
Towards an Empirical Evaluation of Scientific Data
Indexing and Querying

Thaylon Guedes1, Vítor Silva2, José Camata4, Marcos V. N. Bedo3,
Marta Mattoso2, Daniel De Oliveira1

1 Computing Institute, Universidade Federal Fluminense, Brazil
thaylongs@id.uff.br, danielcmo@ic.uff.br

2 Computer Science Department, Universidade Federal do Rio de Janeiro, Brazil
{silva, marta}@cos.ufrj.br

3 Fluminense Northwest Institute, Universidade Federal Fluminense, Brazil
marcosbedo@id.uff.br

4 Computer Science Department, Universidade Federal de Juiz de Fora, Brazil
camata@nacad.ufrj.br

Abstract. Computational simulations usually produce large amounts of data on a regular time-step basis. Hetero-
geneous simulation outputs are stored in different file formats and on distinct storage devices. Therefore, the main
challenges for accessing simulation data are related to time-to-query, which is the effort spent for setting all data into
a common framework, the issuing of a high-level query statement, and obtaining the result set. The simulation data
loading into DataBase Management Systems (DBMS) are either unpractical, as they demand a prohibitive time for
data preparation, or unfeasible, as data files are still needed in their original form (scientific applications still need to
read and write contents to those files). In this article, we discuss the complementary approaches of adaptive querying
and raw data file indexing for accessing simulation results stored in multiple sources (e.g., raw data files) without data
loading. In particular, we review (i) NoDB PostgresRAW routines for adaptive query processing, and (ii) FastBit meth-
ods for raw data file indexing and querying. We examine the behavior of both strategies regarding a real case study
of computational fluid dynamics simulation in the domain of sediment deposition. In this experimental evaluation, we
measured the elapsed time for index construction and query processing regarding six distinct query categories over 62
time steps, which sums up to different 372 queries on 44,160 files (12.2 GB) produced by the computational simulation.
Results show that FastBit is faster than PostgresRAW for query execution in all but low-selectivity query scenarios. In a
complementary manner, results also show PostgresRAW outperforms FastBit whenever users are interested in reducing
time-to-query rather than the query execution time itself.

Categories and Subject Descriptors: H.2 [Database Management]: Systems; H.2 [Database Management]: Database
Applications; H.3.4 [Information Storage and Retrieval]: Systems and Software

Keywords: computational fluid dynamics, dataflow management, scientific data indexing, scientific data querying

1. INTRODUCTION

The volume of data consumed and produced by simulation programs is increasing at a very fast pace
due to the several advances in computational simulations [Wang and Zhai 2016]. Such data represent
the intermediate and final results produced by complex simulations and are usually stored in files
with different formats depending on the domain (e.g., XDMF and HDF5) [Clarke and Mark 2007]. In this
context, and for the sake of simplicity, we call scientific data the data produced by scientific simulations
and represented in their raw format. The exploration and analysis of scientific data requires accessing
the content of raw data files, extracting regions of interest in files, loading them into an external
database, and indexing all contents before high-level queries can be efficiently performed.

Copyright c©2018 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 9, No. 1, April 2018, Pages 84–93.



JIDM - Journal of Information and Data Management · 85

Most of the existing approaches that aim at querying and analyzing scientific big data stores in-
formation in its original form, e.g., semi- and non-structured file formats [Blanas et al. 2014]. Such
approaches access and extract domain-specific data from files employing lexical and syntactical an-
alyzers. More specifically, users define the attributes of interest so that their corresponding domain
data are extracted whenever they are present in the experiment files. Scientific data usually re-
lies on indexing methods for (i) reducing data redundancy and the overhead of data loading, and
(ii) speeding up the execution of queries on (parts of) inspected data. Remarkable examples of sci-
entific data management systems are DBMS-driven solutions like SciDB [Cudre-Mauroux et al. 2009]
and PostgresRAW [Alagiannis et al. 2012a; 2012b], and file-driven tools as FastBit [Wu 2005] and
FastQuery [Chou et al. 2011]. Such solutions are designed for handling isolated raw files, i.e., one file
has no relationship with others. Consequently, they rely on high-level SQL statements for providing
support for simulations that produce a series of files related to each other.

In this article, we discuss existing DBMS-driven and file-driven solutions regarding their character-
istics for the analysis of simulation results stored into multiple data sources, e.g., raw data files. Such
solutions were divided into two approaches: adaptive querying, which improves the query performance
by using on-line self-tuning whenever neither statistics nor predictable costs are available [Deshpande
et al. 2007], and raw data file indexing, which optimizes data accesses in raw files through indexes.
In particular, we review (i) PostgresRAW routines for adaptive query processing, and (ii) FastBit for
file indexing and querying. We examine the behavior of both strategies regarding a case study of
simulation in the domain of Computational Fluid Dynamics (CFD) for sediment deposition. In this
experimental evaluation, we measured the time spent for index construction and query processing
regarding six distinct query categories over 62 time steps, which sums up to different 372 queries on
44,160 files with 12.2 GB coming out of the computational simulation. Therefore, our experimental
evaluation contributes with the following main results:

(1) FastBit is faster than PostgresRAW for query processing in all but low-selectivity queries, consid-
ering that indexes were previously constructed; and

(2) PostgresRAW is more responsive to first submitted queries because it demands a much lower
time-to-query (i.e., elapsed time to generate the index and perform the query) in comparison to
competitor FastBit.

This article is an extension of work originally reported in the Proceedings of the Brazilian Sym-
posium on Databases [Guedes et al. 2017] held in Uberlândia, MG - Brazil, on October 2017. The
remainder of this article is structured as follows. Section 2 presents existing approaches for scientific
data indexing. Section 3 discusses the case study based on a CFD simulation as well as the volume
and the nature of the manipulated data. Section 4 presents the empirical evaluation performed on
the examined techniques, considering the simulation on the CFD domain for analyzing sedimentation
deposits. Finally, Section 5 discusses the results and concludes the paper.

2. BACKGROUND AND RELATED WORK

Analyzing scientific data can be carried out with and without data loading [Blanas et al. 2014].
In the first case, file indexes upon loaded data are viable options for search optimization. Several
paradigms can be used for indexing and querying scientific data, but two of them stand out as the most
versatile strategies regarding performance and data loading adaptability: (i) bitmap and (ii) positional
indexing [Alagiannis et al. 2012a]. Bitmap indexing techniques rely on the discretization of active
domains of scientific data attributes in such a way boolean comparisons can be used for the matching
of entries that satisfy the query criteria. For instance, if the active domain of a given attribute X
from a scientific data file is composed of five distinct values, then bitmap based on identity criteria
requires five columns for pairing any identity-based comparison to the data attribute.

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



86 · Guedes, T. et al.

Additionally, bitmaps are useful for order-based comparisons whenever the active domain is large
enough. FastBit [Wu 2005] and FastQuery [Chou et al. 2011] are examples of scientific data manage-
ment systems that apply bitmap indexing techniques. In particular, FastBit enables the parameter-
ization of the index structure itself regarding the codification type, the compression algorithm, and
the discrete bitmap precision.

Analogously, positional indexing relies on the dynamic construction of a map of entries to the
physical location of the attributes in the raw data files [Alagiannis et al. 2012a]. Positional indexes
require less memory space in comparison to bitmaps as they do not employ redundant entries (as in the
case of 0’s values in bitmaps). Moreover, positional indexes can point to more complex structures than
single raw data files, such as trees or meshes. Positional indexing can be used alongside with attribute
extraction for in situ data analysis - a query strategy known as NoDB philosophy [Karpathiotakis et al.
2014]. PostgresRAW is an example of a self-tuning NoDB engine that extracts the active attribute
domain to a modified PostgreSQL layer and enables the use of standard SQL for accessing domain
data (i.e., the content of data files produced by the simulation). PostgresRaw avoids modifying file
structures and heavily relies on adaptive query processing, which demands the use of statistics and
caching mechanisms for accessing, extracting, and indexing the contents of data sources. Accordingly,
only the domain attributes retrieved by user-provided queries are effectively indexed, whereas the
information itself is kept into files with different structures. Table I presents a comparison between
FastBit and PostgresRAW solutions regarding their indexing techniques, high-level query processing
support, scientific data loading requirements, and time complexity for fetching a raw data file.

Table I: Comparison of PostgresRAW and FastBit regarding their main features.
Approach Strategy Indexing Language Data Loading File Data Access

PostgresRAW Adaptive querying Positional Standard SQL Not required Linear
FastBit Raw data file indexing Bitmap SQL Compatible1 Required Constant

We highlight both bitmap and positional indexing approaches are designed for isolated files, i.e.,
they do not enable the efficient query processing of data element flows [Silva et al. 2017]. Therefore,
the straightforward use of such methods for querying scientific data whose output is a flow rather than
a single isolated file would demand rewriting the simulation programs, or the complete modification
of their data structures layer to be stored into DBMS, which is unviable in most of the cases. As an
alternative, data can be kept in their original format and replicated to scientific data management
and data analysis tools, which must be somehow coupled with FastBit or PostgresRaw, for instance.

In the next section, we discuss the use of the two prominent yet competing solutions, PostgresRaw
and FastBit, for the query and analysis of results of a real turbidity currents simulation [Camata
et al. 2018], which is kept as a series of related files stored as multiple raw data files. Accordingly,
we evaluate queries that associate the contents of multiple files as scientific data are stored in several
files. Our goal is to perform an empirical assessment of the capabilities of the two aforementioned
solutions in a real-world scenario.

3. CASE STUDY: COMPUTATIONAL FLUID DYNAMICS

Our case study focuses on simulations in the CFD field regarding the specific problem of analyzing
sediment deposition over sedimentary basins. Such case study is particularly suitable for the evaluation
of adaptive query processing versus raw data file indexing as it involves the generation of a large volume
of scientific data stored in specific file formats of the domain (XDMF and HDF5). Moreover, users need
to access the contents of these files to support specific domain data analyses, such as the validation
of scientific hypotheses. We ran the experiments by using the libMesh-sedimentation solver [Camata

1https://sdm.lbl.gov/fastbit/doc/ibisCommandLine.html

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



JIDM - Journal of Information and Data Management · 87

et al. 2018]. This application is built from libMesh2 to simulate turbidity currents, typically found
in geological processes. Within this context, sediments are transported due to the fluid movement
and follow the rules of Navier-Stokes equations for incompressible fluid combined to the advection-
dominated transport equation (sediment concentration).

In our simulation, the intermediate and final results of the meshes are stored in scientific data
files, whereas other data of interest are kept in main memory (e.g., variables of the solver code).
Accordingly, libMesh-sedimentation was integrated with ParaView Catalyst [Ayachit et al. 2015] so
that in-memory data can be extracted from the simulated mesh. Such scientific data files from in-
memory data are stored into comma-separated values (CSV) files that include information such as
the direction of fluid movement, the concentration of suspended and deposited sediments, the fluid
pressure, and the coordinates of the mesh points. It is worth mentioning we choose plain CSV data
files because they are a common format among the evaluated solutions and enable us to avoid the
effective use of a binary data structure.

Solver setup

Mesh generation

Sediment deposition 
Solver

Fluid dynamics 
Solver

XDMF/HDF5 file
writing

Adaptive Mesh
refinement

Adaptive Mesh
aggregation

Start horizontal line 1
extraction

Start vertical line
extraction

Start horizontal line 2
extraction

Start horizontal line 3
extraction

Vertical line extraction

Horizontal line 1
extraction

Horizontal line 2
extraction

Horizontal line 3
extraction

libMesh-sedimentation

ParaView Catalyst

DfAnalyzer

Fig. 1: The pipeline of the computational simulation of sediment deposition experiment.

Additionally, we coupled the duo libMesh-sedimentation and ParaView Catalyst to the DfAnalyzer
tool [Silva et al. 2018], which enables (i) runtime query processing on both scientific data coming out of
libMesh and in-memory data extracted using ParaView Catalyst; and (ii) provenance query processing
considering the dataflow paths generated by the computational simulation. Therefore, DfAnalyzer tool
enables the dataflow monitoring in computational simulations through access, extraction, and index-
ing of scientific data, along with the capture of provenance data at runtime. Moreover, DfAnalyzer
provides a complementary aspect to simulation programs regarding the finding of the variables of
interest and/or files that need to have their content accessed, extracted and, eventually, indexed. Df-
Analyzer is further designed to follow a W3C PROV compliant data model, named as PROV-Df [Silva
et al. 2017]. Figure 1 shows the data transformation pipeline involved in libMesh-sedimentation (black
squares) as well as the data transformations that use ParaView Catalyst (white squares) for raw data
extraction. Such pipeline is related to the generation of both scientific data, which is straightforwardly
stored into files, and in-memory information, which stores extracted data of in-memory structures to
CSV files. Initially, a mesh is generated for the simulation and it is fed to the libMesh solver.

At this point, ParaView Catalyst extracts strategic simulation data of the solver data structures
(horizontal lines) and persists them to files. For the remaining iterative part of the solver, libMesh
generates XDMF and HDF5 files that contain the simulation results, i.e., the output mesh, whereas
ParaView Catalyst keeps track of the mesh allocated in memory and stores them into HDF5 files.
Finally, the resulting aggregated mesh is persisted into a single XDMF file with references to the HDF5
files. The provenance aspect of this simulation is carried out by DfAnalyzer (gray squares). Whenever
information is gathered by either libMesh or Catalyst, DfAnalyzer is triggered such that it becomes

2http://libmesh.github.io

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



88 · Guedes, T. et al.

aware of data evolution during the simulation. In the next section, we discuss the processes of
accessing, indexing and querying data extracted under the pipeline presented in Figure 1. More
specifically, we considered all contents of the meshes generated by this simulation in the experimental
evaluation of this paper (i.e., output data of the data transformation XDMF/HDF5 file writing).

4. ADAPTIVE QUERYING VS. RAW DATA FILE INDEXING

Previously in Section 2, we classified the approaches for accessing, extracting, indexing, and querying
scientific data in two major categories: adaptive querying and raw data file indexing. We also high-
lighted that PostgresRAW and FastBit are representative solutions for those two categories. In this
comparative analysis, we employ both PostgresRAW and FastBit. Our goal is to evaluate these two
solutions regarding the following criteria:

(1) The elapsed time of query processing for each solution, i.e., the time required for performing a
query regardless of the data preparation, and

(2) The time-to-query demanded for each solution, i.e., the joint time spent from data preparation
to result set generation.

For this comparative analysis, we executed the turbidity currents simulation detailed in Section 3
in the Lobo Carneiro (LoboC) cluster3 and used 960 cores in this execution. All computational
simulation (including results, in-memory strategic scientific data and provenance data) generated
approximately 47GB of data distributed across 97,163 files. Aiming at reducing the overall amount of
raw data stored, we applied the ParaView Catalyst tool with default parameters for data selection and
extracted 44,160 files from the overall results of the execution. Extracted data include 62 time steps
(i.e., solver iterations) divided into 480 files per odd time steps and 960 files per even time steps, on
average. We have this variation on the number of files with extracted data due to the Adaptive Mesh
Refinement (AMR) algorithm performed by libMesh-sedimentation solver at runtime, which implies
the modification of the number of tetrahedrons in its output mesh. Figure 2 details the accumulated
dataset size (in MB) for each time step.

Fig. 2: Accumulated dataset size for each time step of the turbidity currents simulation.

In the next sections, we describe the setup and enhancements we made on both PostgresRAW
and FastBit for a comparison between these solutions. All measures were taken after a series of 10
repetitions and all executions ran on the same hardware infrastructure in a Virtual Machine (VM) in
the Google Cloud Platform4. We set a single VM to use 8 cores and 30GB RAM, whereas data were
stored and retrieved from an SDD device. Also, we used Ubuntu 16.04.4 LTS OS, FastBit version
2.0.35 and PostgresRAW available in the last commit of its public repository6 as of April 25, 2018.

3http://www.nacad.ufrj.br/en
4https://cloud.google.com/
5https://code.lbl.gov/projects/fastbit/
6https://github.com/HBPMedical/PostgresRAW

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



JIDM - Journal of Information and Data Management · 89

4.1 Setting up PostgresRAW

PostgresRAW manages open files by using an array in which every position corresponds to a file
pointer, and this array is instantiated for each ODBC-like request. By default, PostgresRAW is con-
figured for handling an array of fixed 50 positions, which is insufficient for the evaluated computational
simulation. However, when the array size is increased, either statically or dynamically, it incurs into
a substantial delay for each database connection. The cause of such delay is related to the strategy
for fetching file pointers from the collection rather than the array structure itself.

After analyzing the PostgresRAW source code where it reads the file that is used to load data to
the vector, we discovered that PostgresRAW searches the entire array twice to find an empty position
to be associated to a new file or an entry whose identifier equals to the file identifier to be updated.
The structure of each array has four attributes (file location, table name, delimiter character, and a
flag for header ignoring) as follows:

filename-ID = ‘FILE_LOCATION’
relation-ID = ‘TABLE_NAME’
delimiter-ID = ‘,’
header-ID = ‘TRUE | FALSE’

Therefore, we had to modify the data loading algorithm of PostgresRAW to use the file identifier
as the array index. Whenever there is memory to be spent in pointers, the array is of fixed size and
query complexity is bounded to O(1). Otherwise, the array is a sparse implementation and query
complexity becomes O(log(# of entries)). We also modified the PostgresRAW core for addressing the
limitation of not handling more than 5 tables at the same time. Once again, the original source code
was limited by a fixed array that kept query and table metadata in the main memory, which required
the array to be converted into a dynamic collection with a proper reallocation method.

4.2 Setting up FastBit

Unlike PostgresRAW that relies on adaptive querying for generating its positional indexes, FastBit
enables the user to define the parameters for indexing and tuning a priori. In particular, FastBit can
be set towards either binning or encoding parameterizations. The Binning parameter determines how
the bitmap is produced and, in our tests we employed the default value, i.e., parameter precision = 2.
On the other hand, encoding parameterization requires finding the trade-off of two settings (space
and performance), which are usually achieved by several experimental evaluations that scales to the
size of managed data. Accordingly, in our experiments, we used the binning parametrization.

4.3 Comparison of indexing generation and storage routines

FastBit generates bitmap indexes for raw data files, whereas PostgresRAW generates initial positional
references to the raw data file entries. In both cases, such index generation ran before data querying.
Accordingly, we measured the elapsed time and disk storage demanded by the two competitors. Ta-
ble II presents the comparison of the elapsed time demanded for index creation upon data extracted
from XDMF and HDF5 files. PostgresRAW required a much smaller (in up to 2 orders of magnitude,
on average) index construction time in comparison to FastBit. Unlike FastBit that relies on a single
one-pass routine for the construction of its index (it indexes all values in a raw data file), Postgres-
RAW uses an in-memory incremental function for adding entries into its positional index. Thus, it
is expected the first queries submitted to PostgresRAW to take longer than in FastBit as they also
require the update of the positional.

Table II also presents the disk space required for each compared approach. Overall results indicate
disk usage follows a similar behavior of that observed on index generation, i.e., PostgresRAW has

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



90 · Guedes, T. et al.

required up to 30 times less disk space for index storage in comparison to FastBit. Although Post-
gresRAW index size is expected to increase whenever queries on new attributes/columns arrive, the
index size result reinforces FastBit heavily relies on redundant strategy for representing the entries
on raw data files. FastBit’s strategy seems to scale linearly to the number of entries × files. On the
other hand, as queries are submitted to PostgresRAW, the disk usage tends to increase over time since
PostgreRAW generates indexes on the fly.

Table II: Comparison of elapsed time and disk space required for the generation of FastBit and PostgresRAW indexes.
Indexing solutions

Measurements FastBit PostgresRAW
Elapsed time for

index construction (s)
Mean 20,396.07 264.49

Standard deviation 1,406.65 0.73
Disk usage (GB) 18.00 0.53

4.4 Comparison of raw data file querying

In this section, we use the indexes generated in the previous section and pose a group of representative
queries upon the raw data files we obtained after the CFD simulation. These queries are based on
the typical on-line queries users make on CFD simulation data. The overall idea is the submission of
six high-level SQL-based queries to the competing solutions, whereas each query is related to every
time step of the turbidity currents simulation. Therefore, we submit 6× 62 = 372 queries (one query
for every time step), executed each 10 times, and measured the elapsed time of each solution required
to return the result set. Table III describes the domain queries in terms of their selectivity and
the motivation for each SQL-based statement. Query selectivity is defined as a floating-point value
between zero and one that represents the percentage of rows to be returned. Based on such a definition
we classified queries into three types: low-selective, medium-selective and high-selective queries. High-
selective queries are the ones that return up to 1% of the original tuples. Medium-selective queries
are the ones that return from 1% up to 50% the original set of tuples. Finally, low-selective queries
those that return more than 50% of the tuples.

Table III: Six domain queries to be applied over each time step of the CFD simulation.
Label Selectivity Description
Q1 Low Retrieves data from multiple columns and files at same time.
Q2 High Retrieves extreme values within multiple columns and files. Q2 uses the SQL

aggregate function MAX, whereas Q3 applies the SQL aggregate function MIN.Q3
Q4 Low Retrieves data from a single column from multiple files.
Q5 Medium Filters data from a single column of multiple files.
Q6 Medium Filters data from multiple columns and files.

Query Q1 selects all data from all files that represent a given time step, i.e., it joins the content
within all of the time steps files into a single output. Queries Q2 and Q3 apply the SQL aggregate
function about the maximum and minimum values of specific attributes from multiple files. Query Q4
selects all data of a single attribute from multiple files, whereas query Q5 filters such values by using an
order-based predicate with medium selectivity. Finally, query Q6 filters all attributes after a Cartesian
product where a second column is filtered by a predicate with a medium selectivity condition.

Figure 3 presents the elapsed time regarding the execution of each query. We accumulated the
elapsed times of the queries regarding the interval of time steps from 0 to 61 in steps of 10. Therefore,
the first portion of each stacked graph corresponds to the CFD time steps 0 to 9, and so on. The last
portion of stacked bars includes the time step interval of 60 to 61. Figure 3 shows the overall results
for Q1, where PostgresRAW was 37.92% faster than FastBit, as FastBit needs to read all column
files and matches the rows to produce the results for this query in particular. For all other queries,
however, FastBit performed better than PostgresRAW. In particular, FastBit was up to 92.79%,

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



JIDM - Journal of Information and Data Management · 91

Fig. 3: Elapsed time of the query processing after data indexing.

98.23%, 76.53%, 71.61%, and 69.57% better than PostgresRAW regarding queries Q2, Q3, Q4, Q5, and
Q6, respectively. Moreover, PostgresRAW query execution time showed nearly the same behavior for
the all queries regardless of query selectivity.

On the other hand, FastBit is sensitive to the interval of time steps and also to the query selectivity.
For instance, the sum of the elapsed time of queries Q2, Q3, and Q4 is smaller than the sum of the
elapsed time of Q5 and Q6. Besides query selectivity, queries Q5 and Q6 require Cartesian products and
also retrieve more attributes than the previous ones. FastBit execution on queries Q5 and Q6 indicates
that the larger the portion (and number) of indexes FastBit needs to scan, the higher the accumulated
query cost because it also involves the retrieval of index blocks themselves that are stored into the
secondary memory file system.

We also evaluated the performance of FastBit and PostgresRAW regarding their elapsed times for
running queries on each time step. Figure 4 and Figure 5 shows the comparison for each time step
regarding query Q3. Such a query is representative because it traverses an entire common column
between the multiple raw data files. Bottom of Figure 4 and Figure 5 present the performance of both
indexes for querying the raw data files that store the information about the odd time steps, whereas
the top of Figure 4 and Figure 5 shows the behavior of the competitors regarding the even time steps,
respectively. Overall results indicate that FastBit is able to retrieve data in constant time for query Q3
as it employed a fixed-size indexing structure that enables a single scan of the entire set of values from
the columns. On the other hand, PostgresRAW presents an elapsed time that increases according to
the dataset size, which highlights its dynamic indexing structure is sensitive to data cardinality.

Fig. 4: FastBit Query performance for Query Q3

4.5 Comparison of time-to-query

In our last experiment, we measured the average time-to-query for each solution to query the scientific
data of the CFD simulation. In this scenario, we suppose users want to perform a single query over the

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



92 · Guedes, T. et al.

Fig. 5: PostgresRAW Query performance for Query Q3

time steps instead of the six sequential queries of Section 4.4. Therefore, the elapsed time demanded
for raw data file indexing is added to the data querying time.

Figure 6 presents the time-to-query required for the six different searches on the CFD simulation
files regarding all 62 time steps. Overall results indicate PostgresRAW is more suitable than FastBit
in this context because it demanded less time to reach the results. In particular, PostgresRAW was
up to 92.43%, 95.10%, 95.06%, 95.10%, 95.13%, and 95.23% better than FastBit regarding queries Q1,
Q2, Q3, Q4, Q5, and Q6, respectively. The lowest gain of PostgresRAW over FastBit was on query Q1
that is a column-oriented query followed by a union-all of multiple files. Besides the query itself, such
a gain is also related to the index construction procedures, i.e., while the entire values were scanned
to construct the bitmap indexes, PostgresRAW did only performed a mapping of the queried columns.

Fig. 6: Comparison of elapsed time in each task involved in this manuscript.

Although FastBit query execution time after index construction is faster than the query execution
time on PostgresRAW, the elapsed time spent on index construction takes longer to pay off. In a
scientific data querying scenario such as the CFD simulation, even for the accumulative elapsed time
demanded by the execution of all six queries, PostgresRAW has required a much lower time-to-query
in comparison to FastBit (Figure 6 - Accumulated time).

5. CONCLUSION

The loading of all scientific data makes a DBMS inviable for the handling of huge data volume
generated by computational simulations. In addition, most of produced data is not queried over time,
so it is impractical to load data to the database that is not going to be queried. Such data must be
extracted and indexed to allow for querying capabilities of existing tools. In this article, we present a
comparative analysis of representative and alternative raw data file querying solutions, i.e., FastBit and
PostgresRAW. The former stands for the raw data file indexing tuning approaches, whereas the latter
represents the adaptive searching paradigm. In our analysis, we considered a real-world computation
simulation and compared the competing approaches in terms of their indexing construction costs,

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.



JIDM - Journal of Information and Data Management · 93

query processing costs, and data storage requirements. All experiments were performed on either
LoboC cluster or Google cloud platform, and we integrate libMesh-sedimentation, ParaView Catalyst
and DfAnalyzer tools to ensure the capture of simulation, in-memory and provenance data.

Global results of our empirical comparison indicate PostgresRAW presents a better performance
for data query whenever we consider the time-to-query metric. Likewise, PostgresRAW demanded
smaller disk storage for its incremental indexing method, while FastBit approach has demanded 30×
more space. As a matter of trade-off, FastBit outruns PostgresRAW after data indexing. However,
when we take into account the overall time-to-query PostgresRAW was more efficient than FastBit.

Acknowledgments. Authors thank CAPES, CNPq and FAPERJ for their financial support.

REFERENCES

Alagiannis, I., Borovica, R., Branco, M., Idreos, S., and Ailamaki, A. Nodb: Efficient query execution on raw
data files. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. SIGMOD
’12. ACM, New York, NY, USA, pp. 241–252, 2012a.

Alagiannis, I., Borovica, R., Branco, M., Idreos, S., and Ailamaki, A. Nodb in action: Adaptive query
processing on raw data. Proc. VLDB Endow. 5 (12): 1942–1945, Aug., 2012b.

Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J. Paraview catalyst:
Enabling in situ data analysis and visualization. In Proceedings of the First Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization. ISAV2015. ACM, New York, NY, USA, pp. 25–29, 2015.

Blanas, S., Wu, K., Byna, S., Dong, B., and Shoshani, A. Parallel data analysis directly on scientific file formats.
In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. SIGMOD ’14. ACM,
New York, NY, USA, pp. 385–396, 2014.

Camata, J. J., Silva, V., Valduriez, P., Mattoso, M., and Coutinho, A. L. In situ visualization and data
analysis for turbidity currents simulation. Computers and Geosciences vol. 110, pp. 23 – 31, 2018.

Chou, J., Howison, M., Austin, B., Wu, K., Qiang, J., Bethel, E. W., Shoshani, A., Rübel, O., Prabhat,
and Ryne, R. D. Parallel index and query for large scale data analysis. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’11. ACM, New York, NY,
USA, pp. 30:1–30:11, 2011.

Clarke, J. A. and Mark, E. R. Enhancements to the extensible data model and format (xdmf). In DoD High Per-
formance Computing Modernization Program Users Group Conference. DoD HPCMP ’07, vol. 1. IEEE, Pittsburgh,
PA, USA, pp. 322–327, 2007.

Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E., Velikhov, P., Wang,
D. L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier, D., Madden, S., Patel, J., Stonebraker,
M., and Zdonik, S. A demonstration of scidb: A science-oriented dbms. Proc. VLDB Endow. 2 (2): 1534–1537,
Aug., 2009.

Deshpande, A., Ives, Z., and Raman, V. Adaptive query processing. Foundations and Trends R© in Databases 1 (1):
1–140, 2007.

Guedes, T., Sousa, V. S., Camata, J. J., Mattoso, M., and de Oliveira, D. Análise de dados científicos: uma
análise comparativa de dados de simulações computacionais. In XXXII Simpósio Brasileiro de Banco de Dados -
Short Papers, Uberlandia, MG, Brazil, October 4-7, 2017. pp. 222–227, 2017.

Karpathiotakis, M., Branco, M., Alagiannis, I., and Ailamaki, A. Adaptive query processing on raw data. Proc.
VLDB Endow. 7 (12): 1119–1130, Aug., 2014.

Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. Dfanalyzer: Runtime dataflow analysis of scientific
applications using provenance. Proc. VLDB Endow. 11 (12): 2082–2085, Aug., 2018.

Silva, V., Leite, J., Camata, J. J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. Raw
data queries during data-intensive parallel workflow execution. Future Generation Computer Systems vol. 75, pp.
402 – 422, 2017.

Wang, H. and Zhai, Z. J. Advances in building simulation and computational techniques: A review between 1987
and 2014. Energy and Buildings vol. 128, pp. 319 – 335, 2016.

Wu, K. Fastbit: an efficient indexing technology for accelerating data-intensive science. Journal of Physics: Conference
Series 16 (1): 556, 2005.

Journal of Information and Data Management, Vol. 9, No. 1, April 2018.


