KB) because more entries are loaded into the main memory with a few reads. IRQs returning
more points (i.e., with high selectivity) exhibited higher elapsed times. This is due to the traversal of

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



46 · A. C. Carniel et al.

multiple large nodes in the main memory, requiring more CPU time than queries with low selectivity.
This fact also contributed to a similar time among the configurations when processing IRQs with high
selectivity using the page size of 32KB.

7. CONCLUSIONS AND FUTURE WORK

This paper analyzes strategies to adapt the xBR+-tree to SSDs by using two general frameworks,
FAST and eFIND. As a result, two novel flash-aware spatial indices for points have been proposed,
the FAST xBR+-tree and the eFIND xBR+-tree. To design these indices, we have mainly adapted
the data structures of FAST and eFIND to deal with the structural constraints and properties of the
xBR+-tree. That is, our adaptations ensured the sorting property of entries stored in internal and leaf
nodes. Since we have adapted the data structures of these frameworks, we also have slightly adapted
their general algorithms.

We empirically analyzed the efficiency of the FAST xBR+-tree and the eFIND xBR+-tree by means
of extensive experimental evaluations that considered two real spatial datasets and two synthetic
spatial datasets. In general, the eFIND xBR+-tree showed the best performance results. It provided
performance gains ranging from 30.8% to 62.8% and from 61.7% to 91.4% when building indices on
the synthetic datasets and on the real datasets, respectively. As for spatial query processing, the
eFIND xBR+-tree showed performance gains ranging from 22.5% to 46% and from 24.2% and 27.7%
for the synthetic datasets and the real datasets, respectively.

In our experiments, the use of the page size equal to 16KB was the best solution for the employed
configurations. Although this page size required more time to build an index compared to smaller
page sizes, it provided good results to execute the IRQs. Hence, the cost of its construction can be
counterbalanced by its efficiency when processing spatial queries.

The efficiency of the eFIND xBR+-tree is obtained mainly because of two reasons. First, the internal
structure of the xBR+-tree was completely integrated to eFIND, guaranteeing all the properties of
the xBR+-tree that offer good spatial indexing performance. Second, eFIND is based on distinct
design goals that fully exploit SSD performance. Thus, the eFIND xBR+-tree takes into account
many intrinsic characteristics of SSDs by providing write and read buffers to improve the performance
of writes and reads, by specifying a temporal control to deal with interleaved reads and writes, by
employing a specialized flushing algorithm, and by guaranteeing data durability.

Our future work will include an evaluation of the eFIND xBR+-tree against other spatial organiza-
tions ported by eFIND, such as the data partitioning strategy of eFIND R-trees [Carniel et al. 2019].
Another future work is to extend our experiments to consider workloads that mix insertions and other
types of queries, such as point queries.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-
rior - Brasil (CAPES) - Finance Code 001. This work has also been supported by CNPq and by
the São Paulo Research Foundation (FAPESP). Anderson C. Carniel was supported by the grants
#2015/26687-8 and #2018/10687-7, FAPESP. Ricardo R. Ciferri has been supported by the grant
#311868/2015-0, CNPq. Cristina D. A. Ciferri has been supported by the grant #2018/22277-8,
FAPESP.

REFERENCES

Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., and Panigrahy, R. Design tradeoffs
for SSD performance. In USENIX 2008 Annual Technical Conference. pp. 57–70, 2008.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



JIDM - Journal of Information and Data Management · 47

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. The R*-tree: An efficient and robust access method
for points and rectangles. In ACM SIGMOD International Conference on Management of Data. pp. 322–331, 1990.

Bouganim, L., Jónsson, B., and Bonnet, P. uFLIP: Understanding flash IO patterns. In Fourth Biennial Conference
on Innovative Data Systems Research, 2009.

Brayner, A. and Monteiro Filho, J. M. Hardware-aware database systems: A new era for database technology is
coming - vision paper. In Brazilian Symposium on Databases. pp. 187–192, 2016.

Carniel, A. C. Spatial indexing on flash-based solid state drives. In Proceedings of the VLDB 2018 PhD Workshop.
pp. 1–4, 2018.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. The performance relation of spatial indexing on hard disk
drives and solid state drives. In Brazilian Symposium on GeoInformatics. pp. 263–274, 2016.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. Analyzing the performance of spatial indices on hard disk
drives and flash-based solid state drives. Journal of Information and Data Management 8 (1): 34–49, 2017a.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. A generic and efficient framework for spatial indexing
on flash-based solid state drives. In European Conference on Advances in Databases and Information Systems. pp.
229–243, 2017b.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. Spatial datasets for conducting experimental evaluations
of spatial indices. In Satellite Events of the Brazilian Symposium on Databases - Dataset Showcase Workshop. pp.
286–295, 2017c.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. A generic and efficient framework for flash-aware spatial
indexing. Information Systems vol. 82, pp. 102–120, 2019.

Carniel, A. C., Roumelis, G., Ciferri, R. R., Vassilakopoulos, M., Corral, A., and Ciferri, C. D. A. An
efficient flash-aware spatial index for points. In Brazilian Symposium on GeoInformatics. pp. 68–79, 2018.

Chen, F., Koufaty, D. A., and Zhang, X. Understanding intrinsic characteristics and system implications of flash
memory based solid state drives. In ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems. pp. 181–192, 2009.

Denning, P. J. Working sets past and present. IEEE Transactions on Software Engineering SE-6 (1): 64–84, 1980.
Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., and Thoma, M. On the impact of flash SSDs on spatial

indexing. In International Workshop on Data Management on New Hardware. pp. 3–8, 2010.
Fevgas, A., Akritidis, L., Bozanis, P., and Manolopoulos, Y. Indexing in flash storage devices: a survey on
challenges, current approaches, and future trends. The VLDB Journal , 2019.

Fevgas, A. and Bozanis, P. Grid-file: Towards to a flash efficient multi-dimensional index. In International Confer-
ence on Database and Expert Systems Applications. pp. 285–294, 2015.

Folk, M. J., Zoellick, B., and Riccardi, G. File Structures: An Object-Oriented Approach with C++. Addison
Wesley, 1997.

Gaede, V. and Günther, O. Multidimensional access methods. ACM Computing Surveys 30 (2): 170–231, 1998.
Hjaltason, G. R. and Samet, H. Ranking in spatial databases. In International Symposium on Spatial Databases.
pp. 83–95, 1995.

Jin, P., Xie, X., Wang, N., and Yue, L. Optimizing R-tree for flash memory. Expert Systems with Applica-
tions 42 (10): 4676–4686, 2015.

Johnson, T. and Shasha, D. 2Q: A low overhead high performance buffer management replacement algorithm. In
International Conference on Very Large Databases. pp. 439–450, 1994.

Jung, M. and Kandemir, M. Revisiting widely held SSD expectations and rethinking system-level implications. In
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. pp. 203–216,
2013.

Koltsidas, I. and Viglas, S. D. Data management over flash memory. In ACM SIGMOD International Conference
on Management of Data. pp. 1209–1212, 2011a.

Koltsidas, I. and Viglas, S. D. Spatial data management over flash memory. In International Conference on
Advances in Spatial and Temporal Databases. pp. 449–453, 2011b.

Li, G., Zhao, P., Yuan, L., and Gao, S. Efficient implementation of a multi-dimensional index structure over flash
memory storage systems. The Journal of Supercomputing 64 (3): 1055–1074, 2013.

Lin, S., Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., and Najjar, W. A. Efficient indexing data
structures for flash-based sensor devices. ACM Transactions on Storage 2 (4): 468–503, 2006.

Mittal, S. and Vetter, J. S. A survey of software techniques for using non-volatile memories for storage and main
memory systems. IEEE Transactions on Parallel and Distributed Systems 27 (5): 1537–1550, 2016.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. The grid file: An adaptable, symmetric multikey file structure.
ACM Transactions on Database Systems 9 (1): 38–71, 1984.

Oosterom, P. V. a. N. Spatial Access Methods. In Geographical Information Systems: Principles, Techniques,
Management and Applications, 2nd Edition ed., P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind
(Eds.). pp. 385–400, 2005.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.



48 · A. C. Carniel et al.

Rigaux, P., Scholl, M., and Voisard, A. Spatial databases: with application to GIS. Morgan Kaufmann, 2001.
Robinson, J. T. The K-D-B-tree: a search structure for large multidimensional dynamic indexes. In ACM SIGMOD
International Conference on Management of Data. pp. 10–18, 1981.

Roumelis, G., Fevgas, A., Vassilakopoulos, M., Corral, A., Bozanis, P., and Manolopoulos, Y. Bulk-loading
and bulk-insertion algorithms for xBR+-trees in solid state drives. Computing, 2019.

Roumelis, G., Vassilakopoulos, M., Corral, A., Fevgas, A., and Manolopoulos, Y. Spatial batch-queries
processing using xBR+-trees in solid-state drives. In International Conference on Model and Data Engineering. pp.
301–317, 2018.

Roumelis, G., Vassilakopoulos, M., Corral, A., and Manolopoulos, Y. Efficient query processing on large
spatial databases: A performance study. Journal of Systems and Software vol. 132, pp. 165–185, 2017.

Roumelis, G., Vassilakopoulos, M., Loukopoulos, T., Corral, A., and Manolopoulos, Y. The xBR+-tree:
an efficient access method for points. In International Conference on Database and Expert Systems Applications.
pp. 43–58, 2015.

Samet, H. The quadtree and related hierarchical data structures. ACM Computing Surveys 16 (2): 187–260, 1984.
Sarwat, M., Mokbel, M. F., Zhou, X., and Nath, S. FAST: A generic framework for flash-aware spatial trees. In
International Conference on Advances in Spatial and Temporal Databases. pp. 149–167, 2011.

Sarwat, M., Mokbel, M. F., Zhou, X., and Nath, S. Generic and efficient framework for search trees on flash
memory storage systems. GeoInformatica 17 (3): 417–448, 2013.

Sellis, T. K., Roussopoulos, N., and Faloutsos, C. The R+-Tree: A dynamic index for multi-dimensional objects.
In International Conference on Very Large Databases. pp. 507–518, 1987.

Silva, F. A., Domingues, A. C. S. A., and Silva, T. R. M. B. Discovering mobile application usage patterns from
a large-scale dataset. ACM Transactions on Knowledge Discovery from Data 12 (5): 59:1–59:36, 2018.

Wu, C.-H., Chang, L.-P., and Kuo, T.-W. An efficient R-tree implementation over flash-memory storage systems.
In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 17–24, 2003.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.


